C. M. Marcus

Introduction

These four lectures describe quantum dots in
various regimes from large dots containing
perhaps several thousand electrons, to small
dots containing 0,1,2... electrons. The interest
in these systems is the ability to control elec-
trons, often one at a time, in a regime in
which quantum interference, electron-electron
interaction and chaotic classical dynamics
combined. Because electron numbers can
range from O to tens of thosands, these sys-
tems are well-suited to explore problems at
the heart of mesoscopics, namely, the cross-
over from microscopic to macroscopic, from,
from discrete to continuous, from coherent to
classical.

The focus of these talks will be principally
toward experimental results, with occasional
pointers to the theoretical literature, as I know
it. No doubt, I will leave out crucial refer-
ences both to relevant theory and to comple-
mentary experiments from other groups. I
apologize up front for that. The primary
probes of these systems is transport, i.e.
measuring the current-voltage characteristics
of these devices in response to various exter-
nal conditions. In part of Lecture 3 and Lec-
ture 4, I will mention charge sensing as an
alternative way of measuring what is going on
inside the dot.

Lecture |. Mesoscopic Quantum Dots

The structures described are fabricated on a
two dimensional electron gas (2DEG) wafer
(material grown by our collaborators) con-
sisting of epitaxial layers of AlGaAs and
GaAs, as shown in Figs. 1-3. Typical device
parameters for the 2DEG are given in table 1.
Notice that even for moderate mobilities, the
electron transport mean free path exceeds the
typical device size by at least an order of

page | of 12

Boulder Summer School Lectures

July 2005

Au Au o= L
GaAs Cap 3’ = 5
2 — =
AlGaAs o & z
o =
= <
—
n-doping Iayer._)

GaAs substrate

ner
energy

Fig. 1 View of the heterostructure along the growth
direction, showing 2DEG and surface gates.

magnitude. Devices are fabricated using
electron beam lithography, following several
steps of photolithograph during which ohmic
contacts are applied, larger gate stuctures
deposited, and alignment marks placed. Fol-
lowing these lithographic steps, the device is
bonded into a commercial chip carrier (cus-
tom made by Kyocera to contain no nickel),
which inserts into a chip carrier socket (also
made with no nickel, see Fig. 3) and cooled in
a dilution refrigerator. The various fridges
around the lab use a common strategy for
keeping the electrons cool. The dc lines pass
through ~1-10kQ resistors that divide isolated
segments of a metallic enclosure—usually the
hollow core of the cold-finger is used for this
purpose—which provides both thermal sink-
ing through the resistors and electromagnetic
isolation. Isolating coaxial lines for high-
frequency operation involves many more
tricks and will be discussed briefly below, in
the section on ac transport.

Depending on the impedance of the device,
we use either a four-wire lock-in measure-
ment, best suited for the moderate impedance
(~10kQ) of open quantum dots and quantum
point contacts (QPC’s) or a two-wire current
measurement (usually using an Ithaco 1211
preamplifier) for higher-impedance (~1MQ)
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2DEG Property Symbol Value Units
Effective mass m' 0.067 m.=9.1x10%g
Spin degeneracy g 2
Valley degeneracy g, 1
Dielectric constant € 13.1 & =8.9x 10" Fm™
Effective Lande g-factor g -0.44
Density of states p(E) = g,g,(m'/2h?) 2.8x10"° cm”meV!
Level spacing 1/p(E) 3.57 pueVyum?
Fermi wave vector k= (4mn/gg,)"? 1.1x 10° cm’!
Fermi energy E; = (7kg)*/2m" 7.0 meV

81 K
Fermi wavelength A = 2m/kg 56 nm
Fermi velocity Vi = fikg/m” 1.9x 107 cm/s
Scattering time T=m'ple 40 ps
Mean free path I=v 10 pm
Resistivity p=(neu,)" 30 Q per square
Diffusion constant D = vt/2 7x 10* cm/s
Thermal diffusion length 1y = (hD/KT)"? 5x10° nmAT
Cyclotron energy ho, 1.73 meV/B

