'Botany' of correlated fermion physics

Example: ³He

Fermions: short ranged interaction Phase diagram

ltl.tkk.fi

Low temperatures: quantum liquid phase, unstable to localized (solid) phase and to other phases with interesting quantum orders (superfluid)

Department of Physics Columbia University

Normal liquid

1

D. Greywall PRB 27 2747 (1983)

Low T: specific heat linear in T but coefficient enhanced. Higher T; saturation

$$\frac{C}{T} \sim m^* k_F$$

$$P \approx 0 \text{ (vol=36.8)}$$

$$n^* = 2.7m_{bare}$$

 $P \approx 29 \text{bar} \text{ (vol=26.2)}$ $m^* = 5.4 m_{bare}$

Department of Physics Columbia University

Other quantities charge susceptibility κ **spin susceptibility** $\chi_{spin} = \frac{\chi_0}{1+F_0^a}$

Vollhardt RMP 56 p. 99 (1984) from Greywall data

Department of Physics Columbia University

Values of renormalization

While fermi liquid theory tells you what kind of renormalizations to expect, the values of the mass enhancement, landau parameters etc are

beyond the scope of FLT

At higher T specific heat 'flattens off'

S=R ln(2)/particle => 'free spin' like behavior T>0.4K + positional entropy of classical liquid

Qualitative idea: particle motion of quenches spin entropy. Interactioninduced 'blocking' of particle motion=>quenching scale low, C/T high

This is beyond the scope of FLT

Transitions to other states

While some idea of which states are favored and a rough order of magnitude of the transitions can be found from fermi liquid theory, a detailed understanding

is beyond the scope of FLT

Department of Physics Columbia University

Digression: consequences of long ranged order (not discussed here)

http://www.aip.org/history/acap/ biographies/bio.jsp?wilsonk http://www.statemaster.com/encyclopedia/ Image:Andersonphoto.jpg

Spontaneously broken symmetry (superconductivity, antiferromagnetism,) => order parameter (e.g. gap magnitude and phase; neel vector amplitude and direction). Many properties associated with the order parameter and its fluctuations are 'universal' (depending only on a few properties of host material) and can be studied from a relatively general field-theoretic point of view. Fermi liquid theory itself can be formulated in this language

P. W. Anderson, Basic Notions in Condensed Matter Physics

D. Forster, Hydrodynamics, Broken Symmetry and Correlation Functions

Questions beyond the scope of fermi liquid theory

Higher T behavior Instability to other phases Value of m* and other fermi liquid parameters

Modern (correlated fermion) 'materials theory':

2 themes:

--New (esp. non-classical) orders+fluctuations --beyond fermi liquid theory in above sense

Department of Physics Columbia University

Summary

•Fermi liquid theory: successful description of low T properties of strongly coupled fermion system

•Simple physics: fermions+short range repulsion (basically 'hard core' contact interaction) => nontrivial behavior

•Electron Green function (esp coherent ('quasiparticle') part is a good thing to look at

These insights are the basis of our understanding of the physics of 'correlated electron' materials

Department of Physics Columbia University

Basic Solid State Physics:

Fermi liquid approach: start from non-interacting electrons then add interaction-driven renormalizations New feature: periodic potential

$$\mathbf{H} = -\sum_{i} \frac{\nabla_{i}^{2}}{2m} + V_{lattice}(r_{i})$$

=>Energy bands

all bands full or empty: insulator some partly filled bands: metal

If number of electrons/cell not even: insulator impossible (in band theory)

'Band' classification doesnt always work

LaTiO₃:

electrons/unit cell is odd
material is insulating!
YTiO₃ even more insulating

Okimoto et al. PRB51 9581 (1995)

Department of Physics Columbia University

'Mott' insulating behavior

Imada et al. Rev. Mod. Phys., 70, 1039,1998

www.picsearch.com

http://www.engr.utexas.edu/news/ 6544-goodenough-royal-society

 Many materials (transition metal oxides, low-d organic materials, C-60 variants...) are insulating when band theory says they should be metallic •Common feature: narrow bands, spatially confined orbitals, separated from other bands

Department of Physics Columbia University

Spatial extent of charge in important orbitals is small relative to lattice constant

www.picsearch.com

http://www.engr.utexas.edu/news/ 6544-goodenough-royal-society

LaTiO₃ Lattice constant 3.91A Important orbital Ti 3d

Here: Ti 3d charge density, integrated over z and plotted using false color (for LTO-STO superlattice).

