2D Bose and Non-Fermi Liquid "Metals": Circumnavigating the Sign Problem

MPA Fisher, with O. Motrunich, D. Sheng, E. Gull and S. Trebst

Boulder summerschool 7/19/2010

Interest: A class of exotic gapless 2D Many-Body States

- a) What are these "strange-metals"? Singular surfaces in momentum space (eg. *Bose- surfaces*)
- b) Variational wavefunctions?
- c) "Strange-metal" phases as ground states for any Hamiltonians?
- 2D "Strange-Metals" have *tractable quasi-1D descendents*
- Approach 2D via quasi-1D "ladders" with DMRG

Useful references

Spin, Bose, and Non-Fermi Liquid Metals in Two Dimensions: Accessing via Multi-Leg Ladders; MPAF Fisher et al. <u>arXiv:0812.2955v1</u>

The introductions to the following 3 papers might be useful to look at:

d-wave correlated critical Bose liquids in two dimensions, O.Motrunich et al, PHYSICAL REVIEW B 75, 235116, 2007

Strong-coupling phases of frustrated bosons on a two-leg ladder with ring exchange, D. Sheng et al. PHYSICAL REVIEW B 78, 054520, 2008

Spin Bose-metal phase in a spin-1/2 model with ring exchange on a two-leg triangular strip, D. Sheng et al. PHYSICAL REVIEW B 79, 205112, 2009

What is a "Bose-Metal"?

First: Bose Condensate in Free Bose Gas

Superfluid in interacting Bose Gas

2D Free Bose Gas

Free particle Hamiltonian

$$H_0 = \sum_j \frac{\mathbf{p}_j^2}{2m}$$

Equal time Boson Green's function

$$G_b(\mathbf{r}) = \langle b^{\dagger}(\mathbf{r})b(\mathbf{0})
angle$$

Momentum distribution fucntion

$$n_{\mathbf{k}}^{b} = G_{b}(\mathbf{k}) = \langle b_{\mathbf{k}}^{\dagger} b_{\mathbf{k}} \rangle$$

Off-diagonal long-ranged order

$$G_b(\mathbf{r} o \infty) =
ho$$

 $n_{\mathbf{k}}^{BEC} = N \delta_{\mathbf{k},\mathbf{0}}$

____**,**

n_k

BEC condensate

2D Interacting Superfluid

Interacting Hamiltonian

$$H = \sum_{j} \frac{\mathbf{p}_{j}^{2}}{2m} + \sum_{i,j} V(\mathbf{r}_{i} - \mathbf{r}_{j})$$

Green's function

$$G_b({f r})=\langle b^\dagger({f r})b({f 0})
angle$$

Off-diagonal long-ranged order

$$G_b(\mathbf{r} \to \infty) = \rho_c = Z\rho; \quad Z < 1$$

k

Depleted Condensate density in Interacting Superfluid

$$n_{\mathbf{k}}^{SF} = ZN\delta_{\mathbf{k},0} + \delta n_{\mathbf{k}}^{SF} \qquad \text{zcm}$$

2D Bose-Metal

$$G_b({f r})=\langle b^\dagger({f r})b({f 0})
angle$$

• A *stable liquid phase* of bosons that is not a superfluid

(Equal time Boson Green's function)

• Real space Green's function has oscillatory power law decay (*not* a Bose condensate)

 $G_{BM}(\mathbf{r}) \sim \frac{\cos[\mathbf{k}_B(\hat{\mathbf{r}}) \cdot \mathbf{r}]}{|\mathbf{r}|^{\alpha(\hat{\mathbf{r}})}}$

What is a "Non-Fermi-liquid metal"?

First: What is a Fermi Liquid Metal

2D Free Fermi Gas

Fermion Spectral function:

 $A_0(k,\omega) = ImG_0(k,\omega) = \delta(\omega - \epsilon_k)$

Sharp quasiparticle excitations:

2D Fermi-liquid Metal

Equal time Green's function:

$$G(\mathbf{r} - \mathbf{r}') = \langle c^{\dagger}(\mathbf{r}) c(\mathbf{r}') \rangle$$

Oscillatory decay

$$G_{FL}(\mathbf{r}) \sim rac{\cos(k_F |\mathbf{r}| - 3\pi/4)}{|\mathbf{r}|^{\alpha_{FL}}}; \quad lpha_{FL} = 3/2$$

