Correlated Electron Compounds: from real materials to model systems and back again

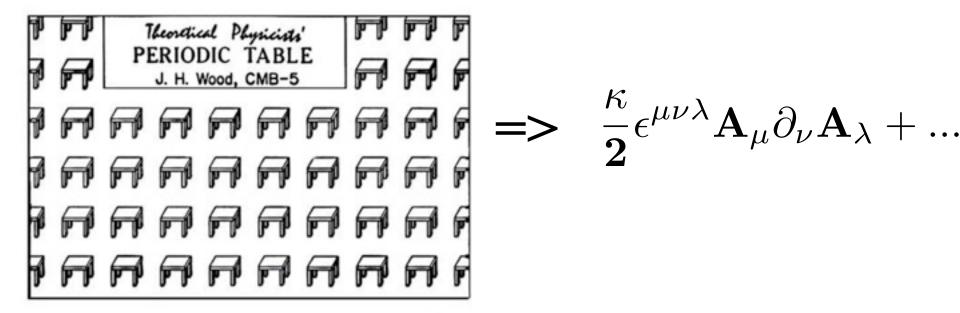
A. J. Millis Columbia University

Copyright A. J. Millis 2010

Department of Physics Columbia University

Stereotypical theoretical physicist's view of condensed matter physics

Crystal structure => **Quantum Field Theory**



These lectures--where we are on attempts to do better, connecting material-specificity to behavior.

Periodic table from J H Wood; quoted in Z Fisk 2010 KITP talk

Copyright A. J. Millis 2010

Department of Physics Columbia University

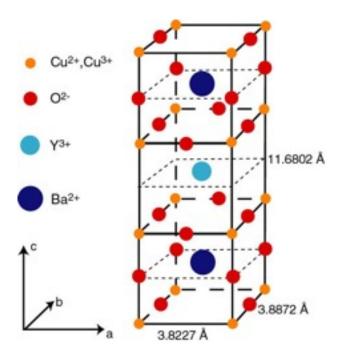


Image from www.tkk.fi/

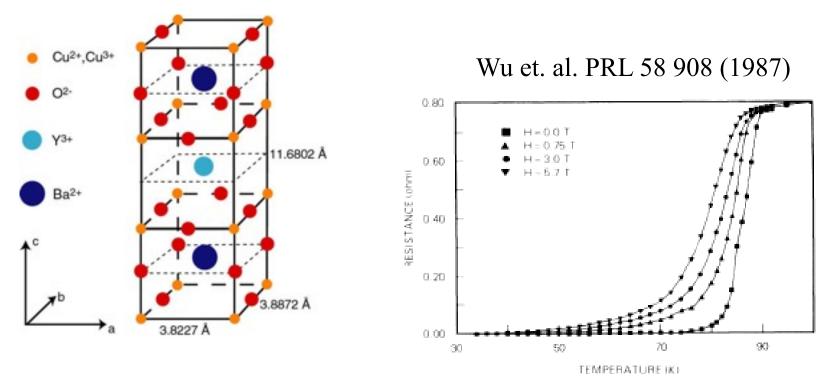


Image from www.tkk.fi/

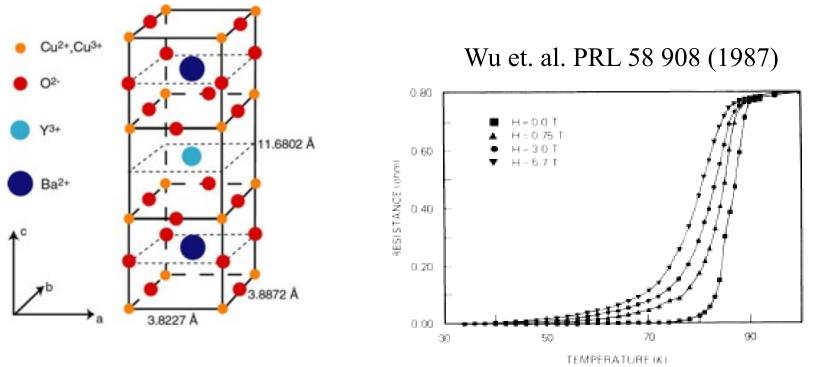


Image from www.tkk.fi/

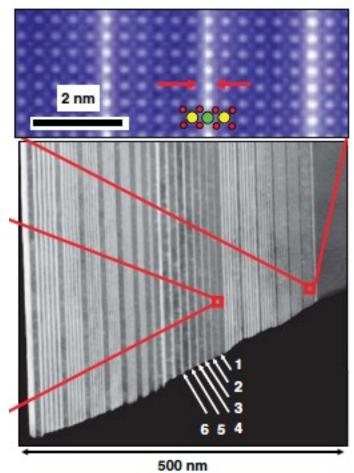
??What is special about this material??

