Gapless Spin Liquids in Two Dimensions

MPA Fisher (with O. Motrunich, Donna Sheng, Matt Block)

Boulder Summerschool 7/20/10

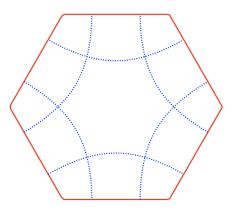
Interest – Quantum Phases of 2d electrons (spins) with emergent rather than broken symmetry

Focus on gapless "Spin liquids"

Especially - "Spin-Bose-Metals"

Spin liquids with "Bose" surfaces in momentum space

Access Quasi-1d descendent states on ladders



Useful references

Spin, Bose, and Non-Fermi Liquid Metals in Two Dimensions: Accessing via Multi-Leg Ladders; MPAF Fisher et al. **arXiv:0812.2955v1**

The introductions to the following 3 papers might be useful to look at:

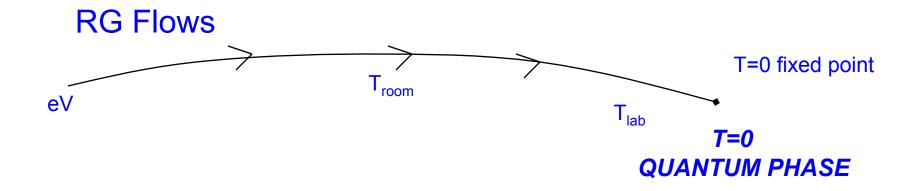
d-wave correlated critical Bose liquids in two dimensions, O.Motrunich et al, PHYSICAL REVIEW B 75, 235116, 2007

Strong-coupling phases of frustrated bosons on a two-leg ladder with ring exchange, D. Sheng et al. PHYSICAL REVIEW B 78, 054520, 2008

Spin Bose-metal phase in a spin-1/2 model with ring exchange on a two-leg triangular strip, D. Sheng et al. PHYSICAL REVIEW B 79, 205112, 2009

"Simplicity" of Electrons in solids

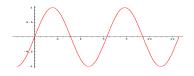
Separation of energy scales for the electrons;

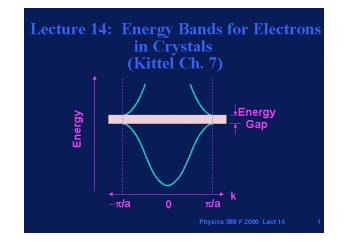


Band Theory: Metals versus insulators

$$H = \sum_{j} \frac{\mathbf{p}_{j}^{2}}{2m} + \sum_{i} V(\mathbf{r}_{i})$$

- Energy Bands
- Band insulators: Filled bands
- Metals: Partially filled highest energy band

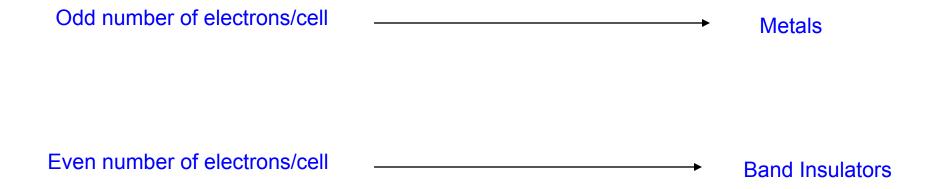




Even number of electrons/cell - (usually) a band insulator

Odd number per cell - always a metal

Quantum Theory of Solids: 2 dominant phases

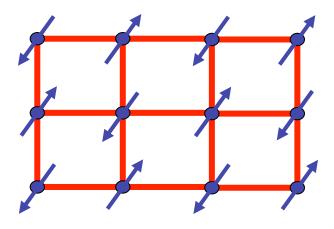


But most d and f shell crystals with odd number of electrons are NOT metals

Due to Coulomb repulsion electrons gets stuck on atoms

"Mott Insulators"

Sir Neville Mott



Mott Insulators: Insulating materials with odd number of electrons/unit cell

Mott Insulators:

Insulating materials with an odd number of electrons/unit cell Hubbard model with one electron per site on average:

$$\mathcal{H} = -t \sum_{\langle ij \rangle} [c_{i\alpha}^{\dagger} c_{j\alpha} + h.c.] + U \sum_{i} n_{i\uparrow} n_{i\downarrow}$$

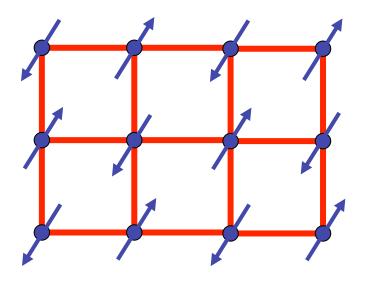
For U>>t electron gets self-localized

Residual spin physics:

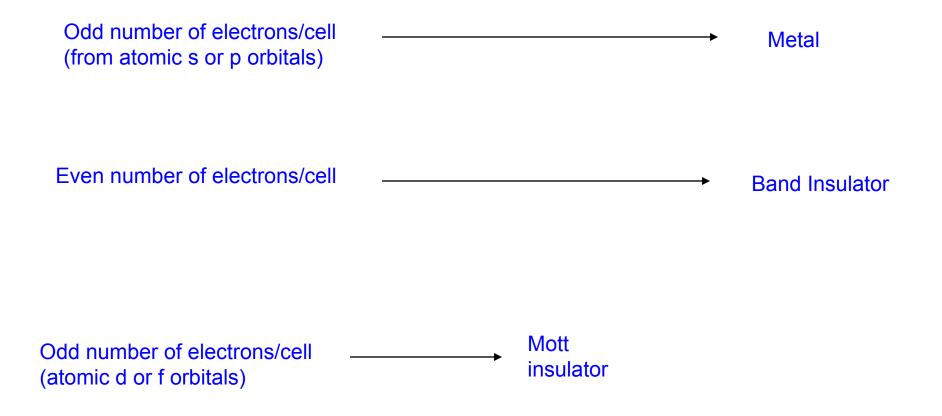
s=1/2 operators on each site

Heisenberg Hamiltonian:

$$H_{spin} = \sum_{ij} J_{ij} \vec{S}_i \cdot \vec{S}_j + \dots$$



Quantum Phases of Electrons



Symmetry breaking in Mott insulators

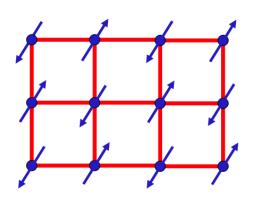
Mott Insulator

Symmetry breaking

2 electrons/cell

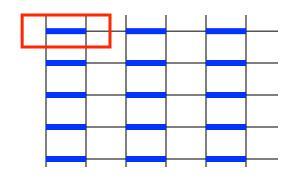
Magnetic Long Ranged Order

Ex: 2d square Lattice AFM

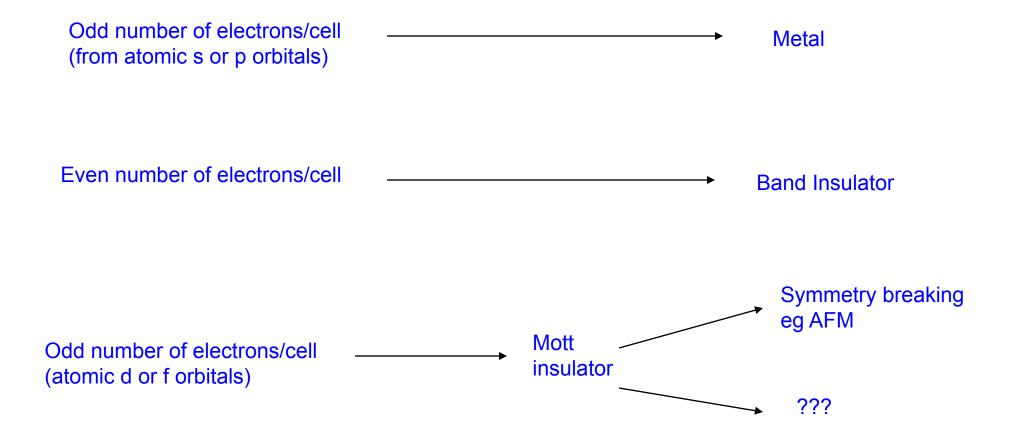


Unit cell doubling ("Band Insulator")

