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Plan 

The methods outlined in the last lecture can be used to 
derive hydrodynamics for a collection of active particles 
in a medium with other interactions: 

• Short-range interactions due to cluster of motor 
proteins crosslinking cytoskeletal filaments → relevant to 
cell cytoskeleton and cytoskeletal extracts 

• Fluid-mediated hydrodynamic interactions →  relevant 
to bacterial suspensions.  
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Cytoskeletal filaments (e.g., 
actin) as polar rods coupled 
by passive and active 
crosslinkers 

Cytoskeletal filaments & motor proteins 
Kruse & Julicher, PRE 67, 51913 (2003) (1dim) 

Ahmadi, MCM & Liverpool PRE 74, 61913 (2006) (2dim) 

  
∂tc(x1) = ∂x1

D∂x1
c(x1) +

1
ζx2

∫ F(12) c(x1)c(x2)












passive 
crosslinker 

motor 
cluster 

+

+ +

+

Smoluchowski: 

Velocity induced on filament 1 by filament 2 via active 
crosslinker. Obtained from kinematics of two polar 
rods crosslinked by an active motor cluster, modeled 
as a 2-headed rigid object with finite torsional 
stiffness κ that steps at a rate r(s) along each 
filament. 

 ν̂1 ν̂2

r(s) 

κ
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1. Motors drive filament bundling, e.g., 1dim: Kruse & Julicher, 
PRL 75, 1778 (2000) 

Mechanism for 
contractility, effective in 
both polar and apolar 
systems. In this model it 
requires motor stalling at 
end. 

filament 
pair CM 

 

u(s) = a dATP
dt
 nm µ sec

 

bundling "rate":  α  s u(s) length of
filament

Builds up density inhomogeneities → pattern formation 
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ζ ij( ˆν1)v1j = − fi
ζ ij( ˆν 2 )v2j = fi
vCM=

v1+
v2
2 ≠ 0 f

− f 12

 

active velocity:
vCM ≡ β  u(s) length of

filament

2. Motors yield mass transport  
         Liverpool & MCM, EPL 69, 846 (2004) 

Although a motor-filament pair is a force dipole, i.e., 
FNET=0, the anisotropy of rod diffusion yields vCM≠0 

Self-propulsion as a generic 
property of all polar active units: 

 apolar vCM=0 
 polar vCM≠0 

 
ζ ij( ˆν ) =ζ  ˆν i

ˆν j +ζ⊥ δ ij − ˆν i
ˆν j( )
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Bacterial Suspensions: Outline 

 The simplest "swimmer”: pullers vs pushers 

  Microdynamics of interacting swimmers 

  Hydrodynamic interactions 

  Instabilities and other results 

  Outlook 
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The locomotion of individual organisms is controlled by a cyclic 
“stroke” (motion of cilia, flagella, …)Extensive models of individual 
swimmers and some progress in understanding pair interaction 
(Childress, Purcell, Golestanian, Yeomans, Lauga, Powers, …)   

Chlamydomonas 
“pullers” 

E-coli  
“pushers” 

Our focus: collective behavior on  
lengths >> swimmer size   &    times >> stroke duration : 
How do different classes of propulsion mechanisms affect the collective 
macroscopic physics? 
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A swimmer as a force dipole 
At distances >> L and on 
times >> duration of one 
stroke, the forces exerted 
by swimmer on fluid can 
be approximated as a 
static force dipole 

L 

•  No acceleration (Re<<1), net force must vanish  

•  Approximation is ok because we are interested in collective 
effects, not in the properties of individual swimmers 

•  Flow generated by a swimmer is complex and contains all 
multipoles - these will be generated by hydrodynamic 
interactions 
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The “simplest swimmer”   ̂u

  −fû

  fû

   

Flow field generated by swimmer 
is given by the Stokes equation :

∇ ⋅

v = 0

η∇2 v = fûδ(

r −

rL ) − fûδ(


r −

rS )

active forces exerted 
by swimmer on fluid

  

          +noise

   

∂
t

r
L
=
v(r

L
)

∂
t

r
S
=
v(r

S
)

•  Re<<1 → neglect inertia 
•  Neutrally buoyant 
•  Swimmer rides w/ fluid   

+noise 

+noise 

   

∂
t

r
α L
=
v(r

α L
)

∂
t

r
αS

=
v(r

αS
)

    
η∇2 v = fû

α
δ(

r −

r
αL ) − fû

α
δ(

r −

r
αS ) 

active forces exerted 
by all swimmers on fluid

  

α
∑ +noise

One swimmer: 

Many swimmers 
(α=1,…,N) 
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Two approaches 
a)  Solve Stokes eqn. to obtain the flow velocity v.  

