1. Probability (Technical note 11.9 v0.6)

1A. Concentration inequalities and tail bounds

Unless otherwise specified, all variables are real \mathbb{R} . Inequalities come as one-sided $\Pr(\dots \leq \dots)$ and two-sided $\Pr(|\dots| \leq \dots)$. Notation: X is a random variable, $\mu \coloneqq \mathbb{E}[X]$, $\sigma^2 \coloneqq \operatorname{Var}[X]$, $S_n \coloneqq X_1 + \dots + X_n$.

Inequality	Conditions		Common form	Notes / Alternate form
Single random variable				
Markov ¹	Non-negative	$X \ge 0$	$\Pr\left[X \ge a\right] \le \frac{\mathbb{E}[X]}{a} \qquad \qquad \forall a > $	0 $\Pr[X \ge kE[X]] \le \frac{1}{k}$ $k > 1$ [3, Sec. 5.1][6, Thm 1.13]
extension	$+$ non-negative, strictly increasing func Φ	$X \ge 0$ $\Phi(X) \ge 0$ increasing	$\Pr\left[X \ge a\right] = \Pr\left[\Phi(X) \ge \Phi(a)\right] \le \frac{\mathrm{E}(\Phi(X))}{\Phi(a)}$	$\forall a > 0$ Wiki
Reverse Markov	upper-bounded by U (can be positive)	$\max X = U$	$\Pr\left[X \le a\right] \le \frac{\mathbb{U} - \mathbb{E}[X]}{U - a}$	$\forall a > 0 \qquad \qquad [1, \text{ Sec. } 3.1]$
Chebyshev ²	Finite mean and variance	$\mathbb{E}\left[X ight], \operatorname{Var}\left[X ight]$ finite	$\Pr\left[X - \mathbb{E}[X] \ge a\right] \le \frac{\sigma^2}{a^2}$	$ \begin{split} &\Pr\left[\left X - \mathbb{E}\left[X \right] \right \geq a \cdot \sigma \right] \leq \frac{1}{a^2} & \qquad [1, \; \text{Sec. } 3.2] \\ &\forall a > 0, \; \sigma^2 = \operatorname{Var}\left[X \right] & \qquad [3, \; \text{Sec. } 5.1] [2, \; \text{Thm } 18.11] \end{split} $
Cantelli	Improved Chebyshev	(same; but one-sided)	$\Pr[X - \mathbb{E}[X] \ge a]) \le \frac{\sigma^2}{\sigma^2 + a^2}$	$\forall a > 0, \ \sigma^2 = \operatorname{Var}\left[X ight]$ Wiki
Chernoff ³	Generic		$\Pr\left[X \ge a\right] = \Pr\left[e^{tX} \ge e^{ta}\right]$	$\forall t > 0, a \in \mathbb{R}$ [1, Sec. 3.3]
Jensen		$f: \mathbb{R} \to \mathbb{R}; f \text{ convex}$	$f\left(\mathbb{E}\left[X\right]\right) \le \mathbb{E}\left[f\left(X\right)\right]$	[3, Prob. 5.3][6, Thm 1.14]
Hoeffding's lemma		$\mathbb{E}\left[X\right] = \mu$ $a \le X \le b$	$\mathbb{E}\left[e^{\lambda X}\right] \leq e^{\lambda \mu} e^{\frac{\lambda^2 (b-a)^2}{8}}$	$\lambda \in \mathbb{R}$ [1, Sec. 3.4]
Sum of random variables				
Chernoff-Hoeffding (one-sided)	n independent random vars	$\begin{array}{ll} X_1,\ldots,X_n \text{indep} \\ S_n=X_1+\cdots+X_n \\ X_i\in[a_i,b_i] \forall i \end{array}$	$\Pr\left[S_n - \mathbb{E}\left[S_n\right] \ge t\right] \le \exp\left(\frac{-2t^2n^2}{\sum_{i=1}^n (b_i - a_i)^2}\right)$	[1, Sec. 3.5]
(two-sided) ⁴	(same as above)		$\Pr\left[\left S_n - \mathbb{E}\left[S_n\right]\right > t\right] \le 2\exp\left(\frac{-2t^2}{\sum_{i=1}^n (b_i - a_i)^2}\right)$	$\forall t \in \left(0, \frac{1}{2}\right)$ [5, Thm.1.1]
(two-sided iid)	same plus iid, range, mean μ for each	$ \begin{array}{l} X_1,\ldots,X_n\in[0,1]\\ \mathbb{E}\left[X_i\right]=\mu \text{iid} \end{array} $	$\Pr\left[\left \frac{S_n}{n} - \mu\right \ge \epsilon\right] \le 2\exp\left(-2n\epsilon^2\right)$	$\forall \epsilon > 0$ [6, Thm 1.16]
Thm 1.3	$n \operatorname{independent} \operatorname{random} vars$	X_1, \ldots, X_n indep $S_n = X_1 + \cdots + X_n$	$\Pr\left[S_n - \mathbb{E}\left[S_n\right] > \epsilon\right] \le 2\exp\left(\frac{-\epsilon^2}{4\sum_{i=1}^n \operatorname{Var}[X_i]}\right)$	$\epsilon \in (0, 2 \operatorname{Var}[S_n] / (\max_i X_i - \mathbb{E}[X_i])) $ [5, Thm. 1.3]
Azuma				
Weak law of large numbers	n independent iid random vars	X_1,\ldots,X_n indep $\mathbb{E}\left[X_i ight]=\mu$ iid	$\lim_{n \to \infty} \Pr\left[\left \frac{1}{n} S_n - \mu \right \ge \epsilon \right] = 0$	$\forall \epsilon > 0$ [3, Sec. 5.2][6, Thm 1.15]
Strong law of large numbers	(same)	(same)	$\Pr\left[\lim_{n \to \infty} \frac{1}{n} S_n = \mu\right] = 1$	[3, Sec. 5.5]
	Advanced			
Bennett	n independent zero-mean	X_1, \ldots, X_n indep $\mathbb{E}\left[X_i\right] = 0$ iid	$\Pr\left[S_n > \epsilon\right] \le \exp\left(-n\sigma^2 h\left(\frac{\epsilon}{n\sigma^2}\right)\right)$	$\sigma^{2} \coloneqq \frac{1}{n} \sum_{i=1}^{n} \operatorname{Var} [X_{i}], \forall \epsilon > 0, \qquad [1, 4.1]$ $h(a) \coloneqq (1+a) \log(1+a) - a \text{ for } a \ge 0$
Bernstein	(same)	(same)	$\Pr\left[S_n > \epsilon\right] \le \exp\left(\frac{-n\epsilon^2}{2(\sigma^2 + \epsilon/3)}\right)$	(same) [1, 4.2]
Efron-Stein	scalar func of vars $f \colon \chi^n \to \mathbb{R}$	X_1,\ldots,X_n indep w/ values in set χ	$\operatorname{Var}[Z] \leq \sum_{i=1}^{n} \mathbb{E}\left[(Z - \mathbb{E}_i [Z])^2 \right]$	$Z \coloneqq g(X_1, \dots, X_n) $ $\mathbb{E}_i[Z] \coloneqq \mathbb{E}[Z X_1, \dots, X_{i-1}, X_{i+1}, \dots, X_n] $ [1, 4.3]
McDiarmid's	scalar func of vars $f \colon \chi^n \to \mathbb{R}$	$X_1,\ldots,X_n \;\; {\rm indep}$ w/ values in set χ	$\Pr\left[f\left(X_1,\ldots,X_n\right) - \mathbb{E}\left[f\left(X_1,\ldots,X_n\right)\right] \ge \epsilon\right] \le \exp\left(\frac{-2\epsilon^2}{\sum_{i=1}^n c_i^2}\right)$	$ \begin{array}{l} \text{condition: } c\text{-bounded difference property } \forall \epsilon > 0 [1, 4.4] \\ \left f\left(X_1, \dots, X_i, \dots, X_n\right) - f\left(X_1, \dots, X'_i, \dots, X_n\right) \right \leq c_i \end{array} $