20 K/B
Cyclotron radius 1. = hkg/eB 70 nm/B
Magnetic length 1,, = (/eB)"* 26 nmAB
Zeeman energy 2'usB 25.5 ueV/B

296 mK/B

Table | Typical values for a GaAs/AlGaAs 2DEG.
Density and mobility are taken to be ns = 2x10'" cm-2
and pe = Ix10® cm?/Vs, with dependent quantities
scaling as indicated. Magnetic field, B, is in tesla, and
temperature, T, is in kelvin.

GaAs

AlLGa, As

Fig. 2 Left: Schematic view of a quantum dot, defined
by gates on the surface of the 2DEG. The electrons
are depleted under the gates (light blue). Right: elec-
tron micrograph with false color, showing a quantum
dot containing ~ 1000 electrons. Scale bar is | pm.

devices, as found for instance in the Coulomb
blockade regime.
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Fig. 3 The GaAs chip is glued to the chip carrier
socket and bonded. The carrier is then inserted into
the socket that is mounted on the fridge.
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Fig. 4 Left: Gate voltages V| and V; are used to con-
trol the coupling of the dot to the reservoirs. Right:
Colorscale of dot conductance g, in units of eZ/h. A
plateau in dot conductance at ~ leZ/h is seen (in the
red square) when QPC | and QPC 2 are each on
plateaus of conductance 2e%/h.

The dots are connected to the reservoirs by
quantum point contact leads that can be indi-
vidually adjusted to give the desired conduc-
tance. It is easy to recognize plateaus in con-
ductance of the QPC leads, even when meas-
uring though the full device, so setting the
leads, for instance to an integer number of
quantized conduction modes is rather straight-
forward.

Typical low-temperature behavior of the dot
conductance in the open regime, g > 2¢%/h is
shown in Fig. 5. Important features to notice
are large, aperiodic conductance fluctuations
as a function of magnetic field, symmetric in
field and sensitive to changes in the shape of
the dot (as controlled by voltages on the con-
fining potentials. These fluctuations are of the

I' M. Switkes, Ph.D. thesis. Available at http://marcuslab.harvard.edu.
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Fig. 5 Typical conductance fluctuations as a function
of magnetic field at two different device shapes. Note
symmetry in field. Inset: Micrograph of the quantum
dot, with colored trajectories suggesting various ballis-
tic paths, arising from diffraction at the QPC. Interfer-
ence between these paths can be thought of as the
origin of the magnetic field fluctuations.

same origin as universal conductance fluctua-
tions in disordered mesoscopic metallic sam-
ples, namely, interference of multiple paths
passing through the device.

The symmetry in magnetic field, B, applied
perpendicular to the plane of the 2DEG is a
consequence of the Landauer-Biittiker sym-
metry for a two-lead device, Rjj; (B) =Rijj(-
B). Even though the device is measured in a
four-wire configuration, the majority of the
voltage is dropped across the device, which is
a two-lead device.

The trajectories depicted in the micrographs
in the insets of Figs. 5 and 6, are of course
schematic, but reflect a semiclassical view of
ballistic transport. From this kind of analysis
much can be learned, including, for instance,
the functional form of the correlation function
(or equivalently, the power spectrum) of these
fluctuations. Another theoretical approach is
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Fig. 6 Colored traces show conductance fluctuations
for various devices shapes (controlled by gate voltages
defining the confining potential of the dot). The black
trace is the average of ~100 such traces. The magnetic
field dependence in the average is lost, except for the
dip at B=0, due to coherent backscattering. The size of
the dip can be used to measure dephasing time. Inset:
Dot micrograph, showing time-reversed pairs of ballis-
tic trajectories that contribute to coherent backscat-
tering, resulting in a lowering of average conductance
when all time-reversed pairs interfere constructively.

random matrix theory (RMT) which applies
in the case of chaotic classical dynamics
within the dot.2 The beautiful, interconnected
story of RMT, level repulsion, and conduc-
tance fluctuations has been reviewed in the
literature? and will not be summarized here.
Instead, we take only the results we need to
allow conductance fluctuations to be used to
learn about the dephasing time t(7).