Momentum distribution function

$$n_{\mathbf{k}}^{FL} = Z \cdot n_{\mathbf{k}}^{FF} + \delta n_{\mathbf{k}}^{FL} \qquad Z < 1$$

Luttingers Thm: Volume inside Fermi surface set by total density of fermions

Quasi-particle excitation are (infinitely) long-lived on the Fermi surface

 $A(k,\omega) = Z\delta(\omega - \epsilon_k) + A_{inc}(k,\omega)$

2D Non-Fermi Liquid Metal

Various possibilities:

1) A singular "Fermi surface" that satisfies Luttinger's theorem but without a jump discontinuity in momentum distribution function

 A singular Fermi surface that violates Luttinger's theorem (eg. volume "x" rather than "1-x")

3) A singular "Fermi surface" with ``arc"

Motivation for Non-Fermi-Liquid Metal: "Abnormal" state of High T_c Superconductors

Strange metal: "Fermi surface" but quasiparticles are not "sharp" Spectral function measured with ARPES suggests Z=0

Importance of the Strange Metal

My bias:

- *The* theory of high Tc must **begin** with the Strange metal. (low energy physics emerges from high energy, not vice versa)
- Strange metal is a true (T=0) Non-Fermi liquid quantum phase or quantum phase transition

(not just an "incoherent" finite T crossover)

 Pseudogap and d-wave SC should be understood as "instabilities" of the strange metal (akin to low Tc BCS sc emerging from Fermi liquid)

• Symmetry breaking "order" in the pseudogap regime is very beautiful, but (perhaps) a diversion

Strategy: Construct candidate Non-Fermi liquid quantum states as putative strange metals

Wavefunction for 2D Bose-Metal? Wavefunction for 2D Non-Fermi liquid Metal?

First: Wavefunction for BEC and Superfluid phase of Bosons

Wavefunction for Free Fermions and a Fermi liquid

Wavefunctions for Bose BEC and Superfluid

Bose Einstein Condensate (BEC)

 $\Psi_{BEC} = 1$

Wavefunction is everywhere positive ie. nodeless

Interacting Superfluid (SF)

Maintain the same nodeless structure, put in a factor to keep the particles apart

$$\Psi_{SF} = e^{-\sum_{i < j} u(\mathbf{r}_i - \mathbf{r}_j)} \ge 0$$

Jastrow form $u(\mathbf{r})$ is a variational parameter (function)

Wavefunction for 2D Free Fermi gas

(N spinless fermions in 2D)

Nodal lines: Ultraviolet and infrared "locking"

Wavefunction for interacting Fermi liquid?

Keep the sign (nodal) structure of free fermions, modifying the amplitude of the wavefunction, eg to keep the particles apart.

Common form: Multiply the free fermion wavefunction by a Jastrow factor, $\Psi_{Jastrow} = e^{-\sum_{i < j} u(\mathbf{r}_i - \mathbf{r}_j)} \ge 0$

Proposed Fermi liquid wavefunction, with u(r) as a variational function $\Psi_{FL} = e^{-\sum_{i < j} u(\mathbf{r}_i - \mathbf{r}_j)} \psi_{FF}$

Open question: Does the momentum distribution function that follows from this class of wavefunctions have a jump discontinuity on a Fermi surface with volume set by the density of particles?? Most probably yes!

$$G(\mathbf{r} - \mathbf{r}') = \int_{\mathbf{r}_2,..,\mathbf{r}_N} \Psi_{FL}^*(\mathbf{r}, \mathbf{r}_2, .., \mathbf{r}_N) \Psi_{FL}(\mathbf{r}', \mathbf{r}_2, .., \mathbf{r}_N) \qquad \rightarrow \quad \left\langle c_{\mathbf{k}}^{\dagger} c_{\mathbf{k}} \right\rangle = G(\mathbf{k})$$

Wavefunction for a 2D (D-wave) Bose-Metal

O. Motrunich/ MPAF Phys. Rev. B (2007)

Wavefunctions:

N bosons moving in 2d:

Define a ``relative single particle function"

"Known" example of boson non-superfluid: Laughlin nu=1/2 Bosons:

$$\Psi(\mathbf{r}_1,\mathbf{r}_2,...,\mathbf{r}_N)$$

$$\Phi_{\mathbf{r}_2,\ldots,\mathbf{r}_N}(\mathbf{r})\equiv\Psi(\mathbf{r},\mathbf{r}_2,\ldots,\mathbf{r}_N)\;.$$

$$\Psi_{\nu=1/2}(z_1, z_2, \dots, z_N) = \prod_{i < j} (z_i - z_j)^2$$
.

