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Stereotypical theoretical physicist’s view of 
condensed matter physics

κ

2
εµνλAµ∂νAλ + ...

These lectures--where we are on attempts to do 
better, connecting material-specificity to behavior.

Periodic table from J H Wood; quoted in Z Fisk 2010 KITP talk 

Quantum Field Theory

=>

Crystal structure =>
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YBa2Cu3O7

Image from www.tkk.fi/

Wu et. al. PRL 58 908 (1987) 
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YBa2Cu3O7

Image from www.tkk.fi/

Wu et. al. PRL 58 908 (1987) 

??What is special about this material??

http://www.tkk.fi
http://www.tkk.fi
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‘Oxide Superlattices’

(LaSrO3)m(LaTiO3)n

SrTiO3: 
d0 “band” insulator

LaTiO3: 
d1 “Mott” insulator

Ohtomo, Muller, Grazul and Hwang, Nature 419 p. 378 (2002) 

‘any’ desired (n,m) 
can be synthesized
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Many systems now being made:
many effects can be produced

PHYSICAL REVIEW B 80, 241102 (2009)

Luders et al 
‘Room temperature magnetism in LaVO3/
SrVO3 superlattices--but not in bulk alloy

??Why room T magnetism in superlattice??
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Chaloupka/Khaliullin: 
?superlattices allow us to design a new high-

Tc superconductor?

Idea:

Bulk LaNiO3  Ni [d]7

(1 electron in two 
degenerate eg bands).
 
In correctly chosen 
structure, split  eg 
bands, get 1 electron in 
1 band--”like” high-Tc 
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Chaloupka and Khalliulin argue

Relevant orbitals: eg symmetry 
Ni-O antibonding combinations

3z2-r2

x2-y2

Hybridizes strongly along z
Hybridizes weakly in x-y

Hybridizes strongly along x-y
Hybridizes very weakly in z

2 orbitals transform as doublet in cubic symmetry

(1) Pseudocubic LaNiO3
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Heterostructuring breaks the symmetry
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Heterostructuring breaks the symmetry

3z2-r2 orbital goes up in energy

Result: planar array of x2-y2 orbitals
‘just like CuO2 high Tc superconductors’
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Heterostructuring breaks the symmetry

3z2-r2 orbital goes up in energy

Result: planar array of x2-y2 orbitals
‘just like CuO2 high Tc superconductors’

Query: How do we know if this is right?
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More generally:

If experimentalists can make ‘anything’
--what would one want to make?

How do we connect crystal structure/atomic 
properties to interesting electronic behavior?
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Why is it hard?
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Why is it hard?

We know the Hamiltonian
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Why is it hard?

H =
∑

i

−∇2
i

2me
+

∑

i

Vext(ri) +
1
2

∑

i !=j

e2

|ri − rj |

We know the Hamiltonian
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Why is it hard?

H =
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Why is it hard?

H =
∑

i

−∇2
i

2me
+

∑

i

Vext(ri) +
1
2

∑

i !=j

e2

|ri − rj |

We know the Hamiltonian

We know the equation

HΨn = −i∂tΨn

So stop complaining and solve it (?!)
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Not so fast:
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Typical lattice constant: 4 Angstrom 
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Not so fast:
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=> ~1000 electrons with 3 (x,y,z) coordinates.
Interaction ‘entangles’ coordinates=>
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Not so fast:

Typical lattice constant: 4 Angstrom 

Interesting length ~100 Angstrom

=> ~1000 electrons with 3 (x,y,z) coordinates.
Interaction ‘entangles’ coordinates=>

Ψ(!r1, ....!r1000...)
Intractable

Even worse: Ψ is fully antisymmetric
function of spins and coordinates

Schroedinger equation for 
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Sign problem:
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Need some other approach!
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Work-horse of materials theory:
density functional theory

Key idea: dont solve problem directly. Use 
solution of auxiliary problem to obtain 
(limited class of) information about problem 
of interest



  Department of Physics
Columbia UniversityCopyright A. J. Millis 2010 

Density Functional theory I

Phys. Rev. 136, B864 (1964) 

Φuniv is universal: only material
dependence is in 2nd term
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Sketch of Proof

H =
∑

i

−∇2
i

2me
+

∑

i

Vext(ri) +
1
2

∑

i !=j

e2

|ri − rj |

(1) Ground state energy E is functional of Vext

(2) Ground state density n(r) is functional of Vext

solution of HΨ = (H0 + Vext)Ψ = EΨ
gives mapping Vext → E

Ψ from solution of HΨ = EΨ → n(r)

Note E =< Ψ|H0|Ψ > +
∫

d3rVext(r)n(r)
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Key statement
**Vext is unique functional of density n(r) 

(up to constant)**

Suppose not. 