• Spin Peierls 2 electrons/cell Valence Bond $= |\uparrow\downarrow\rangle - |\downarrow\uparrow\rangle$



Quantum Phases of Electrons



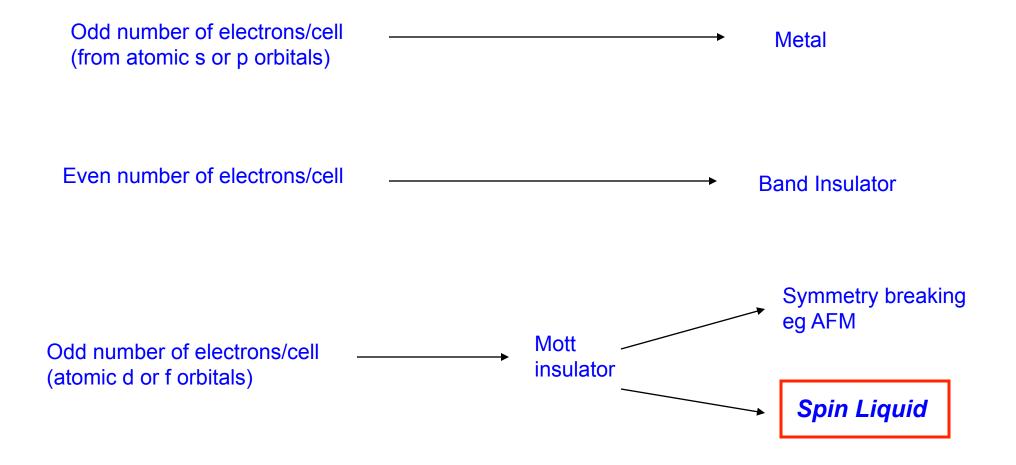
2d Spin liquids

Spin liquid – 2d Mott insulator with no broken symmetries

Theorem (Matt Hastings, 2005): Mott insulators on an L by L torus have a low energy excitation with $(E_1-E_0) < \ln(L)/L$

Implication: 2d Spin liquids are either Topological or Gapless

Quantum Phases of Electrons



3 classes of 2d Spin liquids

Topological Spin Liquids

- Gap to all bulk excitations (degeneracies on a torus)
- "Particle" excitations with fractional quantum numbers, eg spinon
- Simplest is short-ranged RVB, Z₂ Gauge structure

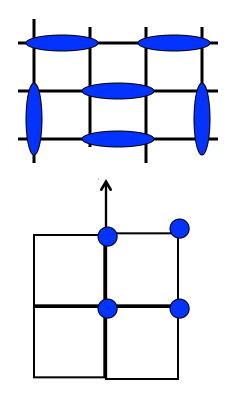
Algebraic Spin Liquids

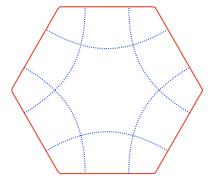
- Stable gapless phase with no broken symmetries
- no free particle description
- Power-law correlations at finite set of discrete momenta

"Spin Bose-Metals"

Gapless spin liquids with spin correlation functions singular along surfaces in momentum space

"Bose Surfaces"

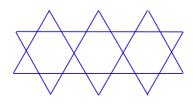




2 Routes to gapless spin liquids

1.) Frustration, low spin, low coordination number

s=1/2 Kagome lattice AFM



Herbertsmithite ZnCu₃(OH)₆Cl₂

"Algebraic" spin liquids

2.) Quasi-itinerancy: "weak" Mott insulator with small charge gap

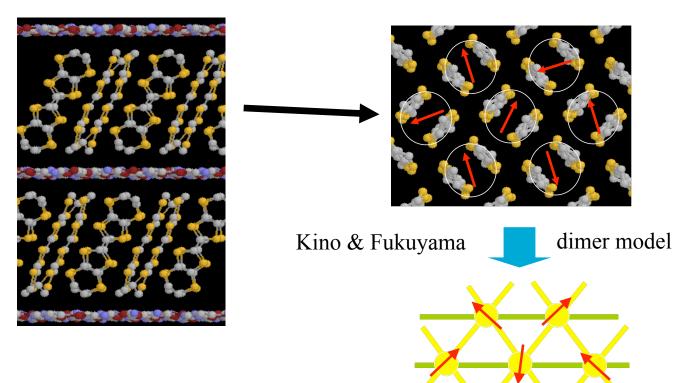
Charge gap comparable to exchange J

Organic Mott insulators; s=1/2 on a Triangular lattice

к**-(ET)₂X**

ET layer

 $X \; {\rm layer}$



 $X = Cu(NCS)_2, Cu[N(CN)_2]Br,$ $Cu_2(CN)_3....$

> (Anisotropic) Triangular lattice Half-filled Hubbard band

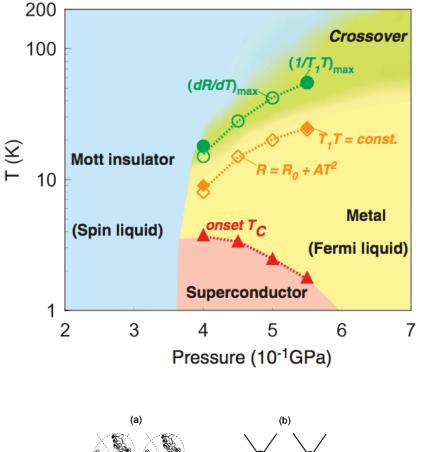
 $t'/t = 0.5 \sim 1.1$

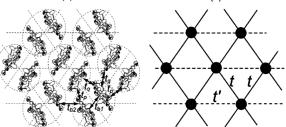
Candidate Spin Bose-Metal: k-(ET)₂Cu₂(CN)₃

Kanoda et. al. PRL 91, 177001 (2005)

- Isotropic triangular Hubbard at half-filling
- Weak Mott insulator metal under pressure
- No magnetic order down to 20mK ~ 10⁻⁴ J
- Pauli spin susceptibility as in a metal
- "Metallic" specific heat, C~T, Wilson ratio of order one

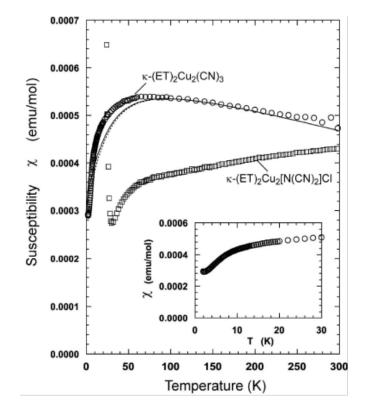
Motrunich (2005), S. Lee and P.A. Lee (2005) suggested spin liquid with "spinon Fermi surface"





Spin and charge physics

Spin susceptibility J=250K



Charge Transport: small gap 200 K "Weak Mott insulator"

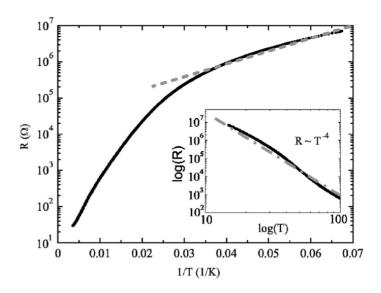


FIG. 1. Arrhenius plot of the resistance of a κ -(ET)₂Cu₂(CN)₃ single crystal. The gray dashed line at low temperature indicates the fitting of the gap value according to $R(T) = R_0 \exp(\Delta/2k_BT)$. Inset: log(*R*) vs log(*T*) plot indicative of a power-law behavior of the resistance in the low-temperature region.

