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The methods outlined in the last lecture can be used to
derive hydrodynamics for a collection of active particles
in a medium with other interactions:

- Short-range interactions due to cluster of motor
proteins crosslinking cytoskeletal filaments — relevant to
cell cytoskeleton and cytoskeletal extracts

- Fluid-mediated hydrodynamic interactions — relevant

to bacterial suspensions. g
N
g
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Cytoskeletal filaments & motor proteins
Kruse & Julicher, PRE 67, 51913 (2003) (1dim)
Ahmadi, MCM & Liverpool PRE 74, 61913 (2096) (2dim)

Cytoskeletal filaments (e.g.,

actin) as polar rods coupled

by pa§sive and active passive
crosslinkers crosslinker

Smoluchowski: '

Dach(x1) + c(x1 )e(x,)

7y

d,c(x)=0,

V\Vz 1 - ) ) . .
Velocity induced on filament 1 by filament 2 via active
crosslinker. Obtained from kinematics of two polar
fr(s) rods crosslinked by an active motor cluster, modeled
as a 2-headed rigid object with finite torsional
stiffness « that steps at a rate r(s) along each
K filament.

1. Motors drive filament bundling, e.g., 1dim: Kruse & Julicher,

PRL 75, 1778 (2000)
dATP
- ~ nm
u(s)=a 7 Asec

@
@ . Mechanism for
filament ility. effective i
_ air CM contractility, effective in
® P both polar and apolar
@ e systems. In this model it
requires motor stalling at
® end.
®

bundling "rate": & ~ (s u(s) Yiengin of

filament

Builds up density inhomogeneities — pattern formation
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2. Motors yield mass transport
Liverpool & MCM, EPL 69, 846 (2004)

Although a motor-filament pair is a force dipole, i.e.,
Fner=0, the anisotropy of rod diffusion yields v,,=0

Ei(Vo)Vy,

\|+\
VCM

Cij(v,; )V1j =
-J

~f;

=0

E;(v)=Eyv, +E, (6:’/ -V

i"j)

active velocity:

Vem = /3 ~ <M(S)>Ieng[h of

filament

-f 1
[

Self-propulsion as a generic

property of all polar active units:

=apolar vg,=0
=polar vg,=0

Bacterial Suspensions: Outline

®"The simplest "swimmer”: pullers vs pushers

® Microdynamics of interacting swimmers

® Hydrodynamic interactions

® |nstabilities and other results

= Qutlook
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The locomotion of individual organisms is controlled by a cyclic
“stroke” (motion of cilia, flagella, ...)=»Extensive models of individual
swimmers and some progress in understanding pair interaction
(Childress, Purcell, Golestanian, Yeomans, Lauga, Powers, ...)

Chlamydomonas
“pullers”

E-coli
“pushers”

Our focus: collective behavior on

lengths >> swimmer size & times >> stroke duration :

How do different classes of propulsion mechanisms affect the collective
macroscopic physics?

A swimmer as a force dipole

T At distances >> L and on
times >> duration of one
I stroke, the forces exerted
by swimmer on fluid can
l be approximated as a
static force dipole

* No acceleration (Re<<1), net force must vanish

* Approximation is ok because we are interested in collective
effects, not in the properties of individual swimmers

* Flow generated by a swimmer is complex and contains all
multipoles - these will be generated by hydrodynamic
interactions
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The “simplest swimmer” u fli+noise
* Re<<1 — neglect inertia
* Neutrally buoyant
* Swimmer rides w/ fluid

] Flow field generated by swimmer
One swimmer: is given by the Stokes equation :
of =v@)|  |vv-o P
5 ~fU+noi
af,ﬂs _ V(r's) by fluid U+noise
NV = fas(r - r.) - fas(r - ;)
. +noise
Many swimmers
(a=1,...,N)
a - . (a ) gctivlcle forpes exenedﬂ o
= all swimmers on fiul
t al r'aL e " _’y _ " . )
oF  =V(P ) nvv = E [fd,6(F ~T.,)~ i, 8(F ~T 5)]+noise

Two approaches
a) Solve Stokes eqn. to obtain the flow velocity v.
nV2‘7 _ ﬁacl
Vi=0

V(P = [O,F ~FIEEN| O = (5, +77)

L ]
Oseen tensor

Eliminate v from the eqs of motion for the swimmers — fluid flow is
recast as hydrodynamic forces and torques on swimmers. Next,
coarse grain the resulting microdynamics of interacting swimmers.

b) Retain the Stokes equation and obtain a hydrodynamic two-fluid
model that contains explicitly the flow velocity.

