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Plan 

The methods outlined in the last lecture can be used to 
derive hydrodynamics for a collection of active particles 
in a medium with other interactions: 

• Short-range interactions due to cluster of motor 
proteins crosslinking cytoskeletal filaments → relevant to 
cell cytoskeleton and cytoskeletal extracts 

• Fluid-mediated hydrodynamic interactions →  relevant 
to bacterial suspensions.  
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Cytoskeletal filaments (e.g., 
actin) as polar rods coupled 
by passive and active 
crosslinkers 

Cytoskeletal filaments & motor proteins 
Kruse & Julicher, PRE 67, 51913 (2003) (1dim) 

Ahmadi, MCM & Liverpool PRE 74, 61913 (2006) (2dim) 

  
∂tc(x1) = ∂x1

D∂x1
c(x1) +

1
ζx2

∫ F(12) c(x1)c(x2)












passive 
crosslinker 

motor 
cluster 

+

+ +

+

Smoluchowski: 

Velocity induced on filament 1 by filament 2 via active 
crosslinker. Obtained from kinematics of two polar 
rods crosslinked by an active motor cluster, modeled 
as a 2-headed rigid object with finite torsional 
stiffness κ that steps at a rate r(s) along each 
filament. 

 ν̂1 ν̂2

r(s) 

κ
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1. Motors drive filament bundling, e.g., 1dim: Kruse & Julicher, 
PRL 75, 1778 (2000) 

Mechanism for 
contractility, effective in 
both polar and apolar 
systems. In this model it 
requires motor stalling at 
end. 

filament 
pair CM 

 

u(s) = a dATP
dt
 nm µ sec

 

bundling "rate":  α  s u(s) length of
filament

Builds up density inhomogeneities → pattern formation 
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ζ ij( ˆν1)v1j = − fi
ζ ij( ˆν 2 )v2j = fi
vCM=

v1+
v2
2 ≠ 0 f

− f 12

 

active velocity:
vCM ≡ β  u(s) length of

filament

2. Motors yield mass transport  
         Liverpool & MCM, EPL 69, 846 (2004) 

Although a motor-filament pair is a force dipole, i.e., 
FNET=0, the anisotropy of rod diffusion yields vCM≠0 

Self-propulsion as a generic 
property of all polar active units: 

 apolar vCM=0 
 polar vCM≠0 

 
ζ ij( ˆν ) =ζ  ˆν i

ˆν j +ζ⊥ δ ij − ˆν i
ˆν j( )
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Bacterial Suspensions: Outline 

 The simplest "swimmer”: pullers vs pushers 

  Microdynamics of interacting swimmers 

  Hydrodynamic interactions 

  Instabilities and other results 

  Outlook 
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The locomotion of individual organisms is controlled by a cyclic 
“stroke” (motion of cilia, flagella, …)Extensive models of individual 
swimmers and some progress in understanding pair interaction 
(Childress, Purcell, Golestanian, Yeomans, Lauga, Powers, …)   

Chlamydomonas 
“pullers” 

E-coli  
“pushers” 

Our focus: collective behavior on  
lengths >> swimmer size   &    times >> stroke duration : 
How do different classes of propulsion mechanisms affect the collective 
macroscopic physics? 
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A swimmer as a force dipole 
At distances >> L and on 
times >> duration of one 
stroke, the forces exerted 
by swimmer on fluid can 
be approximated as a 
static force dipole 

L 

•  No acceleration (Re<<1), net force must vanish  

•  Approximation is ok because we are interested in collective 
effects, not in the properties of individual swimmers 

•  Flow generated by a swimmer is complex and contains all 
multipoles - these will be generated by hydrodynamic 
interactions 
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The “simplest swimmer”   ̂u

  −fû

  fû

   

Flow field generated by swimmer 
is given by the Stokes equation :

∇ ⋅

v = 0

η∇2 v = fûδ(

r −

rL ) − fûδ(


r −

rS )

active forces exerted 
by swimmer on fluid

  

          +noise

   

∂
t

r
L
=
v(r

L
)

∂
t

r
S
=
v(r

S
)

•  Re<<1 → neglect inertia 
•  Neutrally buoyant 
•  Swimmer rides w/ fluid   

+noise 

+noise 

   

∂
t

r
α L
=
v(r

α L
)

∂
t

r
αS

=
v(r

αS
)

    
η∇2 v = fû

α
δ(

r −

r
αL ) − fû

α
δ(

r −

r
αS ) 

active forces exerted 
by all swimmers on fluid

  

α
∑ +noise

One swimmer: 

Many swimmers 
(α=1,…,N) 
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Two approaches 
a)  Solve Stokes eqn. to obtain the flow velocity v.  