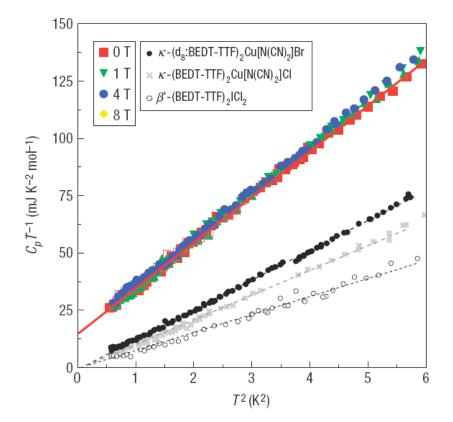
Kanoda et al PRB 74, 201101 (2006)

Shimizu et.al. 03

Heat capacity measurements

Thermodynamic properties of a spin-1/2 spin-liquid state in a κ -type organic salt

SATOSHI YAMASHITA¹, YASUHIRO NAKAZAWA^{1,2*}, MASAHARU OGUNI³, YUGO OSHIMA^{2,4}, HIROYUKI NOJIRI^{2,4}, YASUHIRO SHIMIZU⁵, KAZUYA MIYAGAWA^{2,6} AND KAZUSHI KANODA^{2,6}



S. Yamashita, et al., Nature Physics 4, 459 - 462 (2008)

"Metallic" specific heat in a Mott insulator!!

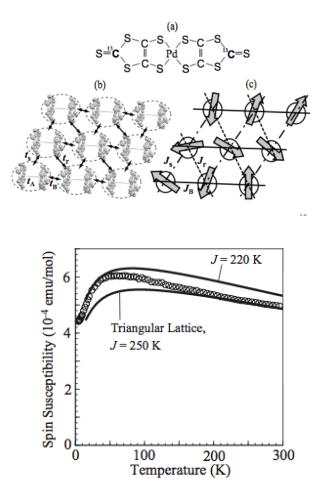
$$\gamma = 15 \frac{\text{mJ}}{\text{K}^2 \text{mol}}$$

Wilson ratio between gamma and spin susceptibility of order one as in a metal

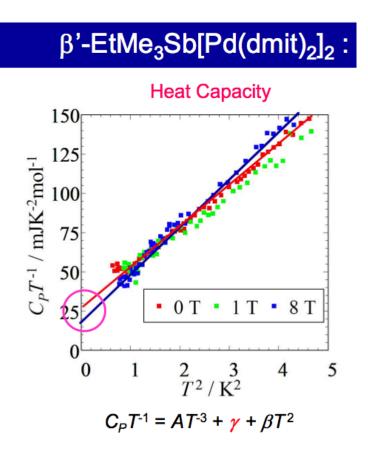
A new organic triangular lattice spin-liquid

$EtMe_{3}Sb[Pd(dmit)_{2}]2$

Itou, Kato et. al. PRB 77, 104413 (2008)

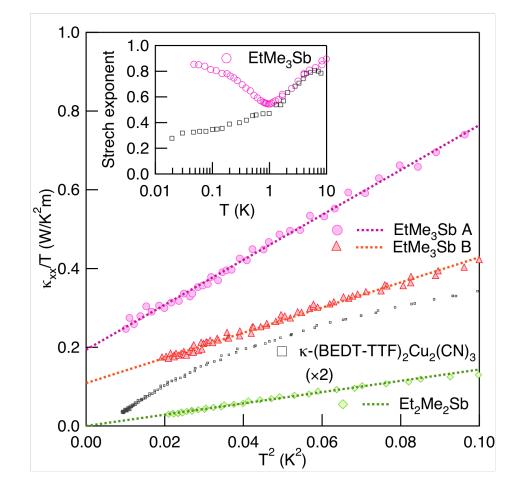


Wilson ratio of order one as in a metal



S. Yamashita, Y. Nakazawa et al. (Osaka Univ.), Annual Meeting of Japan Society for Molecular Science (2008), Fukuoka

Thermal Conductivity: K_{xx} ~T



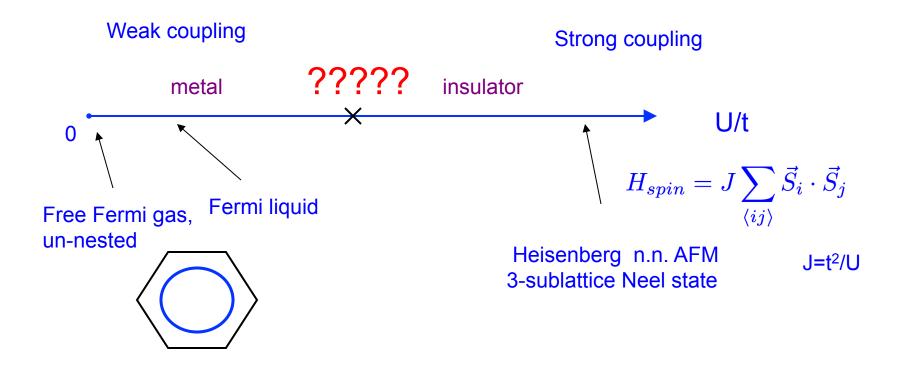
Yamashita et al unpublished

Thermal conductivity K ~ T at low temperatures, just as in a metal!!

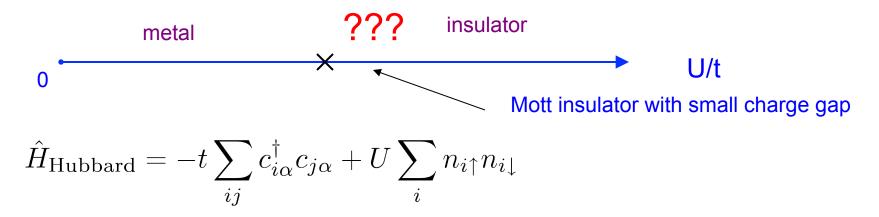
 Et_2Me_2Sb has a spin gap below 70K, so just have phonon contribution