Advantage of (a):

* physical insight on role of hydrodynamic interactions
« crucial role of long-range nature of hydrodynamic forces
Advantage of (b):

« straightforward comparison with phenomenological theory.
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One swimmer

U
Rigid body dynamics at low Re: 4T tar
Translation of & rotation about Fo=—LtL 55
hydrodynamic center C, determined a,+ds

by shape (not mass distribution)

o radii ag, a,

noise
) /

0G-1.(1) | | [Athough NETFORCE=0, SP v, is finite if
T R hydrodynamic center C does not coincide
o.r. =v.u+ I(t) with center of force dipole

f(a_-a ; p "
" (@5-a) = Polar (head = tail) v, = 0 — “mover

cL

=Apolar (head=tail) v,=0 — “shaker”

11

Many swimmers

— _ ~ 1 = =
atrozC = Vold, +E 2 Exﬁ +Fa (t)

B=a

o, =1 Er;ﬁ +T% ()

33
B=a

= A O A A
Fy =1, _2[3(”12 i)’ _1]

P

-~ A an =] A0 A A P
T, =1 x[3rr —1]-u 2@, u,)- = ~ ~
2= 12"12 2 1'132( 1 Uy) 7’152 B f(qL-qs) Vo

Multipole expansion of force
distribution about hyd. centers

§=C,+4C, =6mm(ag+a,)

Polar
symmetry

/’

Nematic
symmetry

a, ap~f(a +as)

» Central, dipolar forces, ~1/r2
« Sign of a — pusher (tensile) vs
puller (contractile)
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Position of hydrodynamic center wrt mid-point defines
puller/pusher character 3

From Microdynamics to Hydrodynamics

Use standard tools of nonequilibrium statitistical physics to
construct dynamical equations for continuum fields on
lengths >> L, times >> stroke cycle

p(F 1) = <E S8(F - fac(t))> concentration of swimmers

a:Far =V0V:x +:l 2 17—44/( +I:(x(t)

e > PFE.= p(‘m<2v”a6 (F - fac(t))> polar order

~ g TR
W=t DT, +TED)
T Bea

0,1 = IJ(;J)<E(\/;,. = 10,)8 (7 - fac(t))> nematic order

a

POLGV‘ Nedma’rlc -Dilute suspensions
order order :Large SP regime 7 <1
a

12
14
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Hydrodynamics of an incompressible active suspension:
two equivalent formulations

/Flow field appears explicitly — éw field is eliminated\

natural formulation of at the outset and recast
phenomenological models: as hydrodynamic

9,p+1 Vp=-V-j interactions among the
= == swimmers

d,P + F(Vu) = forces & torques

4,0, + F; (612) = forces & torques 9.p= -v-J

nVZii = active stresses, Vi =0 d,P = forces & torques

In Stokes regime the flow field u QQJ = forces & tqulw
Qt a dynamical variable J

Equivalent when u is eliminated on LHS
in terms of p, P, Q

Hydrodynamics equations for active par[lcles

const
concentration and director field gf‘”a' 0 }
V=

O N

9,0, + (p (V+/3n))=§-D§pp
(a,+ +/5n) V)nl.+a)ljnj=)»u,:]nj+wal.pp+KV2ni

9,0, =0—=>nV?, =-0, [ann +/5(a,.nj+a,.nj)]

\ LtU
B intrinsic to polar systems
o present in polar and nematic fluids

(()V +4d V)

(av—av)J

u\._.

r.:\._.
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Protat = CONSE

Microscopic Derivation |~

We have eliminated the flow velocity from the outset in favor of (long-
ranged) hydrodynamic interactions — schematically (G~1/r2):

9,0, +VO§-(ppﬁ) =V-D(a pr
(at + Vi - ?)nl. =wo,p, +K(a)V’n,

+)»fViij(?—?')V', [ankn, +f (G'k n,+d', nk)]

v,~f self-propulsion intrinsic to polar systems; ~v,
a~f from active hydrodynamic forces: o <0 for pullers, o >0 for
pushers

Microscopic expressions for various parameters (D, K, w) that
are renormalized by activity

Nonlocal hydrodynamics

Long-range hydrodynamics interactions (F~1/r?) yield
nonlocal hydrodynamic equations.

