
1. Probability (Technical note 11.9 v0.6)

1A. Concentration inequalities and tail bounds

Unless otherwise specified, all variables are real R. Inequalities come as one-sided Pr (· · · ≤ · · · ) and two-sided Pr (|· · · | ≤ · · · ). Notation: X is a random variable, µ := E [X], σ2 := Var [X], Sn := X1 + · · ·+Xn.

Inequality Conditions Common form Notes / Alternate form
Single random variable

Markov1 Non-negative X ≥ 0 Pr [X ≥ a] ≤ E[X]
a

∀ a > 0 Pr [X ≥ kE [X]] ≤ 1
k

k > 1 [3, Sec. 5.1][6, Thm 1.13]

extension + non-negative, strictly
increasing func Φ

X ≥0
Φ(X) ≥ 0 increasing

Pr [X ≥ a] = Pr [Φ(X) ≥ Φ(a)] ≤
E(Φ(X))

Φ(a)
∀ a > 0 Wiki

Reverse Markov upper-bounded by U
(can be positive)

maxX = U Pr [X ≤ a] ≤ U−E[X]
U−a

∀ a > 0 [1, Sec. 3.1]

Chebyshev2 Finite mean and variance E [X] ,Var [X] finite Pr [ |X − E [X]| ≥ a] ≤ σ2

a2 Pr [ |X − E [X]| ≥ a · σ] ≤ 1
a2 [1, Sec. 3.2]

∀ a > 0, σ2 = Var [X] [3, Sec. 5.1][2, Thm 18.11]

Cantelli Improved Chebyshev (same; but one-sided) Pr [X − E[X] ≥ a]) ≤
σ2

σ2 + a2
∀ a > 0, σ2 = Var [X] Wiki

Chernoff3 Generic Pr [X ≥ a] = Pr
[
etX ≥ eta

]
∀ t > 0, a ∈ R [1, Sec. 3.3]

Jensen f : R → R; f convex f (E [X]) ≤ E [f (X)] [3, Prob. 5.3][6, Thm 1.14]

Hoeffding’s lemma E [X] = µ
a ≤ X ≤ b

E
[
eλX

]
≤ eλµe

λ2(b−a)2

8 λ ∈ R [1, Sec. 3.4]

Sum of random variables

Chernoff-Hoeffding
(one-sided)

n independent random
vars

X1, . . . , Xn indep
Sn = X1 + · · ·+Xn

Xi ∈ [ai, bi] ∀i

Pr [Sn − E [Sn] ≥ t] ≤ exp

(
−2t2n2∑n

i=1(bi−ai)
2

)
[1, Sec. 3.5]

(two-sided)4 (same as above) Pr [|Sn − E [Sn]| > t] ≤ 2 exp

(
−2t2∑n

i=1(bi−ai)
2

)
∀t ∈

(
0, 1

2

)
[5, Thm.1.1]

(two-sided iid) same plus iid, range,
mean µ for each

X1, . . . , Xn ∈ [0, 1]
E [Xi] = µ iid

Pr
[∣∣∣Sn

n
− µ

∣∣∣ ≥ ϵ
]
≤ 2 exp

(
−2nϵ2

)
∀ ϵ > 0 [6, Thm 1.16]

Thm 1.3 n independent random
vars

X1, . . . , Xn indep
Sn = X1 + · · ·+Xn

Pr [Sn − E [Sn] > ϵ] ≤ 2 exp
(

−ϵ2

4
∑n

i=1 Var[Xi]

)
ϵ ∈ (0, 2Var [Sn] / (maxi |Xi − E [Xi]|)) [5, Thm. 1.3]

Azuma
Weak law of large
numbers

n independent iid
random vars

X1, . . . , Xn indep
E [Xi] = µ iid

limn→∞ Pr
[∣∣ 1

n
Sn − µ

∣∣ ≥ ϵ
]
= 0 ∀ ϵ > 0 [3, Sec. 5.2][6, Thm 1.15]

Strong law of large
numbers

(same) (same) Pr
[
limn→∞

1
n
Sn = µ

]
= 1 [3, Sec. 5.5]

Advanced

Bennett n independent
zero-mean

X1, . . . , Xn indep
E [Xi] = 0 iid

Pr [Sn > ϵ] ≤ exp
(
−nσ2h

(
ϵ

nσ2

))
σ2 := 1

n

∑n
i=1 Var [Xi] , ∀ ϵ > 0 , [1, 4.1]

h (a) := (1 + a) log(1 + a)− a for a ≥ 0

Bernstein (same) (same) Pr [Sn > ϵ] ≤ exp
(

−nϵ2

2(σ2+ϵ/3)

)
(same) [1, 4.2]

Efron-Stein scalar func of vars
f : χn → R

X1, . . . , Xn indep
w/ values in set χ

Var [Z] ≤
∑n

i=1 E
[
(Z − Ei [Z])2

]
Z := g (X1, . . . , Xn) [1, 4.3]
Ei [Z] := E [Z|X1, . . . , Xi−1, Xi+1, . . . Xn]

McDiarmid’s scalar func of vars
f : χn → R

X1, . . . , Xn indep
w/ values in set χ

Pr [f (X1, . . . , Xn)− E [f (X1, . . . , Xn)] ≥ ϵ] ≤ exp

(
−2ϵ2∑n
i=1 c2i )

)
condition: c-bounded difference property ∀ ϵ > 0 [1, 4.4]∣∣f (X1, . . . , Xi, . . . , Xn)− f

(
X1, . . . , X′

i, . . . , Xn
)∣∣ ≤ ci

1Markov’s inequality bounds the first moment of random variable. Use it when a constant probability bound is sufficient [1, Sec. 3.3].
2Chebyshev is derived from Markov. It bounds the second moment. It is the appropriate one when the variance σ is known. If σ is unknown, we can use the bounds of X ∈ [a, b].
3Chernoff bound is used to bound the tails of the distribution for a sum of independent random variables. By far the most useful tool in randomized algorithms [1, Sec. 3.3].
4This probability can be interpreted as the level of significance ϵ (probability of making an error) for a confidence interval around the mean of size 2ϵ. Therefore, we require at least log (2α) /2t2 samples to acquire 1 − α confidence interval E

[
X̄

]
± t.
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Other expressions

➟ Union bound [5, Thm. (4.1)]
➟ Schwarz inequality (E [XY ])2 ≤ E [X]2 E [Y ]2[3, Ch. 5]
➟ Exponential inequalities. 1

2

(
ex + e−x

)
≤ ex

2/2 [5, Eq. (4.1)]
➟ Core references: [3, Ch. 5] (core classical theory), [6, Ch. 1] (quantum info essentials, formal), [4, App A], [5], [1], [2, Ch. 18]; see summary on wiki.

Acknowledgments: Many thanks to John Watrous, who was kind to provide me with some useful references on the subject. I have included these in the bibliography.
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