Hubbard model on triangular lattice

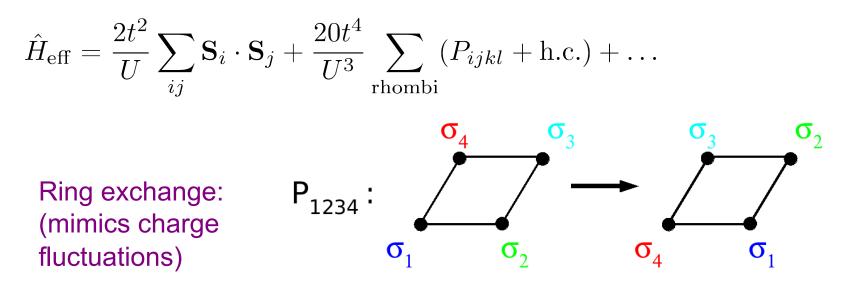
$$\mathcal{H} = -t \sum_{\langle ij \rangle} [c_{i\alpha}^{\dagger} c_{j\alpha} + h.c.] + U \sum_{i} n_{i\uparrow} n_{i\downarrow}$$



"Weak" Mott insulator - Ring exchange



Insulator --> effective spin model



Slave-fermions

Fermionic representation of spin-1/2

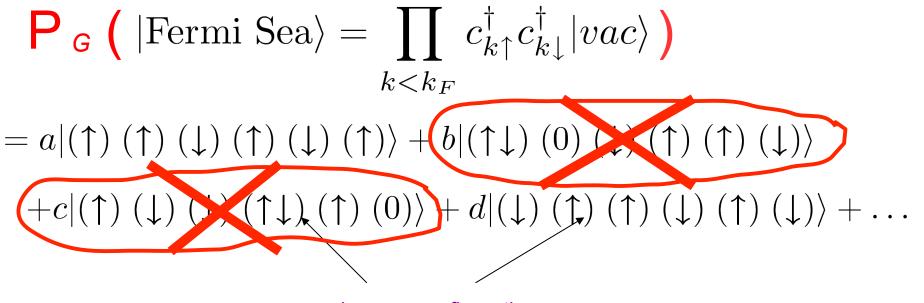
$$\mathbf{S}_i = f_i^{\dagger} \frac{\boldsymbol{\sigma}}{2} f_i; \qquad f_{i\alpha}^{\dagger} f_{i\alpha} = 1;$$

General "Hartree-Fock" in the singlet channel

$$\begin{aligned} \mathcal{H}_{\mathrm{trial}} &= -\sum_{ij} t_{ij} f_{i\alpha}^{\dagger} f_{j\alpha} \\ & \longrightarrow \quad |\Psi_0\rangle & \longrightarrow \quad |\Psi_{\mathrm{spin}}\rangle = \mathsf{P}_{\mathsf{G}}(|\Psi_0\rangle) \\ & \text{free fermions} & \text{spins} \quad \mathsf{Gutzwiller} \\ & \text{projection} \end{aligned}$$

- easy to work with numerically – VMC (Ceperley 77, Gros 89)

Gutzwiller-projected Fermi Sea



real-space configurations

-- insulator wave function (Brinkman-Rice picture of Mott transition)

 $\Psi_{\rm spin}(\{R\uparrow\},\{R'\downarrow\}) = \det[R\uparrow]\det[R'\downarrow](-1)^{p(\{R\uparrow\},\{R'\downarrow\})}$

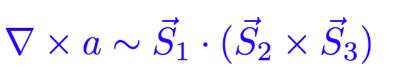
Gauge structure

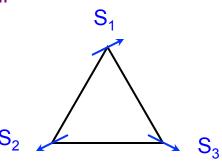
$$\mathcal{H}_{\text{trial}} = -\sum_{ij} t_{ij} f_{i\alpha}^{\dagger} f_{j\alpha} = -\sum_{ij} \left[|t_{ij}| e^{ia_{ij}} f_{i\alpha}^{\dagger} f_{j\alpha} \right]$$

variational parameter

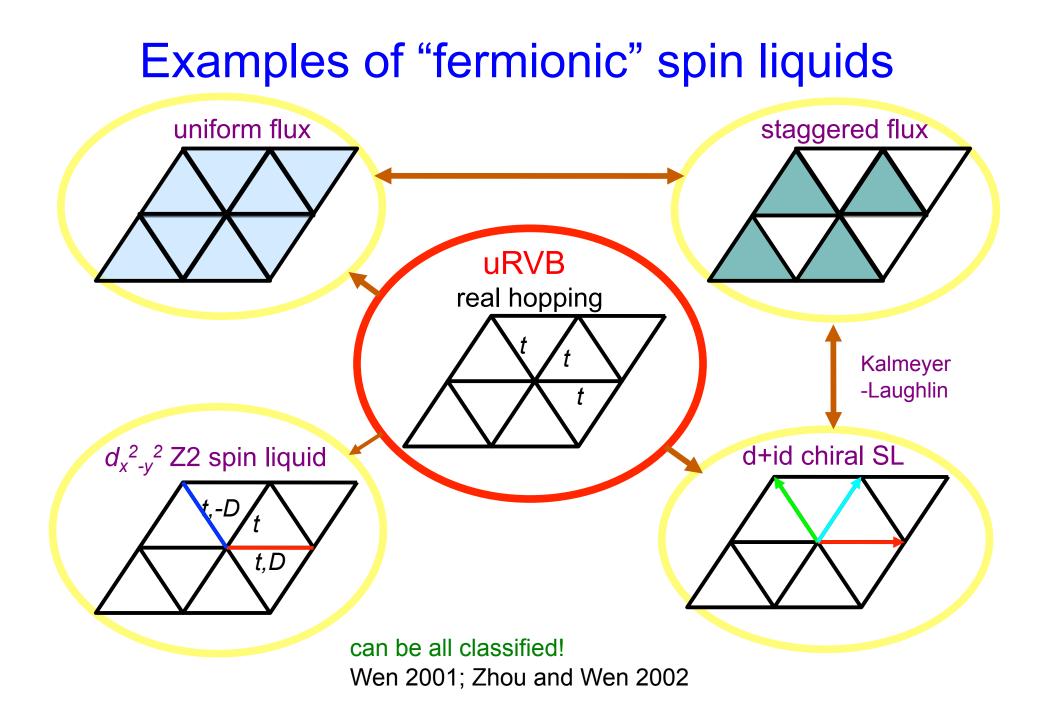
Slow spatial variation of the phases a_{ij} produces only small trial energy change ~ (curl a)²

Physics of gauge flux: Spin chirality





need to include a_{ij} as dynamical variables

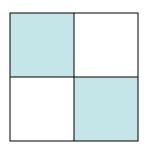


Algebraic Spin Liquid (example)

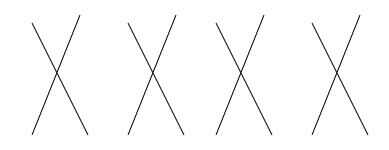
Staggered flux state on 2d square lattice

Mean field Hamiltonian:

$$\mathcal{H}_{\mathrm{sF}}^{0} = -\sum_{\boldsymbol{r} \in A} \sum_{\boldsymbol{r}' \text{ NN } \boldsymbol{r}} \{ [i\boldsymbol{t} + (-1)^{(r_{y} - r'_{y})} \Delta] f_{\boldsymbol{r}\alpha}^{\dagger} f_{\boldsymbol{r}'\alpha} + \mathrm{H.c.} \},\$$



Band structure has relativistic dispersion with four 2-component Dirac fermions



Effective field theory is non-compact QED3

$$\mathcal{L}_E = \overline{\Psi} \left[-i\gamma^{\mu} (\partial_{\mu} + ia_{\mu}) \right] \Psi + \frac{1}{2e^2} \sum_{\mu} \left(\epsilon_{\mu\nu\lambda} \partial_{\nu} a_{\lambda} \right)^2 + \cdots,$$