Implications of nearly localized wave function

www.picsearch.com

http://www.engr.utexas.edu/news/ 6544-goodenough-royal-society

•Bandwidth ('bare mass' or kinetic energy) arises from overlap of orbitals: => small and controllable by changes in crystal structure •e²/r=>expensive to put 2 electrons into same orbital=>strong local repulsion is dominant interaction

=>Model Hamiltonian: 'Hubbard model'

http://www.engr.utexas.edu/news/ 6544-goodenough-royal-society

www.picsearch.com

One (spin degenerate) orbital per lattice site. hopping t short ranged.

$$\mathbf{H} = -\sum_{ij} t_{i-j} c_{i\sigma}^{\dagger} c_{j\sigma} + U \sum_{i} n_{i\uparrow} n_{i\downarrow}$$

Important parameters: --relative interaction strength U/t --electron density n

?Where do parameters come from?

Qualitative view of physics of Hubbard Model

Pauli principle: no motion possible=>insulator

Add a "hole":

Add a "hole":

Add a "hole": motion possible

Add a "hole": motion possible

in k-space: filled and empty bands, with gap

Department of Physics Columbia University

strong repulsion: no charge motion possible=>insulator

strong repulsion: no motion possible=>insulator

Department of Physics Columbia University

add a hole

add a hole

add a hole: charge motion possible

add a hole: charge motion possible. Properties scale with hole density **Deep theoretical questions:**

Metal-insulator transition as vary U/t and n
role of long and short ranged order
nature of hole motion in background of correlated spins
consequences for other

physical properties

Department of Physics Columbia University

Data: LaTiO3 reveal divergent effective mass (specific heat) associated with approach to insulating phase

Consistent with idea: entropy comes from spins, which are correlated by hole motion

Department of Physics Columbia University

But there is more to life than the 1 orbital Hubbard model

Orbital degeneracy:

in free space: d-level is 5 fold degenerate
in solid state, O(3) rotation symmetry broken
=>degeneracy lifted (mainly by `ligand field' i.e.
hybridization to neighboring atoms)

Cubic ligand field: 5->2+3

Department of Physics Columbia University

- Tm O Tm O
- 0 0
- Tm O Tm O

- Tm O Tm O
- 0 0
- Tm O Tm O

J. Rondinelli ANL prvt comm

- Tm O Tm O
- 0 0
- Tm O Tm O

J. Rondinelli ANL prvt comm

- Tm O Tm O
- 0 0
- Tm O Tm O

Tm O Tm O LaNiO₃ eg antibonding Tm O Tm O t_{2g} antibonding eg bond--6 ing J. Rondinelli ANL prvt comm

Department of Physics Columbia University

 \mathbf{O}

Department of Physics Columbia University

 \mathbf{O}

Back to orbital degeneracy

Transition metal ion in free space

(For simplicity neglect spin orbit coupling here)

J. C. Slater: *Quantum Theory of Atomic Structure*

Fundamental perspective: atom as fully entangled multielectron system. Eigenstates A characterized by quantum numbers

Electron number NSpin Angular momentum S, S_z **Orbital Angular momentum** L, L_z

 \Rightarrow | Energy $E_A(N, S, L)$ |

Needed: a representation in terms of single-particle orbitals (for intuition, and to discuss band formation)

Idea (Slater):

choose basis (e.g. d-symmetry atomic orbitals+...)
devise Hamiltonian whose eigenstates are E_A(N,S,L)
 (for relevant range of energies)

Example:

$$\psi_{\mathbf{2},\mathbf{m},\sigma} = \mathbf{Y}_{\mathbf{2},\mathbf{m}}(\theta,\phi)\mathbf{f}_{\mathbf{d}}(\mathbf{r})$$