Department of Physics Columbia University

'Oxide Superlattices'

Ohtomo, Muller, Grazul and Hwang, Nature 419 p. 378 (2002)

$(LaSrO_3)_m(LaTiO_3)_n$



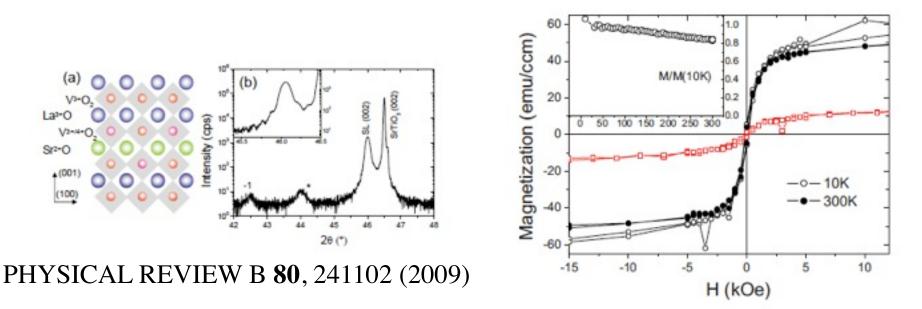
SrTiO3: d⁰ "band" insulator LaTiO3: d¹ "Mott" insulator

'any' desired (n,m) can be synthesized

Department of Physics Columbia University

Many systems now being made: many effects can be produced Luders et al 'Room temperature magnetism in LaVO₃/

SrVO₃ superlattices--but not in bulk alloy



??Why room T magnetism in superlattice??

Department of Physics Columbia University

Chaloupka/Khaliullin: ?superlattices allow us to design a new high-T_c superconductor?

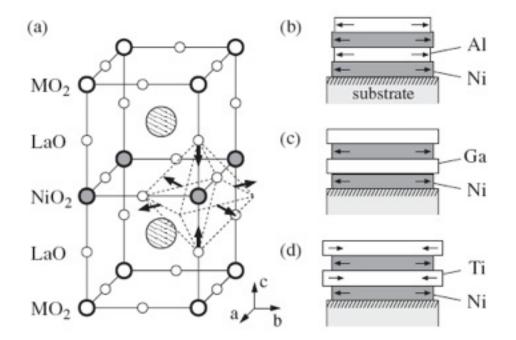
PRL 100, 016404 (2008)

PHYSICAL REVIEW LETTERS

week ending 11 JANUARY 2008

Orbital Order and Possible Superconductivity in LaNiO3/LaMO3 Superlattices

Idea:



Bulk LaNiO₃ Ni [d]⁷ (1 electron in two degenerate e_g bands).

In correctly chosen structure, split eg bands, get 1 electron in 1 band--"like" high-Tc

Department of Physics Columbia University

Chaloupka and Khalliulin argue

(1) Pseudocubic LaNiO₃

Relevant orbitals: e_g symmetry **Ni-O antibonding combinations**

Hybridizes strongly along z Hybridizes weakly in x-y

3z²-4²

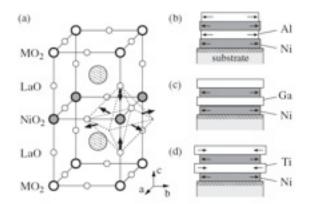
 $X^2 - V^2$

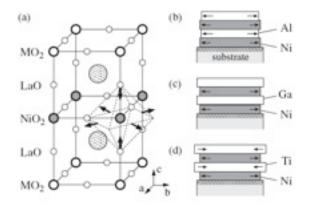
 $3z^2-r^2$

Hybridizes strongly along x-y Hybridizes very weakly in z

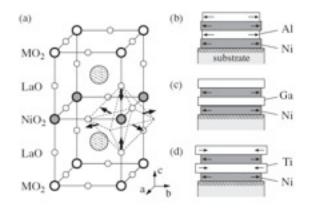
2 orbitals transform as doublet in cubic symmetry

Department of Physics Columbia University



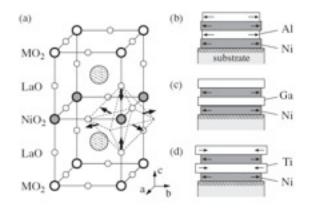


3z²-r² orbital goes up in energy



3z²-r² orbital goes up in energy

Result: planar array of x²-y² orbitals 'just like CuO₂ high Tc superconductors'



3z²-r² orbital goes up in energy

Result: planar array of x²-y² orbitals 'just like CuO₂ high Tc superconductors'

Query: How do we know if this is right?

Department of Physics Columbia University

More generally:

If experimentalists can make 'anything' --what would one want to make?

How do we connect crystal structure/atomic properties to interesting electronic behavior?

Department of Physics Columbia University

We know the Hamiltonian

We know the Hamiltonian

$$\mathbf{H} = \sum_{i} \frac{-\nabla_{i}^{2}}{2m_{e}} + \sum_{i} V_{ext}(r_{i}) + \frac{1}{2} \sum_{i \neq j} \frac{e^{2}}{|r_{i} - r_{j}|}$$

We know the Hamiltonian

$$\mathbf{H} = \sum_{i} \frac{-\nabla_{i}^{2}}{2m_{e}} + \sum_{i} V_{ext}(r_{i}) + \frac{1}{2} \sum_{i \neq j} \frac{e^{2}}{|r_{i} - r_{j}|}$$

We know the equation

We know the Hamiltonian

$$\mathbf{H} = \sum_{i} \frac{-\nabla_{i}^{2}}{2m_{e}} + \sum_{i} V_{ext}(r_{i}) + \frac{1}{2} \sum_{i \neq j} \frac{e^{2}}{|r_{i} - r_{j}|}$$

We know the equation

 $\mathbf{H}\Psi_n = -i\partial_t \Psi_n$

We know the Hamiltonian

$$\mathbf{H} = \sum_{i} \frac{-\nabla_{i}^{2}}{2m_{e}} + \sum_{i} V_{ext}(r_{i}) + \frac{1}{2} \sum_{i \neq j} \frac{e^{2}}{|r_{i} - r_{j}|}$$

We know the equation

 $\mathbf{H}\Psi_n = -i\partial_t \Psi_n$

So stop complaining and solve it (?!)