Whereas the rms amplitude of conductance
fluctuations depends on 14(7) as well as T
explicitly, the weak localization correction,
appearing as a dip at zero magnetic field in
the average conductance, is only temperature
dependent through 14(7). In fact, RMT mod-
els that include dephasing through the inclu-
sion of voltage-probe leads allow t4(7) to be

2 For review of RMT as applied to quantum dots, see C. W. J. Beenakker, Reviews of Modern Physics 69, 731
(1997); Y. Alhassid, Reviews of Modern Physics 72, 896 (2000). For a review of RMT in disordered systems, see

the text by P. Mello, Oxford University Press.
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weak localization correction

S ~ 2 N
&= h 2N + 1+,
conductance fluctuations
A
var(g) = o f (%),
. 2 1
f(/sa)* 2+ o (\/g_i_%)Q

dephasing channels

Yo = 27h/(T,A)

mean level spacing

A = 20h? /m* Agy

Table 2 Random matrix theory formulas for weak
localization correction and variance conductance
fluctuations (in units of e2/h). Weak localization for-
mula is valid for any number of modes in each lead, N
> |, whereas the approximate formula for conduc-
tance fluctuations is valid for N=1 only. Various forms
of these expressions, valid in various limits are known.

extracted directly from &g (g(B#0))-
(g(B=0)), with formulas that depend only on
the number of quantum channels connecting
the dot to the reservoirs, and the area of the
dot, Adot, which determines its mean level
spacing. Formulas for the case of single-mode
leads are given in Table 2.3

The measured dephasing time 1¢(T) measured
from these formulas (or ones like them, de-
pending on experimental parameters) is show
in Fig. 8. Two features are worth noting: the
first is that over much of the measured range,
to(T) < 1/T. This result disagrees with rele-

vant theory (which predicts to(7) o« 1/7?). 4
However, the theory addressed closed de-
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Fig. 7 Top: Weak localization as a function of tem-
perature for three different size devices. The smallest
device shows full (zero temperature) weak localiza-
tion, whereas the larger devices show depressed weak
localization. This is because the number of dephasing

channels increases for a given Ty as the size increases,

see Table 2. Bottom: Phase coherence time extracted
from weak localization for quantum dots ranging over
a factor of 20 in area collapse to the same curve. The
curve that appears to fit the data except at the lowest
temperatures is a combination of T and T2 dependence

of Ty, similar to what is seen in disordered 2D sys-
tems. Perhaps that is the appropriate theory?

vices, explicitly disallowing scattering with
momentum transfer smaller than the inverse
dimension of the dot.* The second thing to
notice is that the data appears to saturate at
low temperature. As was demonstrated in Ref

3 A. G. Huibers, et al., Phys. Rev. Lett. 83, 5070 (1999); A. Huibers, Ph.D. thesis, available at

http://marcuslab.harvard.edu

4U. Sivan, Y. Imry, and A. G. Aronov, Europhys. Lett. 28, 115 (1994).
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Fig. 8 Full distributions of conductance fluctuations,
showing good agreement between theory and ex-
periment, once theory has accounted for finite tem-
perature and dephasing (solid curves). Dashed curves
show dephasing effects only (T = 0).

4, this saturation is not the result of a saturat-
ing electron temperature. Here, the explicit
temperature dependence of var(g) is useful as
a thermometer: we see a continued ~ 1/7 rise
in var(g) between 100 mK and 40mK.

