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[Lecture overview

Why series expansions?

Linked-cluster expansions

- From Taylor expansions to linked-cluster expansions
- Why linked clusters?
- Series analysis, (Pad¢) approximants

Things to calculate, examples
- ground-state properties
- tracking (various) excited states

Alternative approaches

References




Some history

High-temperature series expansions for classical models.
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Series expansions gave the first indications
of universal exponents.

This led to the development of renormalization
group techniques and the discovery of universality.

Starting in the late 80’s series expansion techniques were expanded
to quantum systems including zero-temperature expansions.
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Series expansions at T=0

Focus 1n this lecture: High-order perturbation expansions
in some coupling parameter at zero temperature.

H = Hgy+ ANH;
/ N\

unperturbed some
Hamiltonian perturbation

Taylor expansion, e.g. for ground-state energy

E\) =Eq+ E N 4+ B\ + ...+ E 0"+ 0™




High-order series expansions (7=0)

Taylor expansion, e.g. for ground-state energy

E\) =Eq+ BN 4+ B\ + ...+ E 0" 4+ 0\

Toy model: One-dimensional spin ladder

ULy = we
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Multivariable expansions

The perturbation H; 1s a sum of local interaction terms /4,
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Associate each term /£, with a coefficient A,
and (multi-)expand the ground-state energy
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Linked-cluster expansions

Simplify multivariable expansion by setting all A, equal to A.
Topologically equivalent clusters then give 1identical contributions.




Linked-cluster expansions

Simplify multivariable expansion by setting all A, equal to A.
Topologically equivalent clusters then give 1identical contributions.
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Two clusters G and H are called topologically equivalent,

if there 1s a mapping M of the vertices of G to the vertices of H
such that M(G) = H.




Linked-cluster expansions

Simplify multivariable expansion by setting all A, equal to A.
Topologically equivalent clusters then give 1identical contributions.

A)/N = E L(C) - Wip(C)
“lattice constant”
counts the # of embeddings
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Efficiency gain of a linked-cluster expansion

VAVAN
AY

Square lattice Triangular lattice Cubic lattice
N | Cluster | Embeddings | Cluster | Embeddings | Cluster | Embeddings
1 1 4 1 6 1 6
2 2 16 2 36 2 36
3 4 76 5 306 4 306
4 8 280 10 1.860 8 2.016
5 14 1.180 22 13.278 15 16.278
6 28 4.856 50 89.988 31 126.036
7 56 21.060 122 656.862 64 1.071.954
8 124 90.568 320 4.756.596 147 9.008.808
9 280 419.468 910 37.095.654 353 | 82.540.686
10 679 1.911.352| 2.727| 284.221.236 908 | 742.248.348
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We can reduce the number of calculations
by many orders of magnitude!




The thermodynamic limit

Reconsider the cluster weight
W[p](C) = P — Z W[p](C,)
c'ccC

The subcluster subtraction eliminates
all (low-order) contributions of subclusters.
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The thermodynamic limit

Reconsider the cluster weight
W[p](C) = P — Z W[p](C,)
c’'ccC

The subcluster subtraction eliminates
all (low-order) contributions of subclusters.

Each cluster contributes only the additional high-order terms,
which can be evaluated first for the respective cluster size.

We obtain results directly for the thermodynamic limit.

However, we trade finite-size scaling with series extrapolation.
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The linked-cluster theorem

Disconnected clusters have vanishing weight
Po = Pjy + Pp = W[p](C):O
because

Wip(C)=Po— Y Wip(C)
crce

= Py — Z W[p](c,)—l—PB— Z W[p]((]’) =0
C'CA C'CB
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Graph theory

e QGeneration of clusters o—o :>OO >‘O I/“/ff 2% 2:}0 %)

* [somorphism of clusters
— 1dentify topologically =
equivalent clusters

* Embedding of clusters |

onto given lattices DD -

— topologically equivalent

clusters have 1dentical weights |




Efficient graph handling

L

The Boost Graph Library

User Guide and Reference Manual

« Graphs and and their general properties
(vertices, edges, labels, ...)