      Eliminate v from the eqs of motion for the swimmers → fluid flow is 
recast as hydrodynamic forces and torques on swimmers. Next, 
coarse grain the resulting microdynamics of interacting swimmers. 

b)  Retain the Stokes equation and obtain a hydrodynamic two-fluid 
model that contains explicitly the flow velocity. 

Advantage of (a):  
•  physical insight on role of hydrodynamic interactions 
•  crucial role of long-range nature of hydrodynamic forces 

Advantage of (b): 
•  straightforward comparison with phenomenological theory. 

   

η∇2 v =

Fact


∇ ⋅

v = 0






   vi (


r ) = Oij (


r −

r ')Fj

act (

r ')


r '
∫ ,      Oij (


r ) = 1

8πηr
δ ij + r̂i r̂j( )

Oseen tensor
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One swimmer 

L 

aL 

aS 

  ̂u

  −fû

  fû
Rigid body dynamics at low Re: 
Translation of & rotation about  
hydrodynamic center C, determined 
by shape (not mass distribution) 

C 

   

∂
t
û =

Γ

R
(t)

∂
t

r
C
=v

0
û +

Γ(t)

Although NET FORCE=0,  SP v0 is finite if 
hydrodynamic center C does not coincide 
with center of force dipole 

  Polar (head ≠ tail) v0 ≠ 0 → “mover” 

 Apolar (head=tail) v0=0 → “shaker”   
v

0
~

f (a
S
− a

L
)

ζ L

radii aS, aL noise 

 

rC =
aL
rL + aS

rS
aL + aS
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Multipole expansion of force 
distribution about hyd. centers       

•  Central, dipolar forces, ~1/r2 
•  Sign of α → pusher (tensile) vs 
puller (contractile) 

 


F12  r̂12

α
r12
2 3(r̂12 ⋅ û2 )

2 −1 


τ12  û1 × 3r̂12r̂12 −


1  ⋅ û2

α R

r12
3 (û1 ⋅ û2 )−

β
r12
5











Nematic 
symmetry 
α, αR~f(aL+aS) 

Polar 
symmetry 

β~f(aL-aS)~v0 

Many swimmers 

 

∂t
rα C = v0ûα + 1

ζ


Fαβ +


Γα (t)

β ≠α

∑

∂tûα = 1
ζ L2


ταβ

β ≠α

∑ +

Γα
R (t) ζ =ζ S +ζ L = 6πη (aS + aL )
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Pusher: propelled near tail Puller: propelled near head 

Position of hydrodynamic center wrt mid-point defines 
puller/pusher character 

α<0 α>0 

13 

From Microdynamics to Hydrodynamics 
Use standard tools of nonequilibrium statitistical physics to 
construct dynamical equations for continuum fields on 
lengths >> L, times >> stroke cycle 

  
ρ(r ,t) = δ (r − rαC (t))

α
∑     concentration of swimmers

  


P(r ,t) = 1

ρ (r ,t )
ˆναδ (r − rα C (t))

α

∑     polar order

  
Qij (
r ,t) = 1

ρ (r ,t )
ˆνα i

ˆνα j −
1
3δ ij( )δ (r − rα C (t))

α

∑   nematic order

• Dilute suspensions 
• Large SP regime  

 

L
r12
1

 

∂t
rα C = v0 ˆνα +

1
ζ


Fαβ +


Γα (t)

β ≠α

∑

∂t ˆνα =
1

ζ L2

ταβ

β ≠α

∑ +

Γα
R (t)

Polar 
order 

Nematic 
order 
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Hydrodynamics of an incompressible active suspension: 
two equivalent formulations 

 

∂tρ +
u ⋅

∇ρ = −


∇ ⋅

j

∂t

P +

F(

∇
u) = forces & torques

∂tQij + Fij (

∇
u) = forces & torques

η∇2 u = active stresses,        

∇ ⋅
u = 0

Flow field appears explicitly → 
natural formulation of 
phenomenological models: 

In Stokes regime the flow field u 
not a dynamical variable 

Flow field is eliminated 
at the outset and recast 
as hydrodynamic 
interactions among the 
swimmers 

 

∂tρ = −

∇ ⋅

J

∂t

P = forces & torques

∂tQij = forces & torques

Equivalent when u is eliminated on LHS 
in terms of ρ, P, Qi 
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Hydrodynamics equations for active particles 
concentration and director field 

 

∂tρ p +

∇ ⋅ ρ p

v + β n( )( ) =

∇ ⋅D


∇ρ p

∂t +
v + β n( ) ⋅


∇( )ni +ω ijn j = λuijnj +w∂iρ p + K∇

2ni

∂ jσ ij = 0→η∇2vi = −∂ j α ninj + β ∂in j +∂in j( ) 