Note: can argue that the monopoles are irrelevant due to massless Fermions, (cf Polyakov confinement argument for pure compact U(1) gauge theory)

Emergent symmetry in Algebraic spin liquid

Spin Hamiltonian has global SU(2) spin symmetry

$$\mathcal{H} = J \sum_{\langle rr' \rangle} S_r \cdot S_{r'} + \cdots$$

Low energy effective field theory is non-compact QED3 with *SU(4) flavor symmetry and U(1) flux conservation symmetry*

$$\mathcal{L}_E = \bar{\Psi} \left[-i\gamma^{\mu} (\partial_{\mu} + ia_{\mu}) \right] \Psi + \frac{1}{2e^2} \sum_{\mu} \left(\epsilon_{\mu\nu\lambda} \partial_{\nu} a_{\lambda} \right)^2 + \cdots,$$

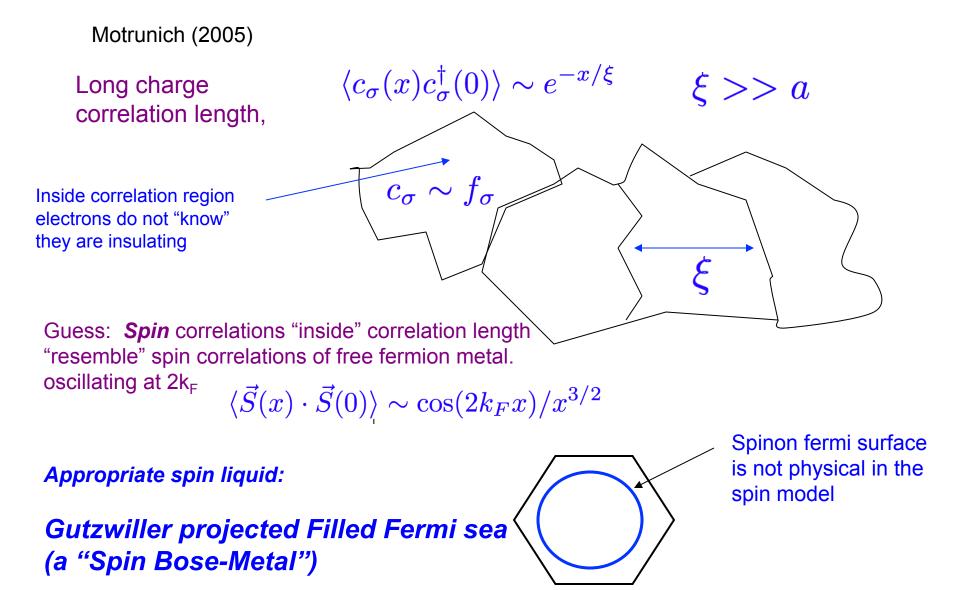
The SU(4) symmetry encodes slowly varying competing order parameters

The U(1) flux conservation symmetry encodes a conserved spin chirality

S₁

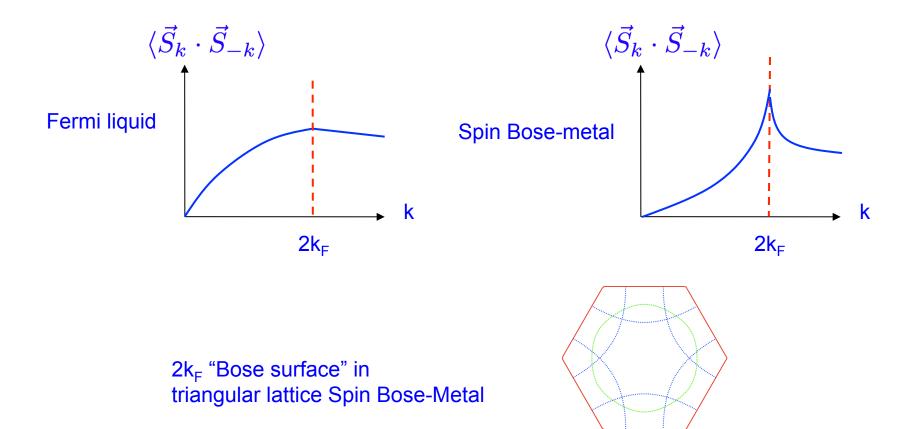
 $\nabla \times a \sim \vec{S}_1 \cdot (\vec{S}_2 \times \vec{S}_3)$

Weak Mott insulator: Which spin liquid?



Phenomenology of Spin Bose-Metal (from wf and Gauge theory)

Singular spin structure factor at " $2k_F$ " in Spin Bose-Metal (more singular than in Fermi liquid metal)



Is projected Fermi sea a good caricature of the Triangular ring model ground state?

$$\hat{H}_{\text{ring}} = J_2 \sum_{ij} \mathbf{S}_i \cdot \mathbf{S}_j + J_4 \sum_{\text{rhombi}} (P_{ijkl} + \text{h.c.})$$

Variational Monte Carlo analysis suggests it might be for $J_4/J_2 > 0.3$ (O. Motrunich - 2005)

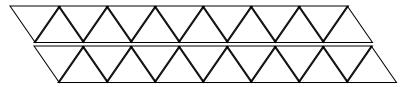
A theoretical quandary: Triangular ring model is intractable

- Exact diagonalization: so small,
- QMC sign problem
- Variational Monte Carlo biased
- DMRG problematic in 2d

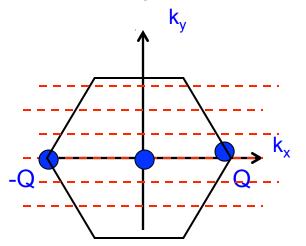
?????

Quasi-1d route to "Spin Bose-Metals"

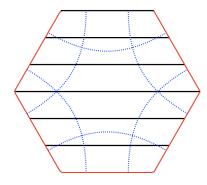
Triangular strips:



Neel state or Algebraic Spin liquid



Spin Bose-Metal

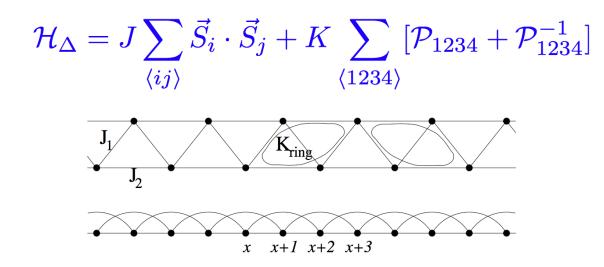


Few gapless 1d modes

Fingerprint of 2d singular surface - many gapless 1d modes, of order N

New spin liquid phases on quasi-1d strips, each a descendent of a 2d Spin Bose-Metal

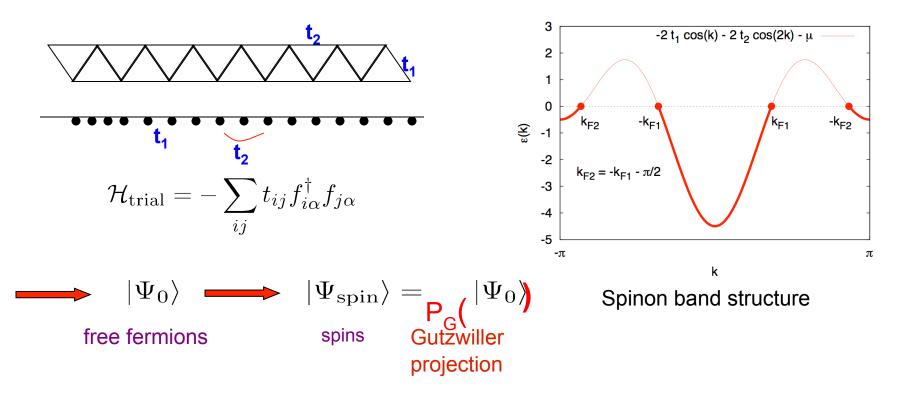
2-leg zigzag strip



Analysis of J₁-J₂-K model on zigzag strip

Exact diagonalization Variational Monte Carlo of Gutzwiller wavefunctions Bosonization of gauge theory and Hubbard model DMRG