Point nodes in ``relative particle function" Relative d+id 2-particle correlations

$$\Phi_{\nu=1/2}(z) \sim (z - z_i)^2$$

Goal: Construct time-reversal invariant analog of Laughlin, (with relative d_{xy} 2-particle correlations)

Wavefunction for D-wave Bose-Metal (DBM)

Hint: nu=1/2 Laughlin is a determinant squared

$$\Psi_{\nu=1/2} = [\Psi_{\nu=1}]^2$$
 $\Phi_{\nu=1}(z) \sim (z-z_i)$ p+ip 2-body

$$\Psi(\mathbf{r}_1,\mathbf{r}_2,\ldots,\mathbf{r}_N) = (\det e^{i\mathbf{k}_i\cdot\mathbf{r}_j})^2 \ , \quad (ext{S-type}).$$

"D-wave" Bose-Metal: Product of 2 different Fermi sea determinants, elongated in the x or y directions

$$\Psi_{D_{xy}}(\mathbf{r}_1,...,\mathbf{r}_N) = (det)_x \times (det)_y$$

Nodal structure of DBM wavefunction:

$$\Phi_{D_{xy}}(\mathbf{r}) \sim (x - x_i)(y - y_i)$$

D_{xy} relative 2-particle correlations

Bose Surfaces in D-wave Bose-Metal

Mean Field Green's functions factorize:

$$G_{b}^{MF}(\mathbf{r},\tau) = G_{d_{1}}^{MF}(\mathbf{r},\tau)G_{d_{2}}^{MF}(\mathbf{r},\tau)/\bar{\rho}$$

$$G_{d_{\alpha}}^{MF}(\mathbf{r}) \approx \frac{1}{2^{1/2}\pi^{3/2}} \frac{\cos(\mathbf{k}_{F_{\alpha}}\cdot\mathbf{r}-3\pi/4)}{c_{\alpha}^{1/2}|\mathbf{r}|^{3/2}} \qquad (\partial\epsilon_{\alpha}/\partial\mathbf{k})_{\mathbf{k}_{F_{\alpha}}(\hat{\mathbf{r}})} = (\hat{\mathbf{r}})$$

Momentum distribution function:

$$n_b(\mathbf{k}) = \int G_b(\mathbf{r}) e^{i\mathbf{k}\cdot\mathbf{r}} d\mathbf{r}$$

Two singular lines in momentum space, Bose surfaces:

 $\mathbf{k}_{F_1}(\hat{\mathbf{r}}) \pm \mathbf{k}_{F_2}(\hat{\mathbf{r}})$

Gutzwiller wavefunctions for Electron Non-Fermi-Liquids

Decompose the electron: spinless charge e boson and s=1/2 neutral fermionic spinon

$$c^{\dagger}_{{f r}lpha}=b^{\dagger}_{{f r}}f^{\dagger}_{{f r}lpha}$$

Mean Field Theory

Treat "Spinons" and Bosons as Independent:

Wavefunctions

$$\psi_f(\mathbf{x}_{i\uparrow},\mathbf{x}_{i\downarrow})$$

$$\mathcal{H}=\mathcal{H}_f+\mathcal{H}_b$$

) $\psi_b(\mathbf{r}_j)$

(enlarged Hilbert space - twice as many particles)

"Fix-up" Mean Field Theory

Gutzwiller projection: "glue" together Fermion and Boson "partons"

$$\Psi_G \equiv \psi_f(\mathbf{x}_{i\alpha}) \times \psi_b(\mathbf{r}_i \to \mathbf{x}_{i\alpha})$$

Project back into physical Hilbert space

Fermi and Non-Fermi Liquids?