      Eliminate v from the eqs of motion for the swimmers → fluid flow is 
recast as hydrodynamic forces and torques on swimmers. Next, 
coarse grain the resulting microdynamics of interacting swimmers. 

b)  Retain the Stokes equation and obtain a hydrodynamic two-fluid 
model that contains explicitly the flow velocity. 

Advantage of (a):  
•  physical insight on role of hydrodynamic interactions 
•  crucial role of long-range nature of hydrodynamic forces 

Advantage of (b): 
•  straightforward comparison with phenomenological theory. 

   

η∇2 v =

Fact


∇ ⋅

v = 0






   vi (


r ) = Oij (


r −

r ')Fj

act (

r ')


r '
∫ ,      Oij (


r ) = 1

8πηr
δ ij + r̂i r̂j( )

Oseen tensor
 
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One swimmer 

L 

aL 

aS 

  ̂u

  −fû

  fû
Rigid body dynamics at low Re: 
Translation of & rotation about  
hydrodynamic center C, determined 
by shape (not mass distribution) 

C 

   

∂
t
û =

Γ

R
(t)

∂
t

r
C
=v

0
û +

Γ(t)

Although NET FORCE=0,  SP v0 is finite if 
hydrodynamic center C does not coincide 
with center of force dipole 

  Polar (head ≠ tail) v0 ≠ 0 → “mover” 

 Apolar (head=tail) v0=0 → “shaker”   
v

0
~

f (a
S
− a

L
)

ζ L

radii aS, aL noise 

 

rC =
aL
rL + aS

rS
aL + aS
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Multipole expansion of force 
distribution about hyd. centers       

•  Central, dipolar forces, ~1/r2 
•  Sign of α → pusher (tensile) vs 
puller (contractile) 

 


F12  r̂12

α
r12
2 3(r̂12 ⋅ û2 )

2 −1 


τ12  û1 × 3r̂12r̂12 −


1  ⋅ û2

α R

r12
3 (û1 ⋅ û2 )−

β
r12
5











Nematic 
symmetry 
α, αR~f(aL+aS) 

Polar 
symmetry 

β~f(aL-aS)~v0 

Many swimmers 

 

∂t
rα C = v0ûα + 1

ζ


Fαβ +


Γα (t)

β ≠α

∑

∂tûα = 1
ζ L2


ταβ

β ≠α

∑ +

Γα
R (t) ζ =ζ S +ζ L = 6πη (aS + aL )
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Pusher: propelled near tail Puller: propelled near head 

Position of hydrodynamic center wrt mid-point defines 
puller/pusher character 

α<0 α>0 
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From Microdynamics to Hydrodynamics 
Use standard tools of nonequilibrium statitistical physics to 
construct dynamical equations for continuum fields on 
lengths >> L, times >> stroke cycle 

  
ρ(r ,t) = δ (r − rαC (t))

α
∑     concentration of swimmers

  


P(r ,t) = 1

ρ (r ,t )
ˆναδ (r − rα C (t))

α

∑     polar order

  
Qij (
r ,t) = 1

ρ (r ,t )
ˆνα i

ˆνα j −
1
3δ ij( )δ (r − rα C (t))

α

∑   nematic order

• Dilute suspensions 
• Large SP regime  

 

L
r12
1

 

∂t
rα C = v0 ˆνα +

1
ζ


Fαβ +


Γα (t)

β ≠α

∑

∂t ˆνα =
1

ζ L2

ταβ

β ≠α

∑ +

Γα
R (t)

Polar 
order 

Nematic 
order 
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Hydrodynamics of an incompressible active suspension: 
two equivalent formulations 

 

∂tρ +
u ⋅

∇ρ = −


∇ ⋅

j

∂t

P +

F(

∇
u) = forces & torques

∂tQij + Fij (

∇
u) = forces & torques

η∇2 u = active stresses,        

∇ ⋅
u = 0

Flow field appears explicitly → 
natural formulation of 
phenomenological models: 

In Stokes regime the flow field u 
not a dynamical variable 

Flow field is eliminated 
at the outset and recast 
as hydrodynamic 
interactions among the 
swimmers 

 

∂tρ = −

∇ ⋅

J

∂t

P = forces & torques

∂tQij = forces & torques

Equivalent when u is eliminated on LHS 
in terms of ρ, P, Qi 
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Hydrodynamics equations for active particles 
concentration and director field 

 

∂tρ p +

∇ ⋅ ρ p

v + β n( )( ) =

∇ ⋅D


∇ρ p

∂t +
v + β n( ) ⋅


∇( )ni +ω ijn j = λuijnj +w∂iρ p + K∇

2ni

∂ jσ ij = 0→η∇2vi = −∂ j α ninj + β ∂in j +∂in j( ) 

