















## Dendritic Nucleation Model

- Arp2/3 complex nucleates new plus ends
- Capping protein kills off older plus ends
- Severing proteins help break up older filaments by creating 2 minus ends in place of 1
- Profilin turns ADP-G-actin into ATP-G-actin
- Subtleties:
  - Arp2/3 binds more strongly to ATP-actin
  - Severing proteins bind more strongly to ADP-actin

What is the evidence for this picture?















$$\begin{split} \hline & \mathcal{C} \text{oupled Kinetic Equations (mean-field)} \\ & \dot{\rho_u}(L) = -k_+\rho_m(\rho_u(L) - \rho_u(L-1)) + k_-(\rho_u(L+1) - \rho_u(L)) + k_d\rho_b(L) - k_s \sum_{L'=1}^{L-1} p(L')\rho_u(L) \\ & + \sum_{L'=L+2}^{\infty} k_s p(L)\rho_b(L') + \sum_{L'=L+1}^{\infty} k_s (p(L) + p(L'-L))\rho_u(L') \\ & \dot{\rho_b}(L) = -k_+\rho_m(\rho_b(L) - \rho_b(L-1)) - k_d\rho_b(L) - k_s \sum_{L'=1}^{L-2} p(L')\rho_b(L) + \sum_{L'=L+1}^{\infty} k_s p(L'-L)\rho_b(L') \\ & \dot{\rho_u}(2) = -k_+\rho_m(\rho_u(2)) + k_-\rho_u(3) - k_{diss}\rho_u(2) + k_d\rho_b(2) + k_n\rho_m^2 \\ & + \sum_{L'=4}^{\infty} k_s p(2)\rho_b(L') + \sum_{L'=3}^{\infty} k_s (p(2) + p(L'-2))\rho_u(L') \\ & \dot{\rho_b}(2) = -k_+\rho_m(\rho_b(2)) - k_d\rho_b(2) + k_{arp}\rho_m^2 \sum_{L=2}^{\infty} (\sum_{L'=1}^{L} 1 - p(L'))(\rho_u(L) + \rho_b(L)) + \sum_{L'=3}^{\infty} k_s p(L'-2)\rho_b(L') \\ & + \text{ eqn to fix total amount of monomers} \\ & p(L) = 1 - e^{-L/\ell_c} \quad \text{is prob. monomer distance L from + end is ADP-actin} \\ & \ell_c = k_+\rho_m/k_{pr} \end{split}$$







| Simulation Setup                         |                                                                                                                                                             |                                          |                                   |  |
|------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|-----------------------------------|--|
|                                          | Parameter                                                                                                                                                   | Experiment                               | Simulated                         |  |
| F-actin ARP2/3 – E                       | nd l <sub>P</sub>                                                                                                                                           | 1-10 μ m                                 | 0.1-0.3 μm                        |  |
|                                          | lave                                                                                                                                                        | 0.1-1 μm                                 | 0.05-0.1 μm                       |  |
|                                          | bead size                                                                                                                                                   | 0.02-1 μ m                               | 0.3 µm                            |  |
| Che alle                                 | $K_+$                                                                                                                                                       | 10 $\mu$ M <sup>-1</sup> s <sup>-1</sup> | 5µM <sup>-1</sup> s <sup>-1</sup> |  |
|                                          | K_                                                                                                                                                          | 1 s-1                                    | 100-1000 s <sup>-1</sup>          |  |
|                                          | [G-Actin]                                                                                                                                                   | 10 μM                                    | 600µM                             |  |
| 42555555555                              | $\frac{K_{+}[G-Actin]}{K_{-}}$                                                                                                                              | 100                                      | 0.1-1                             |  |
| Part Barren Barren .                     | Ka                                                                                                                                                          | $^{2}\mu M^{-1}s^{-1}$                   | $\sim K_{+}$                      |  |
|                                          | $K_d$                                                                                                                                                       | ? s <sup>-1</sup>                        | 100 s <sup>-1</sup>               |  |
| -25-3-55-5-5-5-5-5-5-5-5-5-5-5-5-5-5-5-5 | [Arp2/3]                                                                                                                                                    | 0.1 μM                                   | 2 µM*                             |  |
|                                          | $\frac{K_a[\text{Arp2/3}]}{K_d}$                                                                                                                            | ?                                        | 0.1-1                             |  |
|                                          | $K_{C+}$                                                                                                                                                    | 3 µM <sup>-1</sup> s <sup>-1</sup>       | _                                 |  |
| See 2 and a second second second         | $K_{C-}$                                                                                                                                                    | $0.0004  \mathrm{s}^{-1}$                | $0  s^{-1}$                       |  |
| 1. 638-3 842.                            | [Cap]                                                                                                                                                       | 0.1 μM                                   | _                                 |  |
| ZALMENT.                                 | $K_{C+}[Cap]$                                                                                                                                               | $0.3  \mathrm{s}^-1$                     | 10-100 s <sup>-1</sup>            |  |
| A S                                      | <ul> <li>Explicit monomers</li> <li>Diffusion-controlled polymerization</li> <li>Arp2/3 is activated at surface,<br/>diffuses and tags filaments</li> </ul> |                                          |                                   |  |



| Comparison with Alberts, et al.                                   |                                                                                   |  |  |
|-------------------------------------------------------------------|-----------------------------------------------------------------------------------|--|--|
| Alberts & Odell                                                   | Our work                                                                          |  |  |
| <ul> <li>Realistic rates</li> </ul>                               | <ul> <li>Unrealistically high rates</li> </ul>                                    |  |  |
| <ul> <li>Realistic numbers of<br/>filaments</li> </ul>            | <ul> <li>Small numbers of<br/>filaments and system<br/>sizes</li> </ul>           |  |  |
| <ul> <li>Concentration fields for<br/>arp2/3, G-actin</li> </ul>  | <ul> <li>Explicit arp2/3, G-actin</li> </ul>                                      |  |  |
| <ul> <li>Filaments are hard rods</li> </ul>                       | <ul> <li>Filaments are semiflexible<br/>chains made up of<br/>monomers</li> </ul> |  |  |
| <ul> <li>Forces based on collision<br/>resolution rule</li> </ul> | <ul> <li>Forces determined by<br/>potentials</li> </ul>                           |  |  |













































Kun-Chun Lee (U. Penn)















































## Summary (Part IV)

 Small differences in linker binding can lead to very different morphologies for long filaments

Networks vs. Bundles

- This may be relevant to structure at the leading edge of a crawling cell
- Proximity to a phase transition is one way of achieving high sensitivity in biological systems

Itamar Borukhov (Compugen)