 $\mathbf{H} = \sum_{(\mathbf{m}\sigma)_{\mathbf{i}=1\dots4}} \mathbf{U}_{\mathbf{m}_{1}\mathbf{m}_{2}\mathbf{m}_{3}\mathbf{m}_{4}}^{\sigma_{1}\sigma_{2}\sigma_{3}\sigma_{4}} \mathbf{d}_{\mathbf{m}_{1}\sigma_{1}}^{\dagger} \mathbf{d}_{\mathbf{m}_{2}\sigma_{2}}^{\dagger} \mathbf{d}_{\mathbf{m}_{3}\sigma_{3}} \mathbf{d}_{\mathbf{m}_{4}\sigma_{4}}$

Choose Us to fit E_A(N,S,L)--or compute them

Slater, J. C. (1960). Quantum Theory of Atomic Structure

Department of Physics Columbia University

Parametrizing the interaction: Coulomb integrals

 $U^{\sigma_1\sigma_2\sigma_3\sigma_4}_{m_1m_2m_3m_4} =$

$$e^{2} \int d^{3}r d^{3}r' \frac{\psi_{m_{1}\sigma_{1}}^{\dagger}(r)\psi_{m_{3}\sigma_{3}}(r)\psi_{m_{2}\sigma_{2}}^{\dagger}(r')\psi_{m_{4}\sigma_{4}}(r')}{|\vec{r}-\vec{r'}|}$$

Spherical symmetry+spin rotation: express all U in terms of interactions between multipoles of charge density

Crucial parameter:

$$\mathbf{F_0} = \mathbf{e^2} \int \mathbf{d^3r d^3r'} \frac{\rho(\mathbf{r})\rho(\mathbf{r'})}{|\mathbf{\tilde{r}} - \mathbf{\tilde{r'}}|} \quad \begin{array}{l} \textbf{charge-charge} \\ \textbf{(monopole) interaction} \end{array}$$

F₂, F₄, ..: interaction between higher multipoles Spin-orbit--also need 'G' parameters

Department of Physics Columbia University

d-orbitals weak spin-orbit coupling

- •Need only F₀, F₂, F₄
- •*In free space*: definite relation between F2, F4 => Only 2 parameters: Conventional notation: U, J

Conventional (Slater-Kanamori) representation

$$H = U \sum_{a} n_{a\uparrow} n_{a\downarrow} + (U - 2J) \sum_{a > b, \sigma = \uparrow, \downarrow} n_{a\sigma} n_{b\sigma}$$
$$+ (U - 3J) \sum_{a \neq b\sigma} n_{a\sigma} n_{b\bar{\sigma}} - J \sum_{a \neq b} c^{\dagger}_{a\uparrow} c^{\dagger}_{a\downarrow} c_{b\uparrow} c_{b\downarrow} + c^{\dagger}_{a\uparrow} c^{\dagger}_{b\downarrow} c_{b\uparrow} c_{a\downarrow}$$

85 interaction terms, determined by 2 parameters Lower symmetry: more parameters, more complicated form--but generically: charging energy +smaller terms Copyright A. J. Millis 2010

Orbital degeneracy, interactions make a difference

3 orbital model Insulating phase inside lobes

Werner, Gull, AJM, Phys. Rev. B 79, 115119 (2009)

Department of Physics Columbia University

Effect of J

3 orbital model Insulating phase inside lobes

Phase boundaries move sustantially if J>0\ Note also effect of lifting orbital degeneracy slightly

Werner, Gull, AJM, Phys. Rev. B 79, 115119 (2009)

Department of Physics Columbia University

The case of LaTiO₃

PHYSICAL REVIEW LETTERS 176403 week ending 30 APRIL 2004

Mott Transition and Suppression of Orbital Fluctuations in Orthorhombic 3d¹ Perovskites

E. Pavarini,¹ S. Biermann,² A. Poteryaev,³ A. I. Lichtenstein,³ A. Georges,² and O. K. Andersen⁴

¹INFM and Dipartimento di Fisica "A. Volta," Università di Pavia, Via Bassi 6, I-27100 Pavia, Italy ²Centre de Physique Théorique, Ecole Polytechnique, 91128 Palaiseau Cedex, France ³NSRIM, University of Nijmegen, NL-6525 ED Nijmegen, The Netherlands ⁴Max-Planck-Institut für Festkörperforschung, Heisenbergstrasse 1, D-70569 Stuttgart, Germany (Received 4 September 2003; published 30 April 2004)

Using t_{2g} Wannier functions, a low-energy Hamiltonian is derived for orthorhombic $3d^1$ transitionmetal oxides. Electronic correlations are treated with a new implementation of dynamical mean-field theory for noncubic systems. Good agreement with photoemission data is obtained. The interplay of correlation effects and cation covalency (GdFeO₃-type distortions) is found to suppress orbital fluctuations in LaTiO₃ and even more in YTiO₃, and to favor the transition to the insulating state.