 1 Markov's inequality bounds the first moment of random variable. Use it when a constant probability bound is sufficient [1, Sec. 3.3].

²Chebyshev is derived from Markov. It bounds the second moment. It is the appropriate one when the variance σ is known. If σ is unknown, we can use the bounds of $X \in [a, b]$.

³Chernoff bound is used to bound the tails of the distribution for a sum of independent random variables. By far the most useful tool in randomized algorithms [1, Sec. 3.3].

⁴This probability can be interpreted as the level of significance ϵ (probability of making an error) for a confidence interval around the mean of size 2 ϵ . Therefore, we require at least $\log(2\alpha)/2t^2$ samples to acquire $1-\alpha$ confidence interval $\mathbb{E}[\bar{X}] \pm t$.

Other expressions

- → Union bound [5, Thm. (4.1)] → Schwarz inequality $(\mathbb{E}[XY])^2 \leq \mathbb{E}[X]^2 \mathbb{E}[Y]^2_{\alpha}$ [3, Ch. 5]
- ⇒ Exponential inequalities. $\frac{1}{2}(e^x + e^{-x}) \le e^{x^2/2}$ [5, Eq. (4.1)] ⇒ Core references: [3, Ch. 5] (core classical theory), [6, Ch. 1] (quantum info essentials, formal), [4, App A], [5], [1], [2, Ch. 18]; see summary on wiki.

Acknowledgments: Many thanks to John Watrous, who was kind to provide me with some useful references on the subject. I have included these in the bibliography.

Bibliography

- [1] Kumar Abhishek, Sneha Maheshwari, and Sujit Gujar. Introduction to Concentration Inequalities. oct 2019.
- [2] Boaz Barak. Introduction to Theoretical Computer Science.
- [3] D Bertsekas and J N Tsitsiklis. Introduction to Probability. Athena Scientific optimization and computation series. Athena Scientific, 2008.
- [4] P Kaye, P.K.R.L.M. Mosca, I.Q.C.P. Kaye, R Laflamme, and M Mosca. An Introduction to Quantum Computing. OUP Oxford, 2007.
- [5] Jeff M. Phillips. Chernoff-Hoeffding Inequality and Applications. sep 2012.
- [6] John Watrous. The Theory of Quantum Information. Cambridge University Press, apr 2018.
- Copyright ©2021-2022 Zlatko K. Minev (zlatko-minev.com). This note is a

mix of a cheatsheet, a technical note, and a cookbook and borrows liberally from sources.

Caveat emptor These pages are a work in progress, inevitably imperfect, incomplete, and surely enriched with typos and unannounced inaccuracies. Sources credited in Bibliography to the best of my ability, though certain omissions certainly remain.