Department of Physics Columbia University

Typical lattice constant: 4 Angstrom

Typical lattice constant: 4 Angstrom

Interesting length ~100 Angstrom

Typical lattice constant: 4 Angstrom

Interesting length ~100 Angstrom

=> ~1000 electrons with 3 (x,y,z) coordinates. Interaction 'entangles' coordinates=>

Typical lattice constant: 4 Angstrom

Interesting length ~100 Angstrom

=> ~1000 electrons with 3 (x,y,z) coordinates. Interaction 'entangles' coordinates=>

$\boldsymbol{\Psi}(\vec{r}_1, \dots \vec{r}_{1000} \dots)$

Typical lattice constant: 4 Angstrom

Interesting length ~100 Angstrom

=> ~1000 electrons with 3 (x,y,z) coordinates. Interaction 'entangles' coordinates=>

$\Psi(\vec{r}_1,...,\vec{r}_{1000}...)$ Intractable

Typical lattice constant: 4 Angstrom

Interesting length ~100 Angstrom

=> ~1000 electrons with 3 (x,y,z) coordinates. Interaction 'entangles' coordinates=>

Schroedinger equation for $\Psi(\vec{r}_1, ..., \vec{r}_{1000}...)$ Intractable

Even worse: Ψ is fully antisymmetric function of spins and coordinates

Department of Physics Columbia University

Sign problem:

*electrons are fermions: wave function is antisymmetric $\psi(r_1, \sigma_1; r_2, \sigma_2; ...) = -\psi(r_2, \sigma_2; r_1, \sigma_1; ...)$

but always exists (much) lower energy (physically inadmissible) symmetric wave function=>straightforward numerics suffers from 'sign problem'

Need some other approach!

Work-horse of materials theory: density functional theory

Key idea: dont solve problem directly. Use solution of auxiliary problem to obtain (limited class of) information about problem of interest

Density Functional theory I

Phys. Rev. **136**, B864 (1964)

Basic Theorem (Hohenberg and Kohn): \exists functional \bigoplus of electron density n(r): minimized at physical density; value at minimum gives ground state energy

$$\Phi[\{n(r)\}] = \Phi_{univ}[\{n(r)\}] + \int (dr) V_{lattice}(r)n(r)$$

 Φ_{univ} is universal: only material dependence is in 2^{nd} term

Sketch of Proof

$$\mathbf{H} = \sum_{i} \frac{-\nabla_{i}^{2}}{2m_{e}} + \sum_{i} V_{ext}(r_{i}) + \frac{1}{2} \sum_{i \neq j} \frac{e^{2}}{|r_{i} - r_{j}|}$$

(1) Ground state energy E is functional of V_{ext} solution of HΨ = (H₀ + V_{ext})Ψ = EΨ gives mapping V_{ext} → E
Note E =< Ψ|H₀|Ψ > + ∫ d³rV_{ext}(r)n(r)
(2) Ground state density n(r) is functional of V_{ext} Ψ from solution of HΨ = EΨ → n(r)

Department of Physics

Columbia University

Key statement

Vext is unique functional of density n(r) (up to constant)

Suppose not.

Then 2 potentials, $V_1 \neq V_2 + const \rightarrow \mathbf{n}(\mathbf{r})$ \rightarrow 2 Hamiltonians, $H_{1,2}$, energies $E_{1,2}$ and $\Psi_{1,2}$ Thus $E_1 = \langle \Psi_1 | H_1 | \Psi_1 \rangle \langle \langle \Psi_2 | H_1 | \Psi_2 \rangle$ But $H_1 = H_2 + V_1 - V_2$

So $E_1 < E_2 + \int d^3 r n(r) \left(V_1(r) - V_2(r) \right)$

Department of Physics Columbia University

Thus

 $E_1 < E_2 + \int d^3 r n(r) \left(V_1(r) - V_2(r) \right)$ $E_2 < E_1 + \int d^3 r n(r) \left(V_2(r) - V_1(r) \right)$ Add. Get $E_1 + E_2 < E_2 + E_1$ **!!contradiction!!** Thus mapping $n(r) \to V_{ext}(r) \to E$

Ground state energy is unique functional of density. Can go on to show that functional is minimal at density corresponding to given V_{ext}