Argument: LaTiO3 is insulating only because crystal structure lifts orbital degeneracy

Department of Physics Columbia University

Copyright A. J. Millis 2010

VOLUME 92, NUMBER 17

Second example: High Tc (Cu-O₂) superconductors Phase diagram Data:

Electron doped Hole doped 300 Underdoped Overdoped Temperature (k) 200 Pseudogap AF 100 der 0 0.2 0.1 n 0.1 0.2 03 Charge doping away from 1/2 filling (per Cu atom)

A.Zimmers Ph.D. thesis

Electron counting: 1 el/ unit cell at 0 doping

Uchida, S., T. Ido, H. Takagi, T. Arima, Y. Tokura, and S. Tajima, 1991, Phys. Rev. B **43**, 7942

Department of Physics Columbia University

High T_c CuO₂ superconductors are not quite Mott Insulators

O: very electronegative: **p-shell almost full** Cu: 'late' transition metal oxide. **d-shell almost full**. Ti: 'early transition metal oxide: **d-shell almost empty**

Electronic configuration: La₂CuO₄: Cu d⁹ O2p⁶ LaTiO₃: Ti d¹ O2p⁶ Hole dope: in late TMO 'holes go on the O Cu d⁹ O2p⁵ Ti d⁰ O2p⁶

Mott vs Charge Transfer Insulators

2dⁿ=>dⁿ⁻¹dⁿ⁺¹ not the only process

 Cuprates:

 2d⁹=>d⁸d¹⁰
 8eV

 2d⁹=>d⁹Op⁵d¹⁰
 2eV

Zaanen, Sawatzky, Allen, Phys. Rev. Lett. 55, 418 (1985)

Department of Physics Columbia University

Zaanen-Sawatzky-Allen Classification

Zaanen, Sawatzky, Allen, Phys. Rev. Lett. 55, 418 (1985)

Questions:

•Where do you place different materials in this scheme •More generally, what is the role of covalency with other orbitals •what difference does it make?

Department of Physics Columbia University

Charge transfer insulators: important of other (non-d) orbitals

More extreme example: heavy fermion compounds

Charge transfer insulators: important of other (non-d) orbitals More extreme example: heavy fermion compounds Low T: constant specific heat coefficient; magnitude =>m ~ 1000me

Copyright A. J. Millis 2010

Charge transfer insulators=> importance of other (non-d) orbitals More extreme example: heavy fermion compounds

Low T: constant specific heat coefficient;

Fig 2 G R Stewart RMP 56 755 1984

Copyright A. J. Millis 2010

Large specific heat is due to degrees of freedom that can superconduct

What is going on?

CeCu₂Si₂

Cu, Si (also Ce): wide spd bands => metallic state

Ce f: small orbital, weakly hybridized. Large U. Holds ~1 electron.

High T: 'free spin' like behavior

Low T: 'heavy fermi liquid' Department of Physics Columbia University

Anderson Lattice Model

$$\mathbf{H} = \sum_{im\sigma} E_f^m f_{im}^{\dagger} f_{im} + \frac{1}{2} U \left(N_F^i (N_f^i - 1) \right) + .$$
$$+ \sum_{ikam\sigma} e^{ik \cdot R_i} V_{km\sigma} f_m^{\dagger} c_{ka\sigma} + H.c. + \sum_{ka\sigma} \varepsilon_k^a c_{ka\sigma}^{\dagger} c_{ka\sigma}$$

Lattice version of 'Kondo resonance'

Department of Physics Columbia University

Summary:

'botany' of correlated materials

•Want to understand

- •Physics at scales above fermi liquid
- •Nature of instabilities to other phases
- Metal-insulator transitions

•Wish to relate novel behavior to crystal structure

•Need to deal with strong local interactions involving multiple quantum numbes

Issues

•Derivation of model parameters (Hubbard of Anderson lattice) from underlying chemistry

•Solution of models

More ambitious goal: fully 'ab initio' theory