Ja(7)=fd7' K(r-r") ®,F") ®y(r)

current nonlocal interaction  hydrodynamic fields

When the egs. are linearized, the nonlocality can be
truncated in a small g expansion

0J,(F) =@y, [ dF K(F - F') 0@, (F)

= ©,K(=9) 3P,(§) =y [K, 7121 +..] 00,(@)

small & large distance cutoffs
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Some Results

® Derivation of (nonlocal) hydrodynamics for pushers & pullers with
microscopic expressions for parameters

= Steady-state solution of hydrodynamic eqs yields bulk states: no
bulk ordered state from pairwise hydrodynamic interactions

-2 Isotropic state: p=const, P=Q=0
- Steric effects yield nematic order at high concentration

—>No polar state: need external symmetry breaking, e.g.,
chemotaxis?

®Linearization around bulk states reveals instability of isotropic and
ordered states - pattern formation.

|nStabI|Ity Of |SOtI’OpIC State different mechanisms for

pushers & pullers

Pullers (a<0)

1) growth of density fluctuations from a suppression of
longitudinal diffusion due to active hydrodynamic interactions
(cf. Kruse & Julicher 2000; Liverpool & MCM 2003) ->"clumping”

3,00 +v,V-P=(D-|a|p,)V’p NN i /v
NN\ S
Controlled by Peclet number: ~ % \\ v
repulsive «— «— <« & — — —
%~WTC)L~%=P6 in’rerac‘ri?ﬂ - "~
2) ab | S/ i NN
above a critical vy: propagating
“sound-like"” density waves = a‘?‘rra:\;ﬁ\:; N
interaction

20
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Late stages of Myxo on starvation agar

Welch's lab, Syracuse University

21

Instability of Isotropic state

Pushers (a>0)

orientational fluctuations are unstable on all scales when
0g>Dy (cf. Saintillan & Shelley, 2008).

0,0, = —(Dg =)0, + ..

100 150 200
X (um)
Dombrowski et al, PRL 2004:

“turbulence” in a drop of Bacillus Subtilis

— —
o7/

///g

parallel

«— .
alignment
AV NG

VNN

S/ VNN

perpendicular
alignment
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Fluctuations in the Ordered state
= Ordered state always unstable on all scales due to

coupling of orientation and flow: “generic instability” (Simha &

Ramaswamy, PRL 2002)

* Contractile / Puller : Splay fluctuations
« Tensile / Pusher : Bend fluctuations

= Generic instability consequence of 1/r? interactions. Can

be suppressed by:
*Viscoelastic medium (screening)
*Frictional substrate

23

Ordered states

Ordered states of movers & shakers are unstable on all
scales due to the coupling of orientation and flow
> “generic” instability (Ramaswamy & Simha, 2002)

iy SAN /s
NN rd ~ N\ | /S
s .
P dicdlar $ o . \./ Parallel
erpendicular D .
alignment— NN — S l N alighment
///I—.H . - N,
l NN\ S/ 8 VNN
\ Perpendicular
Parallel alignment alignment
Tensile: unstable to Contractile: unstable to
bend Y, splay /

24
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4
. unstable
(bend)
| propagating\  _ _ unstable _ _
2 E diffusive (scale free)
- 777"“-7—,_,
stable TT—
f ~
r _
Co
-ﬁ 5 stable
E= unstable_ _ unstable
g = (@ifTusive) (splay)
w v Isotropic Nematic
25
Conclusions

=Derivation of continuum theory from simple physical models yields
unified description of many noneq. phenomena

=No physical mechanism for bulk polar order yet

=|Insight into physical origin of emergent behavior in active systems
and classification of such behavior

A future direction: incorporate the effect of boundaries (method
of images, cf. Berke et al, 2008)

Puller: normal
@ anchoring

pusher: parallel anchoring

26
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