

Interface Classifications

Homometallic: same transition metal; different counterion

LaTiO₃/SrTiO₃ LaMnO₃/SrMnO₃ LaVO₃/LaVO₄

La₂CuO₄/La_{2-x}Sr_xCuO₄

potential of counterion defines quantum well **physics**: change of charge density and of local symmetry

Classifications

Heterometallic: change in transition metal across interface. quantum well + different local physics

Case A: "hard wall"

LaAlO₃/SrTiO₃

LaAlO₃/LaVO₃

Department of Physics Columbia University

Classification

Heterometallic: change in transition metal across interface. quantum well + different local physics

Case B: two different correlated materials

LaMnO₃/YBa₂Cu₃O₇

SrTiO₃/LaVO₃

Ohtomo, Muller, Grazul, Hwang, Nature 419 378 (2002)

$(LaTiO_3)_n/(SrTiO_3)_m$

Dark field image

Copyright A. J. Millis 2008

Department of Physics Columbia University

Resulting charge profile (1nm=2.5 u.c.)

Note: Ti³⁺ density integrates to 1 per La

Plausible that there are negligible oxygen vacancies.

Department of Physics Columbia University

Thin structures: ~ 1 carrier per La

Department of Physics Columbia University

Optical Data now coming on line

PRL 99, 266801 (2007)

PHYSICAL REVIEW LETTERS

week ending 31 DECEMBER 2007

Optical Study of the Free-Carrier Response of LaTiO₃/SrTiO₃ Superlattices

S. S. A. Seo,^{1,*} W. S. Choi,¹ H. N. Lee,² L. Yu,³ K. W. Kim,³ C. Bernhard,³ and T. W. Noh^{1,†}

$(LaMnO_3)_n(SrMnO_3)_m$

Bhattacharya/Eckstein

Magnetization at the interface

Department of Physics Columbia University

Heterometallic Interface: LaMnO₃/YBa₂Cu₃O₇

Α Mn edge ↓C FY YBCO cap layer H TEY Cu edge LCMO cap layer

Chakhalian, Science 08

Bulk: polarization => holes in x²-y²

Interface: holes also in 3z²-r²

Department of Physics Columbia University

Example: penetration of magnetization into high-Tc superconductor (Chakhalian/Keimer; Nature)

LCMO: Ferromagnet, high spin polarization **YBCO:** high Tc superconductor

Department of Physics Columbia University

<u>X-Ray Magnetic Circular Dichroism</u> (element-specific)

XMCD signal combined with grazing-incidence neutron data (not shown) => Cu magnetization persists 20A (3 "bilayer" unit cells) away from interface.

TEY="total electron yield" --more surface sensitive

XRMS: X-ray magnetic scattering: sees deeper into bulk

Department of Physics Columbia University

Simple terminations=>charge sheet: polarization 'catastrophe'

Sawatzky 00; Reyren 06, Hwang 06....

transfer electrons (or ions) eliminate polarization 'catastrophe'

Before transfer 1- $Al^{3+}O_{2}^{4+}$ 1+ $La^{3+}O_{2}^{2+}$ 1- $Al^{3+}O_{2}^{4+}$ 1+ $La^{3+}O_{2}^{2+}$ 1+ $La^{3+}O_{2}^{2+}$ 0 $Sr^{2+}O^{2-}$

Ti4+0,4-

Sr2+O2-

Figures Mannhart et al MRS Bulleting

Department of Physics Columbia University

Copyright A. J. Millis 2008

0

0

transfer electrons (or ions) eliminate polarization 'catastrophe'

Figures Mannhart et al MRS Bulleting

transfer electrons (or ions) eliminate polarization 'catastrophe'

Electrostatics controls interface electronic charge density qn for expt: ?transfer ions (defects) or electrons?

Figures Mannhart et al MRS Bulleting

Department of Physics **Columbia University**

Heterometallic interface less sharp than homometallic

Superconductivity

Reyren et al. Science 317 1196 (2007)

Copyright A. J. Millis 2008

Columbia University

Interface vs bulk phase diagram

Depth of SC region: 16 unit cells (from density of max Tc)

Department of Physics Columbia University

Summary: Heterostructures

- Structures can be grown
 Homometallic better quality than heterometallic
 Electrostatics controls charge density (modulo oxygen vacancies)
- •consistency: transport and EELS?