It is interesting to note that RMT predicts not
just the mean and variance of conductance
fluctuations, but the full distribution function,
P(g). This is perhaps the best illustration of
the universality of RMT. The distribution of
conductances is not dependent on material (as
long as spin-orbit effects are weak, though
that too can be accounted for, as discussed
below), device shape (as long as it generates
classical chaos), or size (except insofar is area
affects y, through A). Only the temperature,
dephasing rate, and number of channels in the
leads are parameters of the theory. As seen in
Fig. 8, the experimental distributions are in
good agreement with theory, once finite tem-

5 A. G. Huibers, et al., Phys. Rev. Lett. 81, 1917 (1998).
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Fig. 9 Large quantum dot with single-electron dot
acting as energy spectrometer. Differential conduc-
tance through the spectrometer measures the wave
function in the dot at the location of the spectrometer
at a fixed energy below the Fermi surface of the dot,
set by the gate voltage. This systems allows a meas-
urement of dephasing along the scar (see text).
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Fig. 10 Lower panel shows conduction from the big
dot through the spectrometer dot(grayscale), as a
function of magnetic field and voltage of the spec-
trometer relative to the Fermi surface of the dot, i.e,,
0 corresponds to the spectrometer on the Fermi sur-
face. The window of strong diagonal stripes between
~ 50-120 mT corresponds to a region where a focus-
ing condition gives a strong diamond shaped scar of a
periodic orbit. Top panel: percent of classical phase
space associated with periodic orbits (the rest being
chaotic) as a function of magnetic field (for rectangular
billiard the size of the dot.

perature and dephasing are included in the
theory.’
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amplitude of Nth harmonic:

Ani(e) = Ag expl Nt-7(e))
period of one cycle:

t=L/ VE ~18ps

ratio of first harmonic to second harmonic:

A:(0) _ 1
m = exp(tregc)

from fit to power spectrum of g in striped region:
Tesc ~ 17ps
model all energy dependence as reflecting dephasing

-1 -1 -1
T (8) = Tesc + T (€)

find zero-energy value from weak localization
‘C(p(O) ~2ns >> Tesc

Table 3 Model for extracting energy dependent
dephasing from the amplitude of periodic oscillations.

Deviations from RMT have been investigated
in transport measurement, and have been as-
sociated theoretically with self-similar struc-
ture in conductance fluctuations. The experi-
mental evidence® for self-similar, or fractal,
conductance fluctuations is not firmly estab-
lished in my opinion.

Following work by Sivan’ and coworkers, we
have constructing a spectrometer using a
small dot adjacent to a big dot, as seen in Fig.
9.8 Differential conductance dI/dV measured
through the single electron dot serves as a
spectrometer of the large dot, giving a meas-
ure of the wave function of the large dot at
the location of the spectrometer at an energy
set by the energy level of the single-electron
dot relative to the Fermi sea of the large dot.
In the magnetic field range ~50-120 mT a
strong series of ridges appears in the data
(Fig. 10). Classical phase space analysis of a
simplified version of the problem shows that
a strong periodic orbit with a concave dia-

6J. P. Bird, J. Phys.-Condes. Matter 11, R413 (1999).

7U. Sivan, et al., Europhys. Lett. 25, 605 (1994).
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Fig. 11 Dephasing rate as a function of energy off of
the Fermi surface of the large dot (black circles). By

defining an effective temperature T = €/ks we can

compare Typ(g) from the spectroscopic measurement
to Te(T) from weak localization. The two compare
surprisingly well, with the notable lack of a T2 part in

the To(€), perhaps because the substrate remains at
base temperature.

mond develops within the dot in this range of
magnetic field. The spacing of the stripes in
the data correspond well to the expected pe-
riod Aharonov-Bohm oscillations with an area
given by the diamond, while the slope of the
stripes agrees with the expected dependence
in the field-energy plane to keep the number
of wavelengths around the orbit constant on
each stripe.