Then 2 potentials, V1 != V2 + const → n(r)

→ 2 Hamiltonians, H1,2, energies E1,2 and Ψ1,2

Thus E1 =< Ψ1|H1|Ψ1 > < < Ψ2|H1|Ψ2 >

But H1 = H2 + V1 − V2

So E1 < E2 +
∫

d3rn(r) (V1(r)− V2(r))
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Thus

E1 < E2 +
∫

d3rn(r) (V1(r)− V2(r))

E2 < E1 +
∫

d3rn(r) (V2(r)− V1(r))

Add. Get
E1 + E2 < E2 + E1

!!contradiction!!
Thus mapping n(r)→ Vext(r)→ E

Ground state energy is unique functional of density.
Can go on to show that functional is minimal at density 
corresponding to given Vext
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So to get energy

•Dont know universal functional 
•Dont know how to perform minimization

1. Put Vext(r) into universal functional
2. Minimize

Unfortunately
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To minimize functional: solve auxiliary single-
particle problem + self-consistency condition

(
− !2

2m
∇2 + Vions(r) + Vhartree(r)

)
ψn(r)

+VXC({n(r)}) ∗ ψn = Enψn(r)

VXC: exchange correlation potential’ (possibly non-
local) determined by electron density. Not known.
Wave function (in principle) no meaning except
Self-consistency:

n(r) =
∑

En<µ

ψ†
n(r)ψn(r)

W. Kohn and L Sham, Phys. Rev. 140, A1133 (1965) 
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DFT 2
(2) Uncontrolled (but apparently decent) 
approximation (recipe) for Vext[{n(r)}]. 

--‘Local density approximation’ 
     for uniform electron gas n(r)->n. 
     numerics gives Vel-gas(n). 
     Replace Vext[{n(r)}] by Vel-gas(n=n(r))

--Host of other approximations (GGA, B3LYP, ...) (all 
uncontrolled; tested by comparison to experiment...)

Result: procedure that works for many purposes.
Essential computational task: solve 1 particle 
schroedinger eq in some V(n(r)); self-consist
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Density functional band theory

Believed good for:
•Total energies
•Crystal structures
•Phonon Frequencies (restoring force=electron energy)
•Identification of relevant electronic orbital

Not so good for:
•Dynamics
•Thermodynamics 
•Phase transitions
•Local moment/Mott physics
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Density Functional Theory: Issues
Φ[{n(r)}] = Φuniv[{n(r)}] +

∫
(dr)Vlattice(r)n(r)

Density is not the optimal variable: phases with quite 
different physical properties have almost the same density
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Density Functional Theory: Issues

Ground state is not the only interest: different 
phases at different temperatures: need theory with 
local moments, entropic effects

χ ∼ 1
T

Local magnetic 
moment?
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Density Functional Theory: Issues

Ground state is not the only interest: excitation 
spectrum also important

Photoemission (electron removal spectrum)

In
te

ns
ity

dots: data
lines: band theory 

A. Fujimori et al Phys. Rev. Lett. 69, 1796 (1992

Shakeoff (side) band present 
in data, absent in band theory



  Department of Physics
Columbia UniversityCopyright A. J. Millis 2010 

Summary: density functional theory

•Quantities of interest obtained from solution of 
auxiliary problem + self consistency condition
•Uncontrolled but in practice very useful 
approximation
•Built to get ground state density, 
energy=>difficulties with excitation spectrum, 
higher T behavior, phase transitions to other 
ground states
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To deal with excitation spectrum:
fermi liquid theory
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Qualitative Arguments I:
Landau/Peierls

Consider  `free’ (no potential) fermions interacting 
via short ranged interaction (physical example: 3He)

Neglect interactions: H = −
∑

i

∇2
i

2m

Solution: antisymmetrized 
product (‘Slater Determinant’) 
of plane waves

Det
[
ei!kj ·!ri

]

landau100.itp.ac.ru nndb.com
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Physical Content
Ground state: ‘filled 
fermi sea’

2 dimensional picture of region of k 
space with occupied states in green

Excited states: 
particle-hole pairs

Label wave function by excitations 
above ground state
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•Particle (or hole)  
energy ~ distance from 
fermi surface:

•Susceptibilities, 
specific heat coefficient  
constant (at low T) and 
proportional to particle 
mass m

Physical content II

Excited states: 
particle-hole pairs

E = vF ||k| − kF |

Noninteracting fermions
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Physical content: III

Noninteracting case: each 
particle and hole propagates 
freely. 
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Physical content: III

Noninteracting case: each 
particle and hole propagates 
freely. 