Put the Spinons in a filled Fermi sea

$$\psi_f = \det[e^{i\mathbf{k}_i \cdot \mathbf{x}_{j\uparrow}}] \times \det[e^{i\mathbf{k}_i \cdot \mathbf{x}_{j\downarrow}}]$$

Fermi Liquid: Put the Bosons into a superfluid

$$\psi_b^{SF} = e^{-\sum_{i < j} u(\mathbf{r}_i - \mathbf{r}_j)}$$

 $\Psi_{FL} = \mathcal{P}_G[\psi_f^{FF} \times \psi_b^{SF}]$

Non-Fermi Liquid: Put Bosons into an *uncondensed* fluid - a "Bose metal"

 $\Psi_{NFL} = \mathcal{P}_G[\psi_f^{FF} \times \psi_b^{BoseMetal}]$

D-wave NFL Metal: Product of Fermi sea and D-wave Bose-Metal

Hamiltonians with Bose-Metal or NFL-Metal Ground states???

First: Hamiltonians for conventional FL metals?

$$\begin{aligned} H_0 &= -\sum_{ij} t_{ij} c_{i\sigma}^{\dagger} c_{j\sigma} \qquad \Psi_{FF}(\{\mathbf{r}_i\}) = det[e^{i\mathbf{k}_i \cdot \mathbf{r}_j}] \\ H &= -\sum_{ij} t_{ij} c_i^{\dagger} c_j + \sum_{ij} V_{ij} n_i n_j \end{aligned}$$

Can we demonstrate numerically that *any* interacting Fermion Hamiltonian has a Fermi-liquid ground state?? No!

Numerical challenge:

- Exact Diagonalization; too small
- QMC; sign problem
- Variational wavefunctions; biased
- DMFT; biased and uncontrolled

Ladders to the Rescue

Transverse y-components of momentum become quantized

Put interacting Fermions on n-leg ladder (assume in a FL state in 2D)

Many gapless 1d modes, one for each Fermi point

Put hard core Bosons hopping on n-leg ladder (assume 2D Hamiltonian in superfluid phase)

Single gapless 1d mode

"Fingerprint" of 2D Fermi surface already present on 2-leg ladder

(for N=1 Fermions and hard core Bosons are the "same")

Access fingerprint of 2D FL with DMRG on Ladders

Luttinger "volume" sum rule:

 $k_F^0 + k_F^\pi = \pi n_{1d}$

k_x

Hamiltonian for D-wave Bose-Metal?

(Strong coupling limit of gauge theory)

"Ring exchange"

$$H = H_J + H_4 ,$$

$$H_J = -J \sum_{\mathbf{r}; \hat{\mu} = \hat{\mathbf{x}}, \hat{\mathbf{y}}} (b_{\mathbf{r}}^{\dagger} b_{\mathbf{r} + \hat{\mu}} + h.c.) ,$$

$$H_4 = K_4 \sum_{\mathbf{r}} (b_{\mathbf{r}}^{\dagger} b_{\mathbf{r} + \hat{\mathbf{x}}} b_{\mathbf{r} + \hat{\mathbf{y}}}^{\dagger} b_{\mathbf{r} + \hat{\mathbf{y}}} + h.c.) ,$$

Phase diagram: K/J and density of bosons

J-K Model has a sign problem - completely intractable

Ladders to the rescue: Boson ring model on the 2-Leg Ladder

- Exact Diagonalization (2 x 18)
- Variational Monte Carlo
- DMRG (2 x 50)

E. Gull, D. Sheng, S. Trebst, O. Motrunich and MPAF, Phys. Rev. B 78, 54520 (2008))

$$H = H_J + H_4 ,$$

$$H_J = -J \sum_{\mathbf{r}; \hat{\mu} = \hat{\mathbf{x}}, \hat{\mathbf{y}}} (b_{\mathbf{r}}^{\dagger} b_{\mathbf{r}+\hat{\mu}} + h.c.) ,$$

$$H_4 = K_4 \sum_{\mathbf{r}} (b_{\mathbf{r}}^{\dagger} b_{\mathbf{r}+\hat{\mathbf{x}}} b_{\mathbf{r}+\hat{\mathbf{y}}}^{\dagger} b_{\mathbf{r}+\hat{\mathbf{y}}} + h.c.) ,$$

$$J \parallel$$

$$\mathbf{K} = \mathbf{K}_4 \mathbf{J} \parallel$$

Correlation Functions:

1) Momentum Distribution function

$$n(k_x,k_y) = \langle b_{\mathbf{k}}^{\dagger}b_{\mathbf{k}}
angle; \quad k_y = 0,\pi$$