Jeremy G. Siek
Lie-Quan Lee
Andrew Lumsdaine

Foreword by Alexander Stepanov

Boost graph library

http://www.boost.org

(] Graph isomorphisms C+ In-Depth Series + Bjarne Stroustrup

(automorphism group, canonical labeling,
sorting, ...)

The nauty algorithm by Brendan McKay
http://cs.anu.edu.au/people/bdm/nauty/

ot ‘
i = ) \)‘
Lukas Gamper
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Calculating cluster observables

 Perturbation theory for 7=0
— Rayleigh-Schrodinger perturbation theory

ground-state energy ground-state wavefunction
E(C)=) e, 9) =3 A",
ElHy [Yn_1) — 7 em (k|tn—m
€n — <w0’H1’¢n—1> <k|¢n> — < | 1|¢ 1> Zm_le < |¢ >

(0| Ho|0) — (k|Ho|k)

— High-temperature expansion for finite T.

— A cluster with n edges will contribute first in order #.




Ground-state expansion for spin ladder

E(C)=Wisy (€)=
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Quasiparticle dynamics: Excitation spectrum

What 1s the elementary excitation of the coupled system?
What 1s the excitation spectrum?

What can be calculated using (high-order) cluster expansions?




One-particle excited states

Calculate effective Hamiltonians in the degenerate
manifold of excited one-particle states for each cluster.

(

Heff<1) 0 \

ST HS =

0

\ -,

However, there 1s no cluster expansion

HE' = [HM +epl] , @ [H" +eal], # HY ® Hy'

Calculate irreducible matrix elements instead

et _ ecl A(Z,]) — <]‘H6H’Z> — EO&i,j




Calculation of eigenvalues

For a translationally invariant system we have
A(i,j) = A(9)
and the momentum K 1s a good quantum number.

The effective one-particle Hamiltonian can then easily be
diagonalized by a Fourier transformation.

The energy eigenvalues are

ZA cos(K - 9)




Spectrum for spin-1/2 ladder

E(K)

T

triplon band The elementary excitation becomes

a dressed triplet state, the triplon.

]

w2 . m / gapped
K dispersion




Two-particle excitations

Generalize single-particle approach to block diagonalize Hamiltonian

A7)

0

0
0

O'HO =

\

0

HY (1)

0
0

0

HY(2)

0

0
0
0

Cluster expansion for effective Hamiltonians,
more precisely their irreducible matrix elements.

This gives the exact 2-particle Schrodinger equation,

which can be (numerically) solved.
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Spin-1/2 ladder

* The 2-triplon states form

e a continuum of states,

> T — * bound states (S =0,1),
& ““S-lboundsaed o antibound states (S = 2).
Q S=0 bound state _]
tripl"'o“r'i'"""u.,,,m 4 - Typical ladder materials
o o el (LaCa)yCung Oy,
5t 1

momentum
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Further extensions

- multiparticle excitation spectra

- spectral weights

[ HT (0) 0 0 0

O'HO =

0 0 HY(2)




Does the calculated series (always) converge?

Sometimes, we do get convergent series.

Quantum spin-S models
e.g. ground state energy of the spin-1/2 Heisenberg ladder

3 3 3 3
E _ __ 2 Y3 _ Y W4 5
on 1 8)\ 16)\ + 128)\ + O(\°)

But sometimes, we also obtain asymptotic series.

Bose-Hubbard model
¢.g. ground state energy of chain of bosons

1
E/U = —5 — 4\ + 4X" +30.22)° — 62.57\° + 121183 + O(\™)

© Simon Trebst




Series extrapolation: Pad¢ approximants

A Padé approximant to some finite series is a rational function

\y = Pv Y
fPade( )— \
g (A)
where the Taylor expansion of f matches the approximated series.
9l B 3 5
E/J = —-HB—B 2 = .3 ! O 5
/JL="4"8" ~16° Tigs° TO)
3 3 39 1 5!
Pade[2,2] = [—-> 4+ -z — —z* = =Gt i
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Series extrapolation: Pad¢ approximants

A Padé approximant to some finite series is a rational function

_ pn(A)
fpade()\) B QM()‘)

where the Taylor expansion of f matches the approximated series.