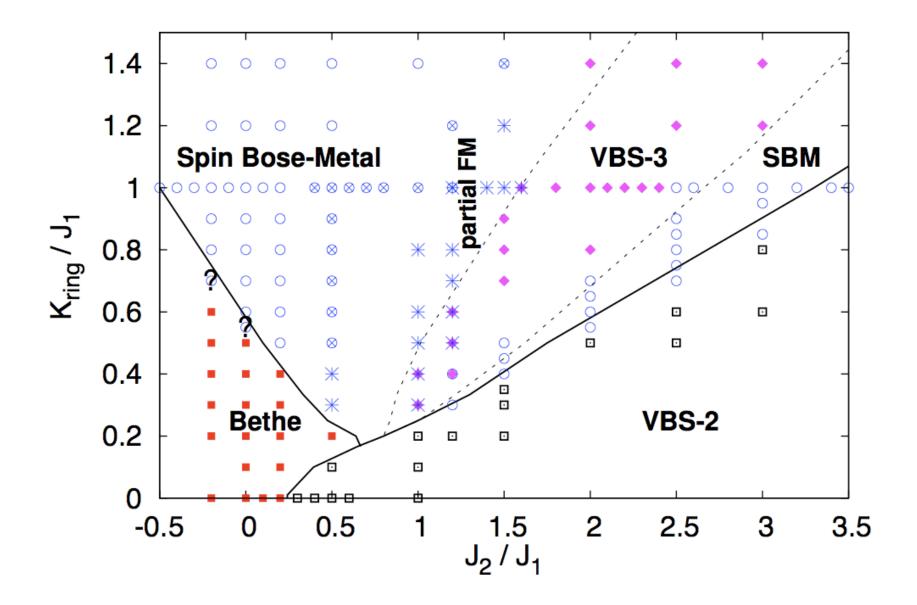
Gutzwiller Wavefunction on zigzag



Single Variational parameter: t_2/t_1 or k_{F2}

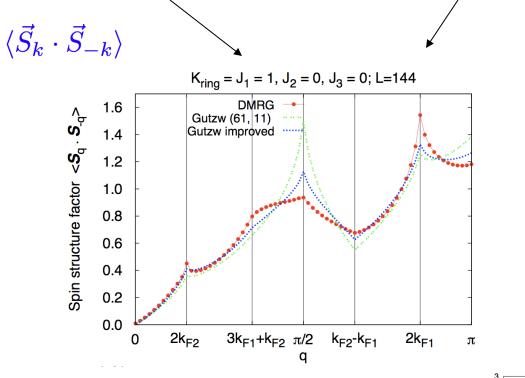
 $(k_{F1}+k_{F2} = pi/2)$

Phase diagram of zigzag ring model



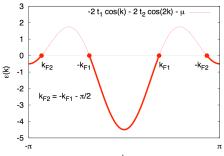
Spin Structure Factor in Spin Bose-Metal

Singularities in momentum space locate the "Bose" surface (points in 1d)



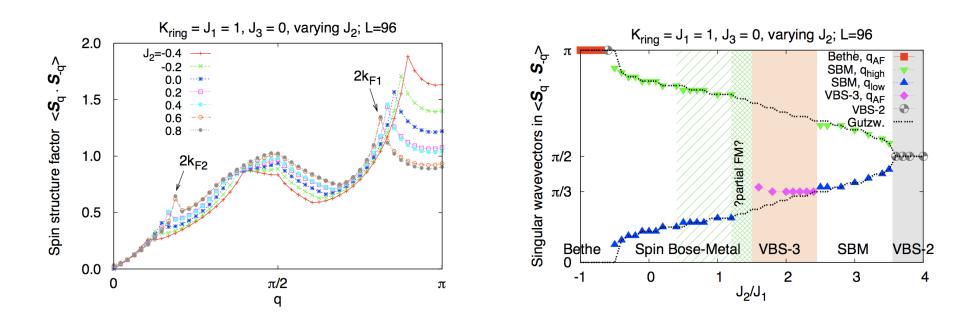
(Gutzwiller improved has 2 variational parameters)

Singular momenta can be identified with $2k_{F1}$, $2k_{F2}$ which enter into Gutzwiller wavefunction!



Evolution of singular momentum ("Bose" surface)

DMRG



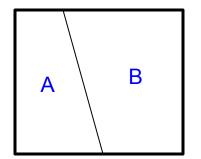
Entanglement Entropy

Density matrix for system

$$ho = |\psi\rangle\langle\psi|$$

Reduced density matrix for Sub-system A

$$\rho_A = Tr_B[\rho]$$



Entanglement entropy

$$S_A = -Tr_A[\rho_A \ln \rho_A]$$

 $|\psi
angle = |\psi
angle_A |\psi
angle_B$ Product state has S_A=0

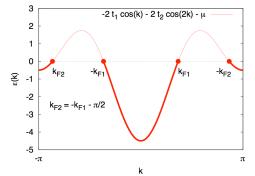
1D Gapless system (Conformal field theory, CFT)

Length X subsystem has $S(X) = \frac{c}{3} \ln(X)$ c = central charge

Entanglement in SBM? Quasi-1d Gauge Theory

Linearize about two Fermi points, Bosonize and integrate out gauge field

$$f_{\alpha}(x) = \sum_{a,P} e^{iPk_{Fa}x} f_{Pa\alpha}$$
$$f_{Pa\alpha} \sim e^{i(\varphi_{a\alpha} + P\theta_{a\alpha})}$$



"Fixed-point" theory of zigzag Spin Bose-Metal

Two gapless spin modes

$$\mathcal{L}_{\sigma} = \frac{1}{2\pi} \sum_{a=1,2} \left[\frac{1}{v_a} (\partial_{\tau} \theta_{a\sigma})^2 + v_a (\partial_x \theta_{a\sigma})^2 \right]$$

Gapless spin-chirality mode

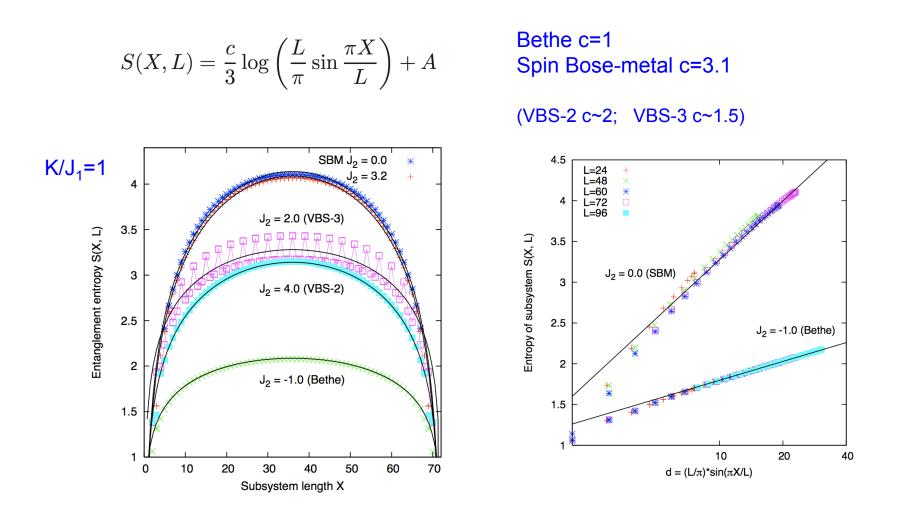
$$\mathcal{L}_{\chi} = \frac{1}{2\pi g} \left[\frac{1}{v} (\partial_{\tau} \theta_{\chi})^2 + v (\partial_x \theta_{\chi})^2 \right]$$