2) Density-density structure factor

$$\mathcal{D}(\mathbf{k}) = \sum_{\mathbf{r}} e^{i\mathbf{k}\cdot\mathbf{r}} \langle n_{\mathbf{r}} n_{\mathbf{0}} \rangle \qquad n_{\mathbf{r}} = b_{\mathbf{r}}^{\dagger} b_{\mathbf{r}}$$

3) Pair-boson correlator

$$P(\mathbf{r}_1, \mathbf{r}_2; \mathbf{r}_1', \mathbf{r}_2') = \langle b_{\mathbf{r}_1}^{\dagger} b_{\mathbf{r}_2}^{\dagger} b_{\mathbf{r}_1'} b_{\mathbf{r}_2'} \rangle$$

Phase Diagram for 2-leg ladder

 $\rho = 1/3$

- 1) Superfluid "Bose condensate"
- 2) D-Wave Bose Metal DBL
- 3) s-wave Pair-Boson "condensate"

D-wave Bose-Metal occupies large region of phase diagram

Superfluid (DMRG)

DMRG 2 x 48

D-Wave Bose Metal (from DMRG)

Superfluid versus D-wave Bose-Metal

Singular Momentum in D-wave Bose-Metal (Bose "surface")

Variational Wavefunction for ladder

STRONG-COUPLING PHASES OF FRUSTRATED BOSONS ...

In DBM:

Bonding/Antibonding occupied For d₁ Fermion

Just Bonding occupied For d₂ Fermion

> Variational parameter: Fermi wavevectors in d₁ bands

$$\Psi_{\text{bos}}(r_1, r_2, \ldots) = \Psi_{d_1}(r_1, r_2, \ldots) \cdot \Psi_{d_2}(r_1, r_2, \ldots)$$

DBM: How good is ladder variational wavefunction?

 $\mathbf{k}_{F_1} - \mathbf{k}_{F_2}$

Gauge mean field theory predicts singularities in momentum distribution function at: ${f k}_{F_1}\pm {f k}_{F_2}$

Both DMRG and det₁ x det₂ Wavefunction show singular cusps *only* at: $\mathbf{k}_{F_1} - \mathbf{k}_{F_2}$

Why? Ampere's Law - Parallel currents attract

 d_1 and d_2 Fermions have opposite gauge charge, so right moving d_1 attracts left moving d_2 to form boson at momentum:

"D-Wave Metal"

Itinerant non-Fermi liquid phase of 2d electrons?

Gauge theory
(parton) construction
$$c^{\dagger}_{lpha}({f r})=b^{\dagger}({f r})f^{\dagger}_{lpha}({f r})=d^{\dagger}_{x}({f r})d^{\dagger}_{y}({f r})f^{\dagger}_{lpha}({f r})$$

Wavefunction; Product of determinants

$$\{ec{R}_i\}=\{ec{r}_{i\uparrow},ec{r}_{j\downarrow}\}$$

$$\Psi_{d_{x^2-y^2}}^{Metal} = \det_{x+y}[e^{i\vec{K}_i \cdot \vec{R}_j}] \cdot \det_{x-y}[e^{i\vec{K}_i \cdot \vec{R}_j}] \times \det[e^{i\vec{k}_i \cdot \vec{r}_{j\uparrow}}] \cdot \det[e^{i\vec{k}_i \cdot \vec{r}_{j\downarrow}}]$$

Filled Fermi sea

Hamiltonian for D-wave Metal? (from gauge theory)

t-K "Ring" Hamiltonian (no double occupancy constraint)

- Ring term will be generated when projecting into a single band model
- Ring term operates when two doped holes are nearby
- Ring term induces 2-particle singlet d-wave correlations (for K>0)

Phase diagram of electron t-K Hamiltonian?

$$\mathcal{H}_{tK} = -t \sum_{\langle ij \rangle} [c_{i\alpha}^{\dagger} c_{j\alpha} + h.c.] + K \sum_{\langle 1234 \rangle} [\mathcal{S}_{13}^{\dagger} \mathcal{S}_{24} + h.c.]$$

Doping and K/t ??

Fermi liquid for K<<t ? D-wave metal for K ~ t ? D-wave superconductor ?

Future: Put t-K Hamiltonian on a 2-leg ladder and attack with DMRG,...