β intrinsic to polar systems 
α present in polar and nematic fluids 

   

ρtotal = const

∇ ⋅

v = 0











uij = 1
2 ∂iv j +∂ jvi( )

ω ij =
1
2 ∂iv j −∂ jvi( )
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∂tρ p + v0


∇ ⋅ ρ p

n( ) =

∇ ⋅D(α )


∇ρ p

∂t + v0
n ⋅

∇( )ni = w∂iρ p + K(α )∇2ni

       + λ ∇iGjk (
r − r ')

r '
∫ ∇ 'l α nknl + β ∂ 'k nl +∂ 'l nk( ) 

v0~f self-propulsion intrinsic to polar systems; β~v0 
α~f from active hydrodynamic forces: α <0 for pullers, α >0 for 
pushers 
Microscopic expressions for various parameters (D, K, w) that 
are renormalized by activity 

   

ρtotal = const

∇ ⋅

v = 0











We have eliminated the flow velocity from the outset in favor of (long-
ranged) hydrodynamic interactions – schematically (G~1/r2): 

Microscopic Derivation 
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Nonlocal hydrodynamics 

Long-range hydrodynamics interactions (F~1/r2) yield 
nonlocal hydrodynamic equations. 

 

Jα (r )
current


= dr ' K(r − r ')
nonlocal interaction
 

Φα (r ') Φβ (r )
hydrodynamic fields
  

∫

 

δJα (r )  Φβ0 dr 'K(r − r ') δΦα (r ')∫
          →  Φβ0

K(− q) δ Φα (q)  Φβ0
K0 + iq K1 + ...   δ Φα (q)

When the eqs. are linearized, the nonlocality can be 
truncated in a small q expansion 

small & large distance cutoffs 
18 
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Some Results 

  Derivation of (nonlocal) hydrodynamics for pushers & pullers with 
microscopic expressions for parameters 

  Steady-state solution of hydrodynamic eqs yields bulk states: no 
bulk ordered state from pairwise hydrodynamic interactions 
 Isotropic state: ρ=const, P=Q=0 
 Steric effects yield nematic order at high concentration 
 No polar state: need external symmetry breaking, e.g., 
chemotaxis? 

 Linearization around bulk states reveals instability of isotropic and 
ordered states  pattern formation. 
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Instability of Isotropic State: different mechanisms for 
pushers & pullers 

Pullers (a<0)
1) growth of density fluctuations from a suppression of 
longitudinal diffusion due to active hydrodynamic interactions 
(cf. Kruse & Julicher 2000; Liverpool & MCM 2003) ”clumping” 

 
∂tδρ + v0


∇ ⋅

P = (D − α ρ0 )∇

2δρ

attractive 
interaction 

repulsive 
interaction 

 

α

D


f /ζ( )L
D


vL
D
= Pe

2) above a critical v0: propagating 
“sound-like” density waves 

Controlled by Peclet number: 

20 



7/9/09 

11 

Late stages of Myxo on starvation agar 
Welch’s lab, Syracuse University 

1 mm 
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Instability of Isotropic state  

Pushers (α>0)  
orientational fluctuations are unstable on all scales when 
αR>DR (cf. Saintillan & Shelley, 2008). 

 
∂tQ⊥ = −(DR −αR )Q⊥ + ...

H 

perpendicular 
alignment 

parallel 
alignment 

Dombrowski et al, PRL 2004: 
“turbulence” in a drop of Bacillus Subtilis 22 
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Fluctuations in the Ordered state 
  Ordered state always unstable on all scales due to 
coupling of orientation and flow: “generic instability” (Simha & 
Ramaswamy, PRL 2002) 

•  Contractile / Puller : Splay fluctuations 
•  Tensile / Pusher : Bend fluctuations  

  Generic instability consequence of 1/r2 interactions. Can 
be suppressed by: 

• Viscoelastic medium (screening) 
• Frictional substrate 
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Ordered states 
Ordered states of movers & shakers are unstable on all 
scales due to the coupling of orientation and flow  
  “generic” instability (Ramaswamy & Simha, 2002) 

Tensile: unstable to 
bend 

H 

Parallel alignment 

Perpendicular 
alignment 

Contractile: unstable to 
splay 

Parallel 
alignment 

Perpendicular 
alignment 
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Conclusions 
 Derivation of continuum theory from simple physical models yields 
unified description of many noneq. phenomena 

 No physical mechanism for bulk polar order yet 

 Insight into physical origin of emergent behavior in active systems 
and classification of such behavior 

A future direction: incorporate the effect of boundaries (method 
of images, cf. Berke et al, 2008) 

pusher: parallel anchoring 

Puller: normal 
anchoring 

26 