It is evident by inspection that the oscilla-
tions, and overall conductance fluctuations,
are stronger when the spectrometer is near the
Fermi surface of the large dot (toward the
bottom of the bottom panel of Fig. 10). As-
suming the interpretation of the stripe features
to be valid, we can use energy-dependent am-
plitude of the periodic oscillations to extract a
energy dependent dephasing rate, 14(¢), where
¢ is the distance of the spectrometer window
(the single particle level) below the Fermi

8 D. M. Zumbuhl, Ph.D. thesis, available at http://marcuslab.harvard.edu and in preparation.
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Fig. 12 Average conductance (g) (squares) and vari-
ance of conductance var(g) (triangles) calculated from
200 statistically independent samples, generated by
shape averaging, as a function of perpendicular mag-
netic field B, for (a) 8.0 um? dot (b) 5.8 um? center-
gated dot and (c) 1.2 pm? dot at T = 0.3K, along with
fits to RMT (solid curves). In (b), the center gate is
fully depleted. When the center gate is undpleted, this
device shows antilocalization.Vertical lines indicate the
fitting range, error bars of (g) are about the size of the
squares. Note that the large dot shows antilocaliza-
tion (a peak in conductance at B = 0) while the small
dot, made of the same material, shows weak localiza-
tion, demonstrating how the effects of spin-orbit cou-
pling are suppressed by confinement.

surface of the dot. The procedure is outlined
in Table 3, and the results shown in Fig. 11. If
we make the connection to previous meas-
urements of 1¢(7) through the simple associa-
tion € <> T (without the 3.5 from the deriva-
tive of the Fermi function), then, remarkably,
the data from this experiment sits essentially
on top of the weak localization data. The data
also has a slope 1¢(¢) < 1/T, in this case ex-

tending across a broader temperature range.
Theory also exists to extract te(€) from the
chaotic parts of phase space, but that analysis
has not yet been carried out.
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ISEY) SO length along crystal axes

Mo =fM ‘Ao average SO length

Ve, = /n, 1Ny SO anisotropy
Yo decoherence rate
K geometry dependent constant

spin-orbit parameters
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magnetic fields
2
E 2eB | A
x%=n K(—T) (—J‘) perpendicular
A h
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Table 4 Device parameters that determine the sym-
metry class within RMT. See Table 5 below

weak B||
b, h2 << N+,

intermed. B, | strong B,
h2 << N+y, <<b Ny, << h2, b

V4 7

weak SO

2 52
a?, a2 << N+yw

intermediate SO /

a2 << N+«,tp << ax2

strong SO

N+yw << a?, axz s=1 1 1 1

Table 5 Chart of parameter ranges for RMT includ-
ing Zeeman and spin-orbit effects. The large numbers
in each square characterize the relative size of var (g)

~ s/(B).

So far, there has been no mention of the spin
of the electron. In material with weak spin-
orbit coupling, we can consider either RMT
or semiclassical formulations that ignore spin.
As the strength of spin-orbit coupling in-
creases, spin effects on quantum interference
become dramatic. This is, of course, well
known from the mesoscopics of bulk disor-



C. M. Marcus

dered metals and semiconductors, where, for
instance, weak localization effects change
sign in the presence of strong. The origin of
this change of sign in quantum corrections to
average conductivity is the fact that as an
electron spins evolves through 2n (for in-
stance, by following the motion of the elec-
tron around a loop due to spin-orbit cou-
pling), its overall wave function of the elec-
tron undergoes a sign change, and it takes a
rotation by 4z to bring the sign back to its
original. This change in sign reverses the sign
of coherent backscatter to destructive inter-
ference producing a peak, rather than a dip, in
conductance, at zero magnetic field (where all
loops interfere).