Summary & Outlook

- Bose-Metals are 2D gapless liquids with singular "Bose" surfaces
- Every 2D Bose-Metal has a distinct set of quasi-1D descendents states which should be numerically accessible via DMRG
- Hard core bosons with 4-site ring term on the 2-leg ladder has a quasi-1D descendant Bose-Metal ground state over a large part of phase diagram

Future generalizations (DMRG, VMC, gauge theory):

- Boson Ring exchange models on 3-leg, 4-leg ladders
- Quasi-1D descendents of 2D non-Fermi liquids of itinerant electrons? (D-Wave Metal on the n-leg ladder?)
- Other Hamiltonians with Bose-Metal or non-Fermi-liquid states???

Wavefunctions for a Bose-metal and non-Fermi-liquid metal?

One attempt - Towards a "D-wave Metal"

Underlying is a "D-wave **Bose**-Metal"

Informed/Motivated by the FQHE: Why?

- Worked for Laughlin!
- Have Boson fluid states which are not-superfluids
- Have Non-Fermi liquids in QHE (Composite Fermi liquids)

Half-filled Landau band for Bosons/Fermions

nu=1/2 for Bosons, Laughlin wf, a non-superfluid

$$\Phi_{Laughlin}^{\nu=1/2} = \prod_{ij} (z_i - z_j)^2 \prod_j e^{-|z_j|^2/4}$$

nu=1/2 for electrons; a "Composite Fermi-liquid"

 $\Psi_{CFL} = \prod_{i < j} (z_i - z_j)^2 \prod_j e^{-|z_j|^2/4} \cdot \det[e^{i\vec{k}_i \cdot \vec{r}_j}]$

$$\Psi_{Fermi-sea} = \det[e^{i\mathbf{k}_i \cdot \mathbf{r}_j}]$$

Laughlin times a filled Fermi-sea state

 $\Psi_{CFL} = \Phi_{Laughlin}^{\nu=1/2} \times \Psi_{Fermi-sea}$

Problem: QHE wavefunction breaks T-reversal invariance

Goal: Construct time-reversal invariant analogs of QHE states

Gauge Theory for D-wave Bose Metal phase

Slave Fermion decomposition for lattice bosons:

$$b^{\dagger}(\mathbf{r})=d_{1}^{\dagger}(\mathbf{r})d_{2}^{\dagger}(\mathbf{r})$$

Gauge Theory Hamiltonian: $H_{U(1)} = H_t + H_a$

$$egin{aligned} H_t &= -\sum_{\mathbf{r}} \left[t_{\parallel} e^{i a_x(\mathbf{r})} d_1^{\dagger}(\mathbf{r}) d_1(\mathbf{r}+\hat{\mathbf{x}}) + t_{\perp} e^{i a_y(\mathbf{r})} d_1^{\dagger}(\mathbf{r}) d_1(\mathbf{r}+\hat{\mathbf{y}}) + h.c.
ight] \ &- \sum_{\mathbf{r}} \left[t_{\perp} e^{-i a_x(\mathbf{r})} d_2^{\dagger}(\mathbf{r}) d_2(\mathbf{r}+\hat{\mathbf{x}}) + t_{\parallel} e^{-i a_y(\mathbf{r})} d_2^{\dagger}(\mathbf{r}) d_2(\mathbf{r}+\hat{\mathbf{y}}) + h.c.
ight] \end{aligned}$$

$$H_a = h \sum_{\mathbf{r}} \sum_{\mu=x,y} e_{\mu}^2(\mathbf{r}) - K \sum_{\mathbf{r}} \cos[(\nabla \times a)_{\mathbf{r}}]$$

$$egin{aligned} (
abla\cdot e)_{\mathbf{r}} &= d_1^\dagger(\mathbf{r}) d_1(\mathbf{r}) - d_2^\dagger(\mathbf{r}) d_2(\mathbf{r}) \ & \mathcal{H}(\hat{b}, \hat{b}^\dagger) \end{aligned}$$

Strong coupling: h>>K,t integrate out gauge field gives Boson Hamiltonian:

Weak Coupling: K>> h,t Anisotropic Fermi surfaces of d₁ and d₂ minimally coupled to a (non-compact) U(1) gauge field

S-wave Pair Boson "Condensate" (DMRG)

DBM[2,2] VMC wavefuncton is favored in this region of the phase diagram – but unstable to s-wave pairing with gauge fluctuations present