Copyright A. J. Millis 2010

Department of Physics Columbia University

So to get energy

Put V_{ext}(r) into universal functional Minimize

Unfortunately

Dont know universal functionalDont know how to perform minimization

W. Kohn and L Sham, Phys. Rev. **140**, A1133 (1965)

To minimize functional: solve auxiliary singleparticle problem + self-consistency condition

$$\left(-\frac{\hbar^2}{2m} \nabla^2 + V_{ions}(r) + V_{hartree}(r) \right) \psi_n(r)$$

+ $V_{XC}(\{n(r)\}) * \psi_n = E_n \psi_n(r)$

V_{XC}: exchange correlation potential' (possibly nonlocal) determined by electron density. Not known. Wave function (in principle) no meaning except Self-consistency:

$$\mathbf{n}(\mathbf{r}) = \sum_{\mathbf{E}_{\mathbf{n}} < \mu} \psi_{\mathbf{n}}^{\dagger}(\mathbf{r}) \psi_{\mathbf{n}}(\mathbf{r})$$

Department of Physics Columbia University

DFT 2

(2) Uncontrolled (but apparently decent) approximation (recipe) for $V_{ext}[\{n(r)\}]$.

--'Local density approximation' for uniform electron gas n(r)->n. numerics gives V_{el-gas}(n). Replace Vext[{n(r)}] by V_{el-gas}(n=n(r))

--Host of other approximations (GGA, B3LYP, ...) (all uncontrolled; tested by comparison to experiment...) Result: procedure that works for many purposes. Essential computational task: solve 1 particle schroedinger eq in some V(n(r)); self-consist

Density functional band theory

Believed good for:

- •Total energies
- •Crystal structures
- •Phonon Frequencies (restoring force=electron energy)
- •Identification of relevant electronic orbital

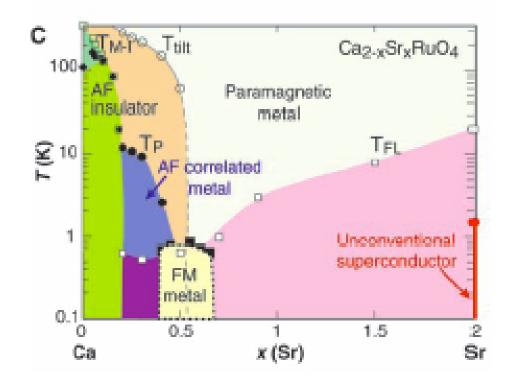
Not so good for:

- •Dynamics
- •Thermodynamics
- Phase transitions
- Local moment/Mott physics

Density Functional Theory: Issues

$$\Phi[\{n(r)\}] = \Phi_{univ}[\{n(r)\}] + \int (dr) V_{lattice}(r) n(r)$$

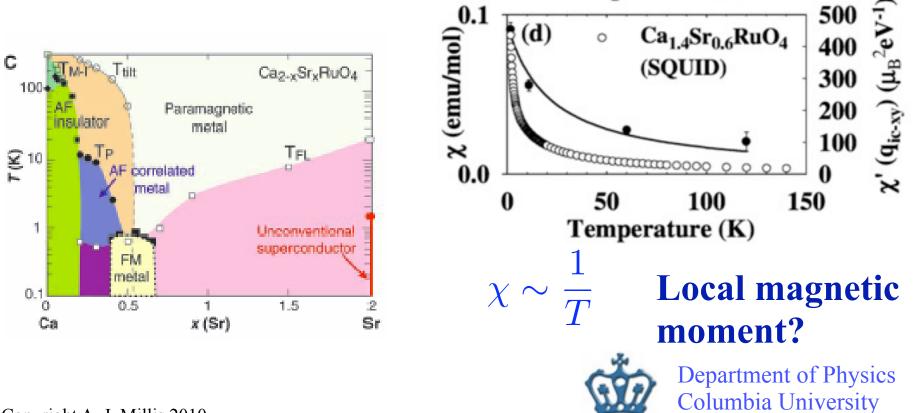
Density is not the optimal variable: phases with quite different physical properties have almost the same density



Department of Physics Columbia University

Density Functional Theory: Issues

Ground state is not the only interest: different phases at different temperatures: need theory with local moments, entropic effects

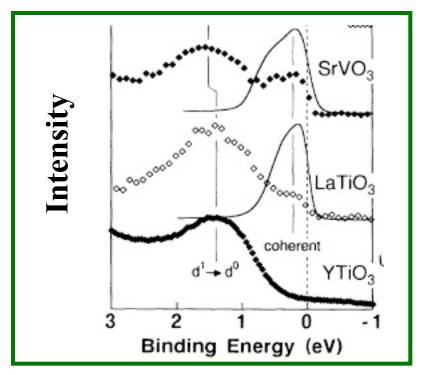


Copyright A. J. Millis 2010

Density Functional Theory: Issues

Ground state is not the only interest: excitation spectrum also important

Photoemission (electron removal spectrum)



dots: data lines: band theory

Shakeoff (side) band present in data, absent in band theory

A. Fujimori et al Phys. Rev. Lett. **69**, 1796 (1992 Copyright A. J. Millis 2010

Summary: density functional theory

Quantities of interest obtained from solution of auxiliary problem + self consistency condition
Uncontrolled but in practice very useful approximation

•Built to get ground state density, energy=>difficulties with excitation spectrum, higher T behavior, phase transitions to other ground states