In heterostructure-based quantum dots, the
dominant spin-orbit effects show an important
cancelation effect due to the winding and un-
winding of spin rotations associated with the
confined motion of electrons in zero dimen-
sions. The cancellation, which applies only to
Rashba-type and linear Dresselhaus spin-orbit
coupling eliminates the first-order contribu-
tion, but leaves second order effects, which
take the form of a spin dependent Aharonov-
Bohm effect. Higher-order term (in the quan-
tity (L/Aso) where L is a typical linear dimen-
sion of the device, and Aso is roughly the
length over which the spin rotates by 2n due
to spin-orbit coupling). An extended RMT for
spin-orbit coupling in quantum dots, includ-
ing Zeeman fields, was given by Aleiner and
Falko.’

The extended RMT gives the variance of
conductance fluctuations (at T = 0) in terms
of symmetry parameters: var (g) ~ s/(BX),
where [ is the conventional (Dyson) parame-
ter describing time-reversal symmetry, s is the
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Table 6 Modifying SO+Zeeman RMT results for
weak localization and variance of conductance fluctua-
tions to include orbital coupling. This has been treated
in the simplest way, by multiplying RMT result by the
orbital (FJ) factor.
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Fig. 13 Dependence of conductance fluctuations
var(g) (main figure) and average conductance (g) (in-
set) measured in an 8 pm? quantum dot with single-
mode leads and large spin-orbit coupling, for the case
where time-reversal symmetry is unbroken (solid
circles) and broken (open circles) by a perpendicular
magnetic field. Theory curves are RMT with and with-
out the inclusion of an explicit breaking.

Kramers degeneracy parameter and X char-
acterizes mixing of different spins when
Kramers degeneracy is already broken. Spin
rotation symmetry is classified as either not

° 1. L. Aleiner and V. I. Falko, Phys. Rev. Lett. 87, 256801 (2001); J. N. H. J. Cremers, P. W. Brouwer, 1. L. Aleiner,

and V. I. Fal’ko, Phys. Rev. B 68, 125329 (2003).
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Fig. 14 (a) Differential conductance g for N = 2
modes per lead in an 8 ym? dot as a function of B
(solid curves) and —B (dashed curves) at source-drain
V as indicated, measured at electron temperature T =
45mK. The blue (red) curves are offset by +0.5 (+1)
e?/h, respectively. (b) Antisymmetric in B conductance
ge- of the traces shown in (a), as a function of B atV
(solid curves) and —V (dashed curves) as indicated.
The blue (red) curves are offset by +0.1 (+0.2) eZ/h,
respectively. Black curve demonstrates Landauer-
Buttiker symmetry forV = 0 and blue/red curves indi-

cate that gg- is antisymmetric in'V.

broken (s = 2, ¥ = 1), partially broken (s = 1,
Y = 1) or completely broken (s = 1, £ = 2).
The variance of conductance is reduced by a
factor of two when a crossover into the class
with next-lower symmetry occurs. The
Kramers degeneracy can be lifted by a Zee-
man field as well as spin-orbit coupling if B

= 0. Once Kramers degeneracy is broken (s =
1), mixing of spins (£ = 2) due to spin-orbit
coupling is possible at B = 0 for strong spin-
orbit coupling or can be induced by B when
spin-orbit coupling is suppressed by confine-
ment near B = 0. Finite temperatures and
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Fig. 15 (a) gs- (color scale) as a function of B and V
for fixed plunger Vg at N = 2. Red dashed lines indi-
cate the locations for data shown in (b) and (c). (b) gs-
as a function of B atV =0,7.5, 15,55 pV.(c) gB— as a
function of V at B = 0, 0.3, 0.8 mT. Linear fits to curves
in (b) and (c) are shown in dashed blue lines, with solid
blue lines indicating the fitting range. Inset to (c)
shows the same cuts as in (c) with theV axis extended

to £125 PV and the gs— axis extended to +25 x |03
e?/h. (d) Electron micrograph of a similar device. Only
the yellow gates are used in this experiment. V is ap-
plied symmetrically.

decoherence strongly reduce var (g), but the
relative reduction factor varg(BL = 0,B; = 0)/

var g(BL= 0,B# 0) is only affected weakly.