β intrinsic to polar systems 
α present in polar and nematic fluids 

   

ρtotal = const

∇ ⋅

v = 0











uij = 1
2 ∂iv j +∂ jvi( )

ω ij =
1
2 ∂iv j −∂ jvi( )

16 
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∂tρ p + v0


∇ ⋅ ρ p

n( ) =

∇ ⋅D(α )


∇ρ p

∂t + v0
n ⋅

∇( )ni = w∂iρ p + K(α )∇2ni

       + λ ∇iGjk (
r − r ')

r '
∫ ∇ 'l α nknl + β ∂ 'k nl +∂ 'l nk( ) 

v0~f self-propulsion intrinsic to polar systems; β~v0 
α~f from active hydrodynamic forces: α <0 for pullers, α >0 for 
pushers 
Microscopic expressions for various parameters (D, K, w) that 
are renormalized by activity 

   

ρtotal = const

∇ ⋅

v = 0











We have eliminated the flow velocity from the outset in favor of (long-
ranged) hydrodynamic interactions – schematically (G~1/r2): 

Microscopic Derivation 
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Nonlocal hydrodynamics 

Long-range hydrodynamics interactions (F~1/r2) yield 
nonlocal hydrodynamic equations. 

 

Jα (r )
current


= dr ' K(r − r ')
nonlocal interaction
 

Φα (r ') Φβ (r )
hydrodynamic fields
  

∫

 

δJα (r )  Φβ0 dr 'K(r − r ') δΦα (r ')∫
          →  Φβ0

K(− q) δ Φα (q)  Φβ0
K0 + iq K1 + ...   δ Φα (q)

When the eqs. are linearized, the nonlocality can be 
truncated in a small q expansion 

small & large distance cutoffs 
18 
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Some Results 

  Derivation of (nonlocal) hydrodynamics for pushers & pullers with 
microscopic expressions for parameters 

  Steady-state solution of hydrodynamic eqs yields bulk states: no 
bulk ordered state from pairwise hydrodynamic interactions 
 Isotropic state: ρ=const, P=Q=0 
 Steric effects yield nematic order at high concentration 
 No polar state: need external symmetry breaking, e.g., 
chemotaxis? 

 Linearization around bulk states reveals instability of isotropic and 
ordered states  pattern formation. 

19 

Instability of Isotropic State: different mechanisms for 
pushers & pullers 

Pullers (a<0)
1) growth of density fluctuations from a suppression of 
longitudinal diffusion due to active hydrodynamic interactions 
(cf. Kruse & Julicher 2000; Liverpool & MCM 2003) ”clumping” 

 
∂tδρ + v0


∇ ⋅

P = (D − α ρ0 )∇

2δρ

attractive 
interaction 

repulsive 
interaction 

 

α

D


f /ζ( )L
D


vL
D
= Pe

2) above a critical v0: propagating 
“sound-like” density waves 

Controlled by Peclet number: 

20 
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Late stages of Myxo on starvation agar 
Welch’s lab, Syracuse University 

1 mm 
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Instability of Isotropic state  

Pushers (α>0)  
orientational fluctuations are unstable on all scales when 
αR>DR (cf. Saintillan & Shelley, 2008). 

 
∂tQ⊥ = −(DR −αR )Q⊥ + ...

H 

perpendicular 
alignment 

parallel 
alignment 

Dombrowski et al, PRL 2004: 
“turbulence” in a drop of Bacillus Subtilis 22 



7/9/09 

12 

Fluctuations in the Ordered state 
  Ordered state always unstable on all scales due to 
coupling of orientation and flow: “generic instability” (Simha & 
Ramaswamy, PRL 2002) 

•  Contractile / Puller : Splay fluctuations 
•  Tensile / Pusher : Bend fluctuations  

  Generic instability consequence of 1/r2 interactions. Can 
be suppressed by: 

• Viscoelastic medium (screening) 
• Frictional substrate 

23 

Ordered states 
Ordered states of movers & shakers are unstable on all 
scales due to the coupling of orientation and flow  
  “generic” instability (Ramaswamy & Simha, 2002) 

Tensile: unstable to 
bend 

H 

Parallel alignment 

Perpendicular 
alignment 

Contractile: unstable to 
splay 

Parallel 
alignment 

Perpendicular 
alignment 

24 
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Conclusions 
 Derivation of continuum theory from simple physical models yields 
unified description of many noneq. phenomena 

 No physical mechanism for bulk polar order yet 

 Insight into physical origin of emergent behavior in active systems 
and classification of such behavior 

A future direction: incorporate the effect of boundaries (method 
of images, cf. Berke et al, 2008) 

pusher: parallel anchoring 

Puller: normal 
anchoring 
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