To deal with excitation spectrum: fermi liquid theory

Qualitative Arguments I: Landau/Peierls

landau100.itp.ac.ru

nndb.com

Consider `free' (no potential) fermions interacting via short ranged interaction (physical example: ³He)

Neglect interactions:

$$\mathbf{H} = -\sum_{i} \frac{\nabla_{i}^{2}}{2m}$$

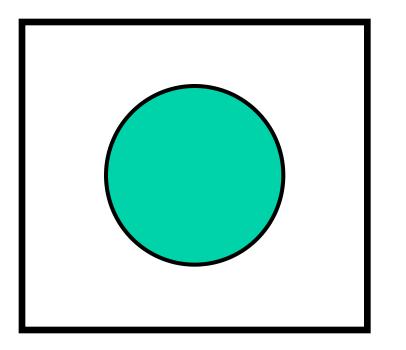
Solution: antisymmetrized product ('Slater Determinant') of plane waves

$$\mathbf{D}et\left[e^{i\vec{k}_j\cdot\vec{r}_i}\right]$$

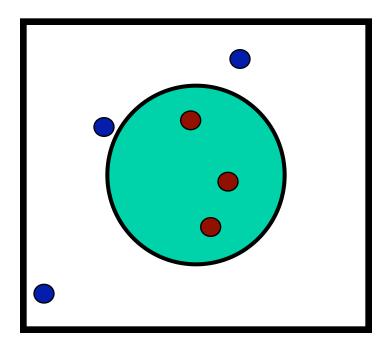
Department of Physics Columbia University

Physical Content

Ground state: 'filled fermi sea'



2 dimensional picture of region of k space with occupied states in green **Excited states:** particle-hole pairs

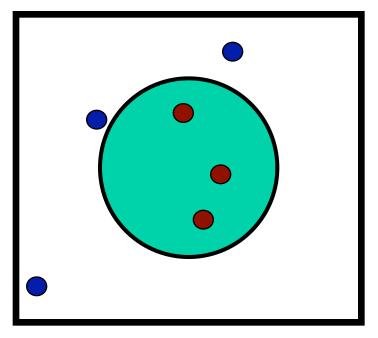


Label wave function by excitations above ground state

Department of Physics Columbia University

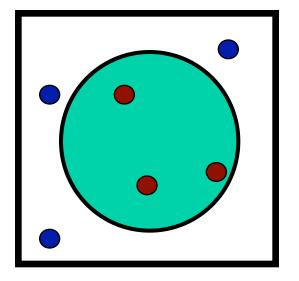
Physical content II Noninteracting fermions

Excited states: particle-hole pairs

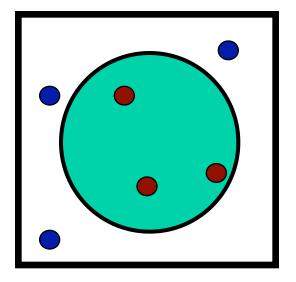


•Particle (or hole) energy ~ distance from fermi surface: $E = v_F \left| |k| - k_F \right|$ •Susceptibilities, specific heat coefficient constant (at low T) and proportional to particle mass m

Department of Physics Columbia University



Noninteracting case: each particle and hole propagates freely.

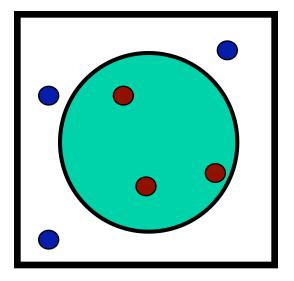


Noninteracting case: each particle and hole propagates freely.

Interacting case:

(1) Energy of excited particle depends on how many other particles/holes are excited

Department of Physics Columbia University

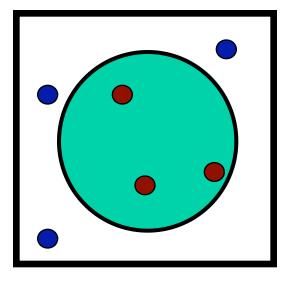


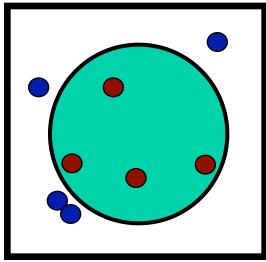
Noninteracting case: each particle and hole propagates freely.

Interacting case:

(1) Energy of excited particle depends on how many other particles/holes are excited
(2) M particle/M hole state not exact eigenstate: particle can e.g. decay into particle +(p-h pair)

Department of Physics Columbia University





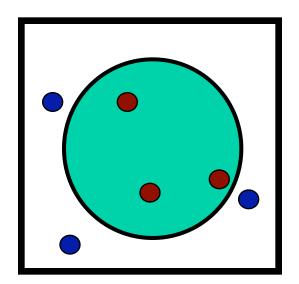
Noninteracting case: each particle and hole propagates freely.