Figure 12 demonstrates the suppression of
weak localization effects by confinement in
high-density GaAs quantum dots.'® These
wafers happened to have a large spin-orbit
coupling by virtue of the high density, which
makes the Fermi velocity larger, and the de-
tails of the heterostructure interface. For large
dots made from this wafer, spin-orbit effects

10D. M. Zumbuhl, et al., Phys. Rev. Lett. 89, 276803 (2002). D. M. Zumbuhl, et al. PRB-RC, in press (cond-mat/

0501622 (2005).
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Fig. 16 Standard deviation of interaction parameter
(left axis) and dimensionless interaction parameter
(right axis) as a function of the number of modes in
the leads. The dash-dot line indicates the theoretical
estimate. Whereas theory gives a O decreasing with
the number of modes in each lead as N2, the experi-
ment shows dX increasing. The likely explanation for
this result is that the theory does not include ther-
malization, which occurs for small N. For larger N, the
distribution of electron energies in the dot are out-of-
equilibrium due to the relatively rapid escape.

reverse the sign of coherent backscattering,
giving antilocalization (a conductance peak at
B =0). For the small dot in Fig. 12(c), made
from the same material, spin-orbit effects are
suppressed by confinement and no antilocal-
ization is observed. The device in 12(b) has
an interior gate that allows it to be controlla-
bly switched from a large dot with antilocal-
ization to a small dot with localization. One
could imagine a class of devices that take
advantage of rapid turning on and off of spin
orbit coupling. The rapid change in area pro-
vided by the internal gating allows such a
process. The solid curves in Fig. 12 are fits to
RMT, showing essentially perfect agreement
between theory and experiment.

The extended RMT also can account for
combine spin-orbit and Zeeman coupling, the
latter produced experimentally by a applying
a purely in-plane field. At low in-plane fields,
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Fig. 17 (a) Modest effect of microwaves on the sym-
metry of conductance, shown for +B (solid blue) and
-B (dashed). (b) dc current induced by the application
of rf or microwave gate voltage. At 10MHz, the sym-
metry of the current reveals its origin to be rectifica-
tion. At 5.56 GHz, there is very little symmetry in B.
Here, photovoltaic effects dominate transport.

B < 200 mT , experiment and RMT agree
essentially perfectly. At higher field, the fact
that By also couples to orbital electronic states
(even for a perfectly 2DEG) needs to be ac-
counted for. With this modification, good
agreement over the full range of experimental
parameters, for both average and variance of
conductance, is obtained, is seen in Fig. 13.
For average conductance there is essentially
perfect agreement between the modified RMT
(denoted RMT+FJ in Fig. 12) and experi-
ment; for var(g) there is some minor discrep-
ancy that is not understood.

So far we have restricted our attention linear-
response transport (except for the spectrome-
ter experiment) which, among other things,
obey Landauer-Biittiker symmetry in applied
magnetic field. We now consider two depar-
tures. If we apply a relatively large dc bias to
a two-lead quantum dot, we are no longer
guaranteed that the Landauer-Biittiker sym-
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metry g(B) = g(-B) will be obeyed. It was
recently pointed out while at large bias this
symmetry is not guaranteed, that destroying it
requires electron-electron interactions. The
reason, simply put, is that without interaction,
each energy level, E, within transport window
will separately obey g(E,B) = g(E,-B), so that
integrating over E to account for finite bias
will not affect this symmetry.

If we consider the first departure from the
even symmetry g(B) = g(-B). Expanding the
current I = g(B)V + {(B)V? + ..., we can ex-
pand {(B) = as {o + aB + ... The term propor-
tional to a is thus linear in B and even in
source-drain voltage, and corresponds to a
nonlinear conductance term gn(B) = aBV. As
shown in Refs. XX, a is proportional to
electron-electron interaction strength.