 $\chi = \vec{S}_{x-1} \cdot [\vec{S}_x \times \vec{S}_{x+1}] \qquad \chi \sim \partial_x \varphi_{\chi}$

Emergent global symmetries: SU(2)xSU(2) and U(1) Spin chirality

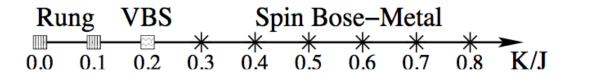
3 Gapless Boson modes – central charge c=3

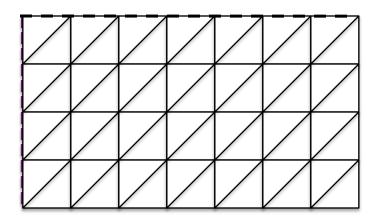
Measure c=3 with DMRG? Entanglement Entropy



Entanglement entropy in SBM consistent with c=3 for 3 gapless Boson modes!

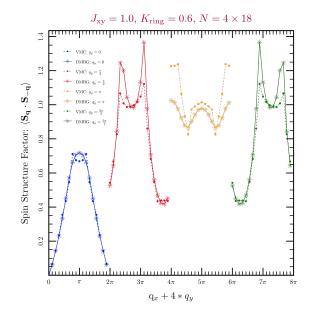
Phase Diagram; 4-leg Triangular Ladder





Singlets along the "rungs" for K=0

Spin structure factor shows singularities consistent with a Spin-Bose-Metal, (ie. 3-band Spinon-Fermi-Sea wavefunction) with 5 gapless modes, ie. c=5



Entanglement Entropy for SBM on N-leg ladder

For length L segment on N-leg ladder expect

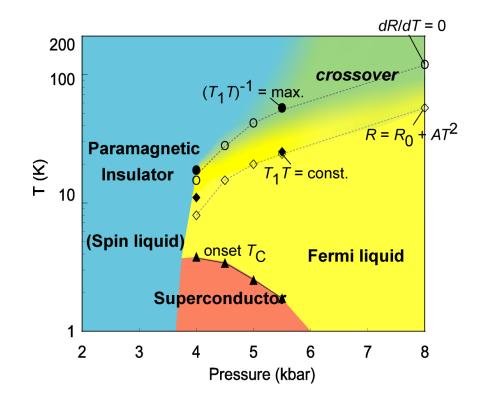
$$S_N = \frac{c_N}{3} \log(L/a) + A \qquad c_N \sim N$$

For 2d Spin Bose-Metal expectation is that L by L region has entanglement entropy

 $S_{2d}(L) \sim L \log(L/a)$

2d Spin Bose-Metal as entangled as a 2d Fermi liquid

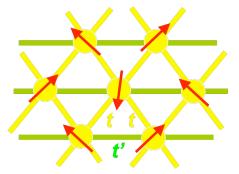
"Triangular Spin-Liquid" and "Square AFM"



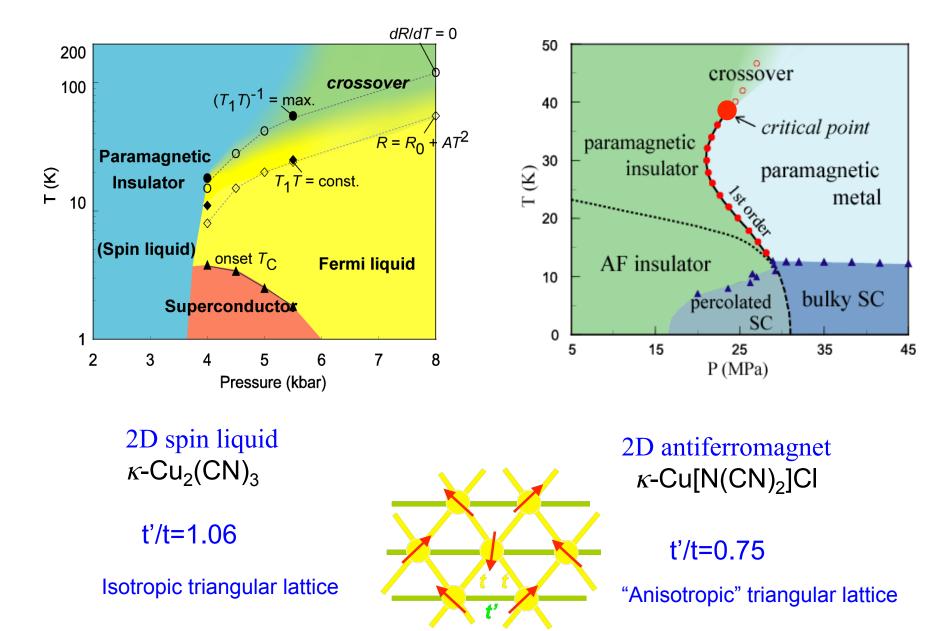
2D spin liquid κ -Cu₂(CN)₃

t'/t=1.06

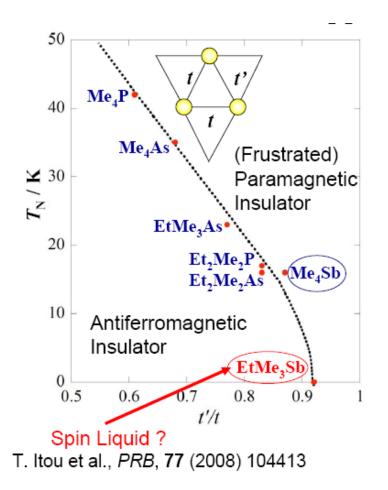
Isotropic triangular lattice



"Triangular Spin-Liquid" and "Square AFM"



New class of organics; AFM versus spin-liquid



Kato et. al.

"Square lattice" - AFM,

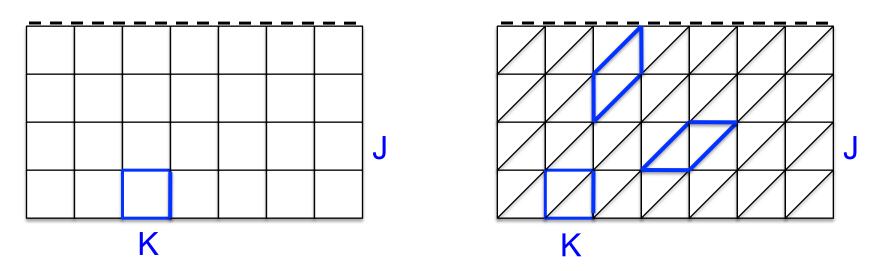
"Triangular lattice" – Spin-liquid

EtMe₃Sb[Pd(dmit)₂₁2

4-leg Ladders; Square-vs-triangular (preliminary)

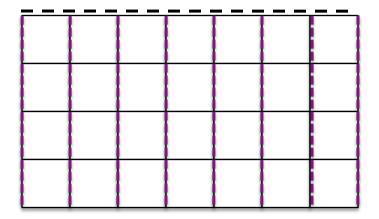
Square J-K model

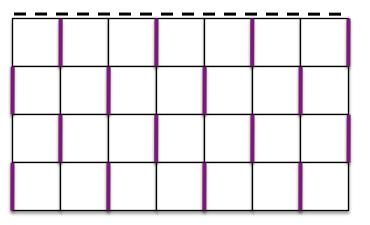
Triangular J-K model



(Periodic b.c. in "rectangular" geometry)

DMRG, ED, VMC of Gutzwiller wavefunctions, Bosonization,...