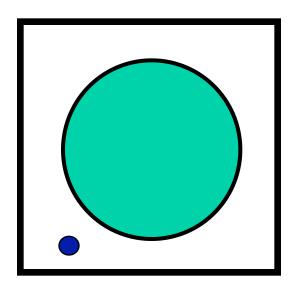
Interacting case:

(1) Energy of excited particle depends on how many other particles/holes are excited
(2) M particle/M hole state not exact eigenstate: particle can e.g. decay into particle +(p-h pair)

Ť

Department of Physics Columbia University



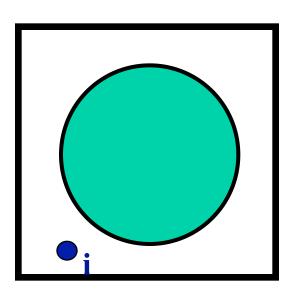


Hide other particles, so can focus on decay of 1 particle

Energetics of decay:

Hide other particles, so can focus on decay of 1 particle

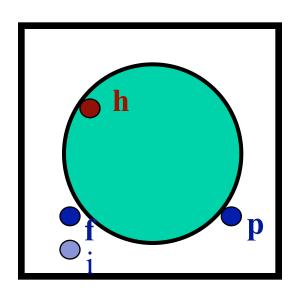
Department of Physics Columbia University



Energetics of decay:

Initial state: energy $E_{initial}$

Hide other particles, so can focus on decay of 1 particle

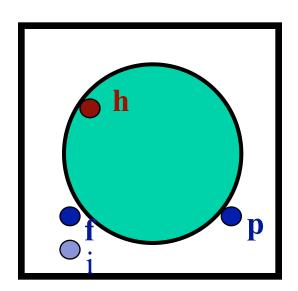


Energetics of decay:

Initial state: energy $E_{initial}$

Final state: energy $E_f + E_p + E_H$

Hide other particles, so can focus on decay of 1 particle



Energetics of decay:

Initial state: energy $E_{initial}$ Final state: energy $E_f + E_p + E_H$ $= E_{initial}$

Hide other particles, so can focus on decay of 1 particle

=>all 3 final states must be closer to fermi surface than initial state=>decay prob ~E²

Department of Physics Columbia University

Low energy excitations:

 Decay process p->p + (p,h) is negligible
 Modification of energetics due to other excitations not negligible

I gave a pictorial sketch of a perturbative argument for (1) and I ask you to believe (2).

Landau, then Luttinger, Ward, Nozieres, and others provided an increasingly sophisticated set of formal arguments justifying these statements and exploring their consequences. Result: <u>'Fermi Liquid Theory'</u>

Fermi Liquid Theory References

Books

Abrikosov, Gorkov and Dzyaloshinksi, *Methods of Quantum Field Theory in Statistical Physics* Pines and Nozieres: *Theory of Quantum Liquids* Nozieres: *Interacting Fermi Systems*

Renormalization Group Point of View

R. Shankar, Rev. Mod. Phys. 66, 129–192 (1994)

Result:

In many circumstances, <u>low energy</u> properties of interacting fermi systems are those of noninteracting systems, but with renormalized parameters.

Formalism: electron Green function

Define: Exact eigenstates $|\Psi_{N+1}^{m}(k) >$ of N+1 particle system **momentum** k, energy E_{k}^{m} relative to N-particle ground state |GS >

Define: electron Green function $G(k, \omega)$

$$= \int dt e^{-i\omega t} \mathcal{T} \left\langle GS \left| \left\{ \psi_k(t), \psi_k^{\dagger}(0) \right\} \right| GS \right\rangle$$

 ψ_k^{\dagger} creates electron in state \mathcal{T} is time ordering symbol with wave function $\sim e^{i\vec{k}\cdot\vec{r}}$

Copyright A. J. Millis 2010

Spectral representation

$$\mathbf{G}^{R}(k,\omega) = \int \frac{dx}{\pi} \frac{A(k,x)}{\omega - x - i\delta}$$

Spectral function $\mathbf{A}(k,\omega) = Im \left[G^R(k,\omega) \right]$

$$= \sum_{m} \langle GS | \psi_{k} | \Psi_{N+1}^{m} \rangle \langle \Psi_{N+1}^{m} | \psi_{k}^{\dagger} | GS \rangle \delta(\omega - E_{N+1}^{m}) \\ + \sum_{m} \langle GS | \psi_{k}^{\dagger} | \Psi_{N-1}^{m} \rangle \langle \Psi_{N-1}^{m} | \psi_{k} | GS \rangle \delta(\omega - E_{N-1}^{m})$$

Measures overlap of exact eigenstates with 'singleparticle state created by ψ_k^{\dagger}

Copyright A. J. Millis 2010

Spectral representation II

Noninteracting system: ψ_k^{\dagger} creates an exact eigenstate, say m=m₁

$$\psi_k^{\dagger}|GS\rangle = |\Psi_{N+1}^m(k)\rangle \delta_{m,m_1}$$

Spectral function is a delta function

$$\mathbf{A}(k,\omega) = \delta(\omega - E_k)$$

Spectral representation III

General interacting system: state created by ψ_k^{\dagger} does not closely resemble any eigenstate; has overlap with all

$$\langle \Psi_{N+1}^m(k)|\psi_k^\dagger|GS>=f(m)$$

Spectral function is a smooth function

Spectral representation IV

Fermi liquid: as k-> k_F, the state created by ψ_k^{\dagger} tends to have some overlap with one unique state, as well as with a continuum of others

$$\langle \Psi_{N+1}^m(k)|\psi_k^\dagger|GS\rangle = Z_k\delta_{m,m_1} + f(m)$$

Spectral function tends to a delta function (quasiparticle peak) plus smooth ('incoherent part') background