Interacting case: 

(1) Energy of excited particle 
depends on how many other 
particles/holes are excited
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Noninteracting case: each 
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Interacting case: 

(1) Energy of excited particle 
depends on how many other 
particles/holes are excited
(2) M particle/M hole state not 
exact eigenstate: particle can 
e.g. decay into particle +(p-h 
pair)
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As particle approaches fermi surface, 
phase space for decay decreases
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focus on decay of 1 particle
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focus on decay of 1 particle

Energetics of decay:

Initial state: energy Einitial
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As particle approaches fermi surface, 
phase space for decay decreases

Hide other particles, so can 
focus on decay of 1 particle

Energetics of decay:

Initial state: energy Einitial

Final state: energy Ef + Ep + EH

i
f p

h
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As particle approaches fermi surface, 
phase space for decay decreases

Hide other particles, so can 
focus on decay of 1 particle

Energetics of decay:

Initial state: energy Einitial

Final state: energy Ef + Ep + EH

i
f p

h

=Einitial

=>all 3 final states must be 
closer to fermi surface than 
initial state=>decay prob ~E2
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Low energy excitations: 

1. Decay process  p->p + (p,h) is negligible
2. Modification of energetics due to other 
excitations not negligible
I gave a pictorial sketch of a perturbative 
argument for (1) and I ask you to believe (2).

Landau, then Luttinger, Ward, Nozieres, and 
others provided an increasingly sophisticated 
set of formal arguments justifying these 
statements and exploring their consequences. 
Result: ‘Fermi Liquid Theory’
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Fermi Liquid Theory References

Abrikosov, Gorkov and Dzyaloshinksi, Methods of Quantum 
Field Theory in Statistical Physics
Pines and Nozieres: Theory of Quantum Liquids
Nozieres: Interacting Fermi Systems

R. Shankar, Rev. Mod. Phys. 66, 129–192 (1994) 

Books

Renormalization Group Point of View
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Result:

In many circumstances, low energy properties of 
interacting fermi systems are those of 
noninteracting systems, but with renormalized 
parameters.
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Formalism: electron Green function
Define:

Define: electron Green function G(k, ω)

=
∫

dte−iωtT
〈
GS

∣∣∣
{

ψk(t), ψ†
k(0)

}∣∣∣ GS
〉

Exact eigenstates |Ψm
N+1(k) >

of N+1 particle system
momentum k, energy Em

k
relative to N -particle ground state |GS >

ψ†
k creates electron in state

with wave function ∼ ei!k·!r

T is time ordering symbol
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Spectral representation

GR(k, ω) =
∫

dx

π

A(k, x)
ω − x− iδ

+
∑

m

< GS|ψ†
k|Ψm

N−1 >< Ψm
N−1|ψk|GS > δ(ω − Em

N−1)

=
∑

m

< GS|ψk|Ψm
N+1 >< Ψm

N+1|ψ†
k|GS > δ(ω − Em

N+1)

Spectral function 

Measures overlap of exact eigenstates with ‘single-
particle state created by ψ†

k

A(k, ω) = Im
[
GR(k, ω)

]
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Spectral representation II

Noninteracting system:      creates an exact eigenstate, 
say m=m1  

ψ†
k

Spectral function is a delta function

A(k, ω) = δ(ω − Ek)

ψ†
k|GS >= |Ψm

N+1(k) > δm,m1
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Spectral representation III

General interacting system: state created by           does 
not closely resemble any eigenstate; has overlap with all 

ψ†
k

Spectral function is a smooth function

<Ψm
N+1(k)|ψ†

k|GS >= f(m)
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Spectral representation IV

Fermi liquid: as k-> kF, the state created by           tends 
to have some overlap with one unique state, as well as 
with a continuum of others