In the mesoscopic regime, one expects (and
indeed we find) that an ensemble average
over shapes for field of a vanishes. We there-
fore characterize this quantity by its the stan-
dard deviation, 6a. We investigate the com-
ponent of conductance that is antisymmetric
in B, denoted gs- = (g(B) - g(-B))/2, and ex-
tract the component linear in B, as shown in
Fig. 15. After gathering statistics on these
nonlinear components, we are able to find da
and its dimensionless counterpart da’, defined

Sor— 5o Lzée_

N2A¢g h °
where N is the number of modes in each lead,
A is the device area, o is the flux quantum.
The quantity da’ has been calculated in the
limit of perfect screening, with a predicted

value /2. Experimental values are in reason-
able agreement for N=4, but for smaller N,
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Fig. 18 Rectification model (black) describes the
gate-induced fluctuations in rectification current in-
duced by 10MHz, but does not describe the photocur-
rent induced by 5.56GHz, which also is asymmetric in
field. The rectification calculation is based on the data
at +50 mT.

where equilibration occurs within the dot be-
fore the escape time, asymmetry is reduced
(as expected).

Another instance of nonlinearity that violates
magnetic field symmetry is the appearance of
both rectification and photovoltaic effects in
quantum dots. Both effects produce dc current
in response to an applied ac gate voltage. De-
pending on the frequency and strength of ac
voltages, components that are both symmetric
and antisymmetric in magnetic field appear.!!

Rectification produces a dc current in re-
sponse to a single ac applied gate voltage. It
arises when a voltage applied to a gate,

Vy(t) = Ve 4 Ve sin(wt)

parasitically couples to the source drain volt-
age, with a possible phase shift,

Vas(t) = aV e sin(wt+¢)

leading to an induced dc current

27w
Vi sin(wt + ¢)g(

w
Irect - %
0

Vg (t))dt

11 L. DiCarlo, C. M. Marcus, and J. S. Harris, Jr., Phys. Rev. Lett. 91, 246804 (2003); M. G. Vavilov, L. Dicarlo, C.

M. Marcus, Phys. Rev. B 74, 341309(R) (2005).
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Fig. 19 (2) Variance of conductance fluctuations, in
the presence of microwaves, normalized by the zero-
power variance. Fitting theory to the data allows the
power parameter Cp to be calibrated. (b) Two sources
of mesoscopic current in response to microwaves:
photovoltaic current (solid), which is asymmetric in
field (i.e., symmetric and antisymmetric parts are the
same size, and each half of the total variance), and rec-
tification current, which has a larger symmetric part
(dotted) than antisymmetric part (dot dashed). Ex-
perimental data shows reasonable agreement with
slope and saturation.

through the dot. When the applied gate volt-
age is small compared to the gate voltage cor-
relation length in conductivity (~10 mV), this
current can be approximated as

d
oo, = 25O (V)2 g

Rectification does not require particularly
high frequencies, and is the dominant source
of dc current resulting from ac gate voltage at
MHz frequencies. Examples of rectification
are seen in the top panels of Fig. 17 and 18.

In contrast, beyond the adiabatic regime,
when the ac frequency becomes comparable
to various relaxation times in the problem, a
photovoltaic mechanism leading to dc cur-
rents becomes dominant. Photovoltaic effects
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are characterized by a lack of £B symmetry,
examples of which are seen in Figs. 17 and
18.

There is some subtlety regarding using sym-
metry do disentangle rectification and photo-
voltaic effects: At intermediate microwave
frequencies, conductance remains symmetric
while the induced dc current becomes asym-
metric. It higher frequencies, or larger am-
plitudes of microwave gate excitation, con-
ductance becomes asymmetric as well, re-
sulting in asymmetric rectification. In this
regime separating photovoltaic and rectifica-
tion effects cannot rely on magnetic field
symmetry.