Important concept: quasiparticle weight Zk

Department of Physics Columbia University

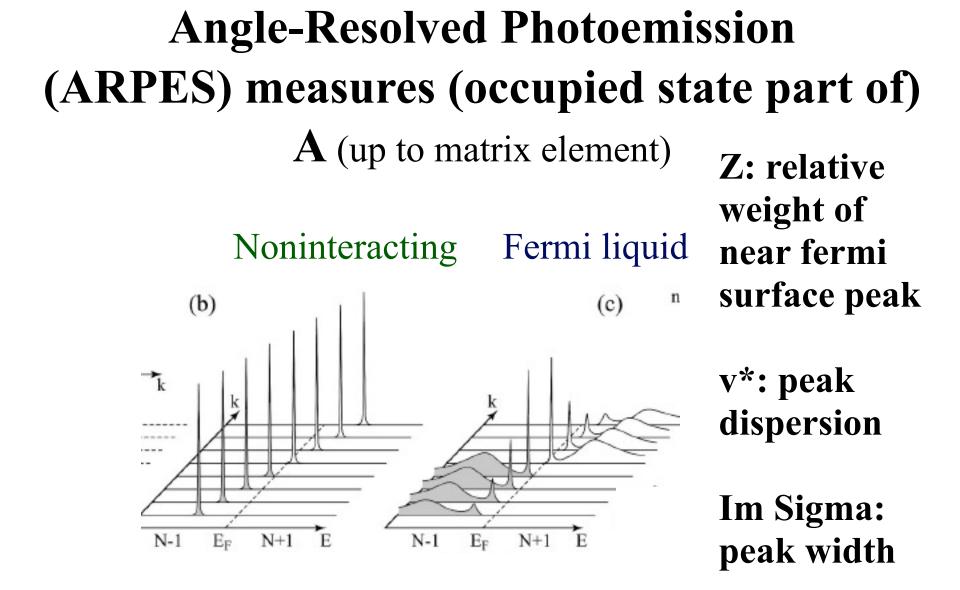


Fig. 3, Damascelli, Hussain and Shen RMP 75 473 (2003)

Department of Physics Columbia University

Spectral representation V

Alternative mathematical formulation: self energy

$$\mathbf{G}(k,\omega) = \frac{1}{\omega - \varepsilon_k - \Sigma(k,\omega)}$$

Self energy $\Sigma(k, \omega)$ expresses difference between actual electron propagation and electron propagation in reference noninteracting system with dispersion ε_k

Department of Physics Columbia University

Spectral representation V

Self energy has real and imaginary parts.

$$\mathbf{A}(k,\omega) = \frac{Im\Sigma(k,\omega)}{\left(\omega - \varepsilon_k - Re\Sigma(k,\omega)\right)^2 + Im\Sigma(k,\omega)^2}$$

Real part expresses renormalization of dispersion, overlap with exact eigenstate. Imaginary part expresses quasiparticle lifetime Fermi liquid: $Im\Sigma(k, \omega \to 0) \to 0$ $v_F^* = Z (\partial_k \varepsilon_k + \partial_k Re\Sigma(k, \omega)_{k=k_F})$ $\mathbf{Z} = \left(1 - \frac{\partial Re\Sigma(k_F, \omega)}{\partial \omega}|_{\omega \to 0}\right)^{-1}$ Department of Physics

Columbia University

Fermi liquid theory

Arrangement of many-body physics formalism to focus on coherent part of G, with effect of incoherent parts being subsumed in renormalizations, interaction vertices etc.

Different perspective on spectral function, fermi liquid theory

Anderson impurity model

$$\begin{split} H_{AIM} &= \sum_{\sigma} \varepsilon_0 d_{\sigma}^{\dagger} d_{\sigma} + U n_{\uparrow} n_{\downarrow} \\ &+ \sum_{k\sigma} \left(V_k c_{k\sigma}^{\dagger} d_{\sigma} + H.c. \right) + \sum_{k\sigma} \varepsilon_k c_{k\sigma}^{\dagger} c_{k\sigma}. \end{split}$$

1 orbital (d), subject to interaction (U) and coupled to non-interacting continuum (c)

Not trivial because V-term does not commute with U term

0-dim model. Perturbation in U converges at all U

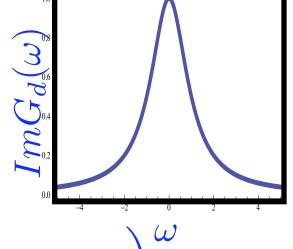
Copyright A. J. Millis 2010

U=0: solvable hybridization problem:

Physics: scattering resonance in continuum. Describe by Green function for d-electrons

$$\mathbf{G}_d(\omega) = \frac{1}{\omega - \varepsilon_d - \Delta(\omega)}$$

key parameter: hybridization function



$$\Delta(\omega) = \sum_{k} V_{k}^{2} \left(\mathcal{P} \frac{1}{\omega - \varepsilon_{k}} + i\pi\delta(\omega - \varepsilon_{k}) \right)^{2}$$

real part: level shift due to coupling to continuum imaginary part: decay of electron from localized orbital to continuum