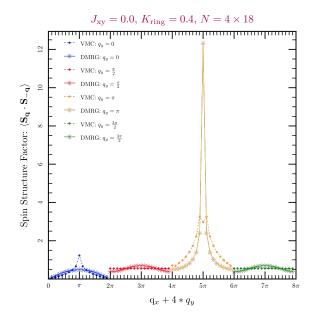


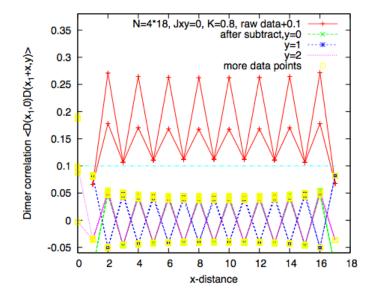


Singlets along the "rungs"

Valence bond crystal

Square ladder correlators

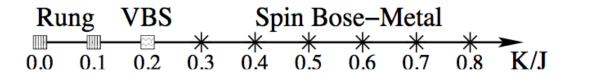


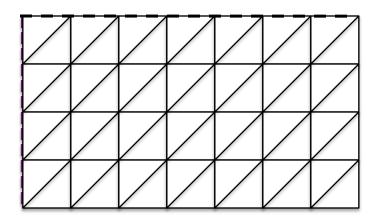


Spin structure factor in "rung" phase for K/J=0.4 (DMRG/VMC) (large peak at pi-pi like in AFM)

"Frozen" Dimer correlations in the staggered-dimer phase (K/J = 0.8)

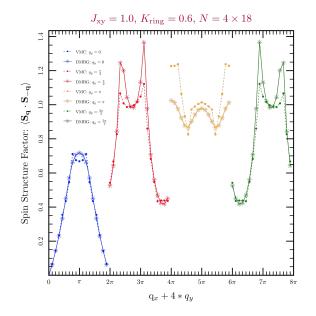
Phase Diagram; 4-leg Triangular Ladder



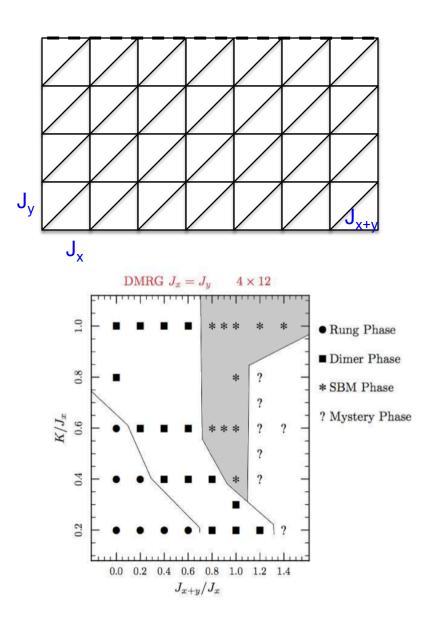


Singlets along the "rungs" for K=0

Spin structure factor shows singularities consistent with a Spin-Bose-Metal, (ie. 3-band Spinon-Fermi-Sea wavefunction) with 5 gapless modes, ie. c=5



Goal: Evolution from Square to Triangular via DMRG



K/J

Summary

- Spin Bose-Metals 2d spin liquids with singular "Bose" surfaces
 - quasi-1d descendents are numerically accessible
- Heisenberg + ring-exchange on zigzag strip exhibits quasi-1d descendent
 of the triangular lattice Spin Bose-Metal

$$\mathcal{H}_{\Delta} = J \sum_{\langle ij \rangle} \vec{S}_i \cdot \vec{S}_j + K \sum_{\langle 1234 \rangle} [\mathcal{P}_{1234} + \mathcal{P}_{1234}^{-1}]$$



Future?

DMRG/VMC/gauge theory for

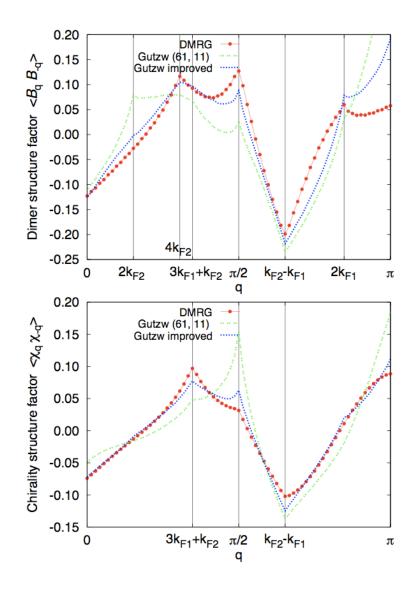
- Hubbard on the zigzag strip
- Ring exchange model on 6-leg square/triangular strips?
- Descendents of 2d non-Fermi liquids (D-wave metal) on the 2-leg ladder?

Dimer and chirality correlators in Spin Bose-Metal on 2-leg zigzag strip

$$\begin{aligned} \mathcal{B}(x) &= \vec{S}(x) \cdot \vec{S}(x+1) ,\\ \chi(x) &= \vec{S}(x-1) \cdot [\vec{S}(x) \times \vec{S}(x+1)] \end{aligned}$$

$$D(x, x') = \langle \mathcal{B}(x)\mathcal{B}(x')\rangle - \langle \mathcal{B}\rangle$$

$$X(x, x') = \langle \chi(x)\chi(x')\rangle.$$



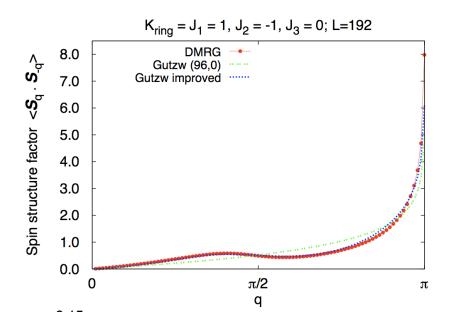
Bethe chain and VBS-2 States

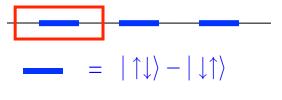


Bethe chain state; "1d analog of Neel state"

 $\langle \vec{S}_x \cdot \vec{S}_0 \rangle \sim (-1)^x / x$

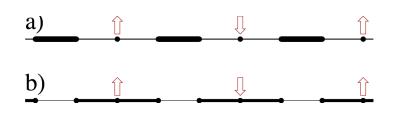
Spin structure factor





Valence Bond solid (VBS-2)

"VBS-3" Phase



Period 3 dimer long-range order Period 6 spin correlations;

 $2k_{F1} = 2 \text{ pi/3}$ instability in gauge theory, gaps out the first spinon band, leaving second band gapless like a Bethe chain