Well-suited to estimate small gaps.

il
dimer expansion for '

AFM Heisenberg chain 50 |

= = O==—=Q = = “O==—O= = = O==—Q = =

— Dlog Pade

: g e 10" order dimer expansion
[ ]

0 .
0 /4

K




Dlog Pades: Critical points and exponent

Assume a series obeys a power-law dependency

critical exponent

s(A) = F(A) - (A= Ac)”

critical point

Let’s differentiate the logarithm of S(\)

fAO, v _pvY
f()‘) A — )\c QM(A)

Dlog s(\) =

The critical point A. is a root of the denominator gas ().

The critical exponent v can be evaluated by

o (P v Y ()
o A°(f(k)+k—kc) ey




Example: J1-J2 Heisenberg chain

© Simon Trebst
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0.6
Dimer series expansion .
I ° . . . ° . . - —e Series expansion o /<.>
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Example: J1-J2 Heisenberg chain

Rajiv Singh and Zhengh Weihong, Phys. Rev. B §9, 9911 (1999).

O emeGrmm ol mom = oBm == oBm = = oBm = = oBm = = oD = = =D

Dlog Pad¢ approximants

n [(n —2)/n] [(n —1)/n] [n/n] [(n+1)/n] [(n +2)/n]
a=20 |
n=3 0.9531(0.621) 0.9906(0.711)  1.0158(0.793) 0.9982(0.724) (;, 74(3)
n=4 1.0495(0.986) 1.0047(0.751)  1.0016(0.738) 1.0018(0.740) ’
n=>5 1.0021(0.741) 1.0018(0.739) |
a = 0.2411 |
n=3 1.0587(0.737) 0.7755(0.191)* 1.1038(1.021) 0.9923(0.620) [, — () 5 (3)
n=4 0.9563(0.531) 1.0082(0.680)  1.0002(0.649) 0.9960(0.632) .
n=15 1.0017(0.656) 1.0517(0.670)*
a=0.5
n=4 0.6425(0.049) 1.0901(0.586)  1.1669(0.787) 1.1641(0.777)
n=>5 1.2006(0.920) 1.1642(0.777)
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Applications / frustrated magnetism

© Simon Trebst

Series expansion techniques can be used to calculate
effective Hamiltonians for the highly degenerate manifold
of ground states characteristic of a frustrated magnet.

Two types of effective Hamiltonians

e those which act only in the degenerate subspace of an

unperturbed Hamiltonian.

— systematic calculation by a linked-cluster expansion
— 1solates effective degrees of freedom
— solving effective Hamiltonian allows to study degeneracy splitting

e those which act on the full Hilbert space.

— non-trivial, as one needs suitable generator (see CUTs below)

F. Mila and K.P. Schmidt, arXiv:1005.2495




berg model

1SC1

kagome He

Example

Rajiv Singh and David Huse, Phys. Rev. B 76, 180407 (2007); Phys. Rev. B 77, 144415 (2008)
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series expansions for
various dimer coverings

candidate dimer coverings
honeycomb VBC of perfect hexagons

stripe VBC of perfect hexagons
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berg model

1SC1

kagome Hei

Example

Rajiv Singh and David Huse, Phys. Rev. B 76, 180407 (2007); Phys. Rev. B 77, 144415 (2008)

.<‘<‘<‘<‘>‘ X

..»‘»‘u‘»‘

series expansions for
various dimer coverings

candidate dimer coverings
honeycomb VBC of perfect hexagons

stripe VBC of perfect hexagons
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2nd order
dimers resonate across empty triangles

3rd order
formation of perfect hexagons

(binding of 3 empty triangles)
lifts the degeneracy of all dimer coverings

4th order
lifts degeneracy of stripe vs. pinwheel states
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Example: kagome Heisenberg model