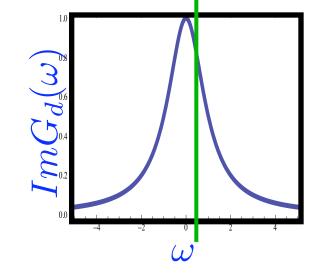
Copyright A. J. Millis 2010

U=0: solvable hybridization problem:

Physics: scattering resonance in continuum.ChemicalDescribe by Green function for d-electronspotential

$$\mathbf{G}_d(\omega) = \frac{1}{\omega - \varepsilon_d - \Delta(\omega)}$$

key parameter: hybridization function



Fill resonance up to chemical potential

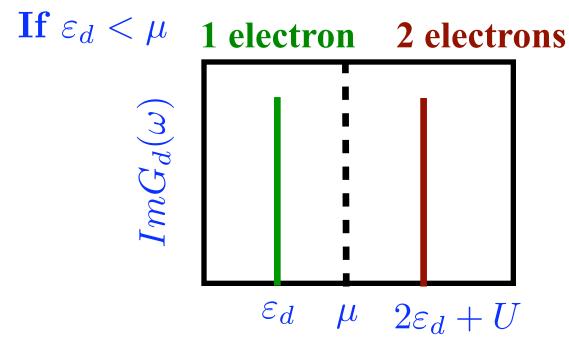
Department of Physics Columbia University

'Friedel sum rule'

$$\mathbf{n_d} = \mathbf{ArcTan} \left[\frac{\mathbf{Im} \ \mathbf{G_d^{-1}}(\omega = \mu)}{\mathbf{Re} \ \mathbf{G_d^{-1}}(\omega = \mu)} \right]$$

V=0: isolated 'atom'

impurity occupation number n_d: conserved



Note: 2 1-electron states: up, down

Department of Physics Columbia University

turn on V

impurity occupation number n_d: not conserved Guess: states broaden

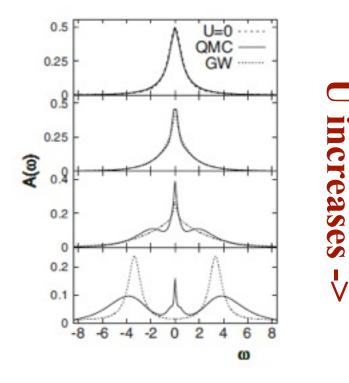
If $\varepsilon_d < \mu$ 1 electron 2 electrons $(3)^{p}_{5} \varepsilon_{d} \qquad \mu \qquad 2\varepsilon_{d} + U$

Department of Physics Columbia University

But recall Friedel sum rule

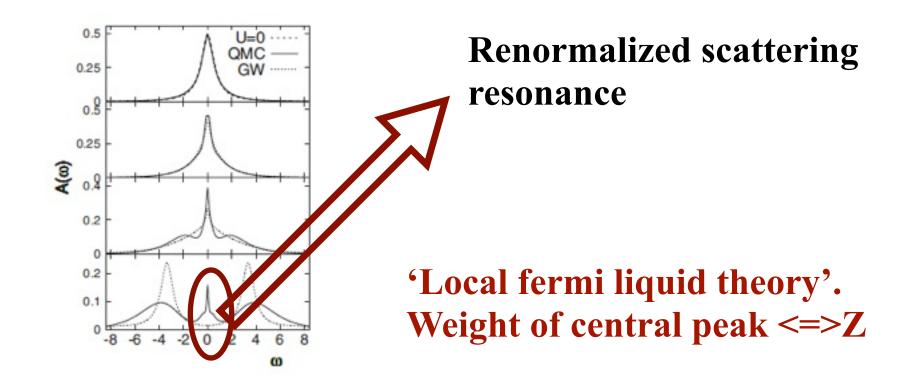
0-d system, no phase transition as function of U, so ratio of Im to Re G at chemical potential has to be consistent with density.

Result: 3 peak structure with 'Kondo resonance' in center



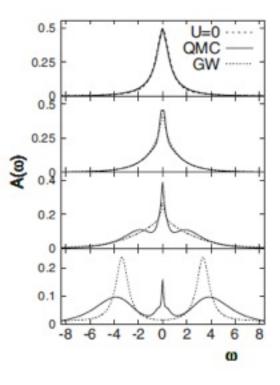
Wang, Spataru, Hybertsen, AJM PRB77 0451 (at largest U, T in calculation not low enough)

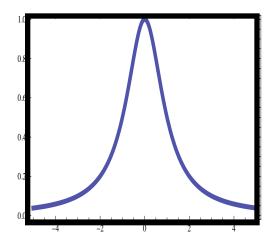
Low energy physics



Department of Physics Columbia University

How would density functional theory represent this solution





Only choice: one single scattering resonance, with properties tuned to reproduce energy

We will see:

Anderson impurity model is an auxiliary problem whose solution gives insight into many-body electronic structure.