ψ†
k

Spectral function tends to a delta function 
(quasiparticle peak) plus smooth (‘incoherent part’) 
background

Important concept: quasiparticle weight Zk

<Ψm
N+1(k)|ψ†

k|GS >= Zkδm,m1 + f(m)



  Department of Physics
Columbia UniversityCopyright A. J. Millis 2010 

Angle-Resolved Photoemission
(ARPES) measures (occupied state part of) 

A (up to matrix element)

Fig. 3, Damascelli, Hussain and Shen RMP  75 473 (2003) 

Noninteracting Fermi liquid

Z: relative 
weight of 
near fermi 
surface peak

v*: peak 
dispersion 

Im Sigma: 
peak width
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Spectral representation V
Alternative mathematical formulation: self energy

Self energy               expresses difference between 
actual electron propagation and electron propagation 
in reference noninteracting system with dispersion 

G(k, ω) =
1

ω − εk − Σ(k, ω)

Σ(k, ω)

εk
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Spectral representation V
Self energy has real and imaginary parts.

Real part expresses renormalization of dispersion, 
overlap with exact eigenstate.
Imaginary part expresses quasiparticle lifetime

A(k, ω) =
ImΣ(k, ω)

(ω − εk −ReΣ(k, ω))2 + ImΣ(k, ω)2

Fermi liquid: ImΣ(k, ω → 0)→ 0

Z =
(

1− ∂ReΣ(kF , ω)
∂ω

|ω→0

)−1

v∗F = Z (∂kεk + ∂kReΣ(k, ω)k=kF
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Fermi liquid theory

Arrangement of many-body physics  formalism to 
focus on coherent part of G, with effect of  
incoherent parts being subsumed in 
renormalizations, interaction vertices etc.
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Different perspective on spectral function, 
fermi liquid theory

Anderson impurity model

1 orbital (d), subject to interaction (U) and 
coupled to non-interacting continuum (c)

Not trivial because V-term does 
not commute with U term
0-dim model. Perturbation in U 
converges at all U
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U=0: solvable hybridization problem:

Gd(ω) =
1

ω − εd −∆(ω)

Physics: scattering resonance in continuum.
Describe by Green function for d-electrons

key parameter: hybridization 
function

real part: level shift due to coupling to continuum
imaginary part: decay of electron from localized 
orbital to continuum

!4 !2 0 2 4
0.0

0.2

0.4

0.6

0.8

1.0

ω

Im
G

d
(ω

)

∆(ω) =
∑

k

V 2
k

(
P 1

ω − εk
+ iπδ(ω − εk)

)
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U=0: solvable hybridization problem:

Gd(ω) =
1

ω − εd −∆(ω)

Physics: scattering resonance in continuum.
Describe by Green function for d-electrons

key parameter: hybridization 
function

!4 !2 0 2 4
0.0

0.2

0.4

0.6

0.8

1.0

ω

Im
G

d
(ω

)
Fill resonance up to chemical potential

Chemical 
potential
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‘Friedel sum rule’

nd = ArcTan
[
Im G−1

d (ω = µ)
Re G−1

d (ω = µ)

]
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V=0: isolated ‘atom’

impurity occupation number nd: conserved

If εd < µ

Im
G

d
(ω

)

εd 2εd + Uµ

1 electron 2 electrons

Note: 2 1-electron states: up, down
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turn on V
impurity occupation number nd: not conserved

If εd < µ

Im
G

d
(ω

)

εd 2εd + Uµ

1 electron 2 electrons

Guess: states broaden
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But recall Friedel sum rule

0-d system, no phase 
transition as function of U, 
so ratio of Im to Re G at 
chemical potential has to be 
consistent with density.

Result: 3 peak structure 
with ‘Kondo resonance’ in 
center

Wang, Spataru, Hybertsen, AJM PRB77 045119 (2008)
(at largest U, T in calculation not low enough)

U
 increases ->
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Low energy physics

‘Local fermi liquid theory’. 
Weight of central peak <=>Z

Renormalized scattering 
resonance
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How would density functional theory 
represent this solution

Only choice: one single 
scattering resonance, with 
properties tuned to 
reproduce energy

!4 !2 0 2 4
0.0

0.2

0.4

0.6

0.8

1.0
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We will see:

Anderson impurity model is an auxiliary 
problem whose solution gives insight into 
many-body electronic structure.