Rajiv Singh and David Huse, Phys. Rev. B 76, 180407 (2007); Phys. Rev. B 77, 144415 (2008)

order honeycomb VBC stripe VBC 36-site cluster
0 -0.375 -0.375 -0.375
1 -0.375 -0.375 -0.375
2 -0.421875 -0.421875 -0.421875
3 -0.42578125 -0.42578125 -0.42578125
4 -0.431559245 -0.43101671 -0.43400065
5 -0.432088216 -0.43153212 -0.43624539

Exact diagonalization, DMRG for honeycomb-VBC
extrapolated: -0.433(1) 36-site cluster: -0.43837653

Multiscale entanglement renormalization ansatz (MERA)
-0.43221 (exact upper bound)

Gutzwiller projected wavefunction study (variational) — U(1) spin liquid
-0.429
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Future prospects

+ Experience has shown that adding 5 more terms
in the expansion can lead to qualitatively new insights
upon series extrapolation.

- Series expansions can be highly parallelized, and
potentials benefit substantially from peta-flop computing.

Square lattice Triangular lattice Cubic lattice
N [ Cluster | Embeddings | Cluster | Embeddings | Cluster | Embeddings
1 1 4 1 6 1 6
2 2 16 2 36 2 36
3 4 76 5 306 4 306
4 8 280 10 1.860 8 2.016
5 14 1.180 22 13.278 15 16.278
6 28 4.856 50 89.988 31 126.036
7 56 21.060 122 656.862 64 1.071.954
8 124 90.568 320 4.756.596 147 9.008.808
9 280 419.468 910| 37.095.654 353| 82.540.686
10 679 1.911.352| 2.727| 284.221.236 908 | 742.248.348
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Future prospects

+ Experience has shown that adding 5 more terms
in the expansion can lead to qualitatively new insights
upon series extrapolation.

- Series expansions can be highly parallelized, and
potentials benefit substantially from peta-flop computing.

- Estimates (Rajiv Singh):

- 2D t-J model:
superconducting susceptibilities up to order B>

- triangular lattice Heisenberg model:
susceptibilities and correlations length up to order !¢




Related / alternative approaches

© Simon Trebst

« Numerical linked-cluster expansions

For every cluster keep complete spectrum, e.g. contributions from all
powers of B (or other expansion parameter). Allows to go to (slightly)
lower temperatures (without extrapolation techniques), but no symbolic
series anymore.

M. Rigol, T. Bryant, R.R.P. Singh, Phys. Rev. Lett. 97, 187202 (2006).

« Continuous unitary transformations (CUTSs)

Unitary transformation to block-diagonalize Hamiltonian is constructed
as an infinite product of infinitesimal transformations. High-energy
processes are integrated out first, before treating those at lower energies
(similar to renormalization-group approach).

F.J. Wegner, Ann. Physik 3, 77 (1994).
S.D. Glazek and K.G. Wilson, Phys. Rev. D 48, 5863 (1993).
C. Knetter and G.S. Uhrig, Eur. Phys. J. B 13, 209 (2000).




Related / alternative approaches

© Simon Trebst

« Contractor renormalization (CORE)

Related non-perturbative approach to construct an effective Hamiltonian
in a real-space block-decimation procedure that can fully capture the
low-energy physics of a given system. Construction works via exact
diagonalization of subunits (in real space), keeping a set of low-energy
states, and then combining results similar to a cluster expansion.
Non-perturbative character allows to study systems across a quantum
phase transition (in contrast to the previous perturbative techniques).

C.J. Morningstar and M. Weinstein, Phys. Rev. Lett. 73, 1873 (1994).




Summary

Linked-cluster expansions

controlled numerical framework

- for strongly correlated systems,
particularly gapped quantum states,

- static and dynamic properties calculated in
thermodynamic limit,

- close connection to graph theory.

advantages / disadvantages
* no sign problem.

- works for (1,2,3)-dimensional quantum systems.

- perturbative approach ( 7=0, finite 7).
‘clever’ series extrapolation tools needed.

© Simon Trebst
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