## 7. Digital quantum circuits (pictorial)

## 7A. Basic elements



[^0]
## 7B. Circuit identities

Proofs and checks: See (C69) and Mathematica/2021 RC Learn experiment/2022-11.1 circuit identities basic.nb

## Basic and super useful



Pauli decomposition


Pauli decomposition $P_{a}=i^{a_{x} a_{z}} X^{a_{x}} Z^{z_{z}}$ with $a=\left(a_{x}, a_{z}\right)$, see Sec. 3C. Note that for gates $P_{a} \cdot P_{a}^{\dagger}$, the $i^{a_{x} a_{z}}$ drops out. The global phase $i^{a_{x} a_{z}}$ for non control Pauli $P_{a}$ can be ignored. It only applied to $a=(11)$ for $P_{a}=Y(C 70-4)$

shows up as a $i$ phase on the control 1 state. Not this $S$ gate only shows up for $Y$, ie $a=(11)$. (C70-4)

"X travels forwards" from control to target (C69-2)

cX + H (Control-Z cZ gate)

having to push through the $X$ on the control- 2 only when control- 1 is $|1\rangle\langle 1|$, then pushing $X$ through $\mathrm{cX}_{23}$ yields X travels forwards and gives an $X$ on each of the 2-3 wires.

## Controlled-NOT Gate (cNOT, cX)


"Z travels backwards" from target to control (C69-5 / see above)

c $X+S$ (Control- $Y$ c $Y$ gate)



[^0]:    ${ }^{1}$ controlled-Z operation is "symmetric" in the roles of control and target; hence the circuit representation by two dots.

