Lecture |I: M esoscopic Fermi-
Edge Singularity

Leonid Levitov (MIT)
Boulder 2005 Summer School

(i) Fermi-Edge Singularity (FES) in dectron transport
(i1) Review Feynman diagrams, N ozieres approach
(il1) New technique functional determinants

(iv) FES out of equilibrium

(v) M esoscopic FES, chaotic scattering, quantum dots

DA.Abanin & LL.,PRL 93, 126802 (2004), PRL 94, 186803 (2005)



Fermi-Edge Singularity in Resonant Tunneling
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Tunneling from a localized level into 2DEG (Geim et al., '93)



RESONANT TUNNELING HAMILTONIAN H = Ho + Ht

Ho =Y eralar + Eodld+ Y Uppalapdd!,
k Kk’
(band electron ay, a?{c, hole d, d'). Tunneling coupling:

Hyp = Z(Tkaldew + ngTake_im)
k

Current via Green's function: I o< Re |T}|? fEmF(t)dt

F(t) =) (0la}(t)d(t)d!(0)aw(0)[0)

kk!

No interaction: U = 0, (a'ddTa) = (ata)(dd'), F(t) xx et(r=Eo)t /¢
Obtain I(u) oc np(p — Eo): energy spectroscopy.



ENHANCEMENT OF TUNNELING CURRENT

First-order perturbation in U

0
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OF'(t) / x —In|t|] — an essential divergence!
e () —t) ¢

Higher orders of perturbation theory — more logs...

Mahan, Nozieres, DeDominicis, Anderson...



TwoOo COMPETING EFFECTS

1) Tunneling electron is attracted to the hole left behind: a
quasiresonance, current enhancement.

2) Fermi sea shakup by scatterer switching (orthogonality
catastrophe): massive excitation of pairs, current suppression

tunneling electron tunneling electron
o 4
| /
# g &
) . a0
\_ *-f @ | @
hole @0 e Formilevel hole ee o ® Fermi level
XXX ®
eee go
208006
eeee0e® ® o®2 o
Attraction of the tunneling electron Shake-up of the Fermi sea (Orthogonality
to the hole catastrophe)

Green's function factorization, F(t) = e “Fo=WtL(¢)D(t)

Power law singularity (one scattering channel, phase shift d):

Ioc( 0 ) O(E; — p), with of:2f5/ﬂ'—(6/7r)2
Eo—p
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INFRARED CATASTROPHE IN FERMI GASES WITH LOCAL SCATTERI PHYSICAL REVIEW

P. W. Anderson
Bell Telephone Laboratories, Murray Hill, New Jersey
({Received 27 March 1967)

We prove that the ground state of a system of N fermions is orthogonal to
state in the presence of a finite range scattering potential, as N—=, This
the response to application of such a potential involves only emission of exc
the continuum, and that certain processes in Fermi gases may be blocked b
Ly in a low-T', low-energy limit.

tion to thewz:rpi_ical conductivity has the form

VOLUME 163, NUMBER 3

Excitons in Metals : Infinite Hole Mass

G. D. Maman®*
General Eleciric Kesearch and Development Cenler, Schenectady, New Fork
(Received 5 May 1967)

The optical conductivity is evaluated for interband transitions between a flat valence band and a parabolic
conduction band, The conduction band is filled with electrons to a Fermi energy up. The eonductivity is
calculated assuming that the electron-hole interaction is attractive, static, and short range. The final-state
interactions between the electron and hole cause a divergence in the conductivity at the interband threshold,
“Thig divergence appears to go as & power law, For this case of an infinite hole mass, the exciton binding
cnergy vanishes, since the singularity in the scattering amplitude occurs just at threshold,
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where w,=Eg+ur is the threshold frequency.

VOLUME 178, NUMBER 3

Singularities in the X-Ray Absorption and Emission of Metals.
III. One-Body Theory Exact Solution

P. NoziBres*
Universily of California, San Diego, California

AND

C. T. De Domnicist
Lyman Laboratory, Harvard University, Cambridge, Massachusells

The singularities of x-ray absorption or emission in metals are studied by a new “one-body” method,
which describes the scattering of conduction electrons by the #ramsient potential due to the deep
hole. Using the linked-cluster theorem, the net transition rate in the time representation is expressed as the
product of two factors: a one-electron transient Green’s function L, and the deep-level Green’s function g.
These factors obey simple Dyson equations, which can be solved asymptatically by using Muskhelishvili’s
method. The x-ray transition rate is found to behave as 1/, where e is the frequency measured from the
threshold, and « an exponent involving the various phase shifts & which describe scattering by the deep
hole. @ may be >0 (infinite threshold) or <0 (zero threshold). The experimental implications of these results
and their relation to the Friedel sum rule are briefly discussed.

the various determinations of the integrand). The
algebra is lengthy, but straightforward, so that we shall
only quote the result.'

'— W r =)
ga‘('r,'r",ﬂ,!’)tG*(T‘T’)[u(—ﬂ] ’ (51)

(¢—)(r'~1)

15 FEBRUARY

tering potential is explicitly time-dependent. Let
C(t—1') be the contribution of all single closed loops,
Ly (t—¢') being that of the open line in Fig. 3(a). The
linked cluster theorem tells us that

5 =ec,
Fkkf{ﬂ}tlkkr(&*}&c“’. (15)

The net transition amplitude Fy, appears as the
product of a one-body factor Ly multiplied by the
deep-hole propagator §.10

The quantities of physical interest are the spectral
densities. Measured from their respective branch points,
they behave as

1/ e\ (8/m2
_(__) for the Green’s function G,
xo (66)

¢ 25/ r—(5/x)2
(—) for the response function F.
€



Elastic Scattering, Feynman Diagrams

Onepartide QM scattering amplitude, perturbation theory

) ) ) ) ) r E

Fi(ky, ko) = V(ky — ky),

_ [ Vik: —q) V(g —k,)(d%)
FP(k, k) = f e —q*/(2m) +id

F[ﬂ} k[?kg} = f f kﬁ S P ql k }Etfi[;'ﬂ—l} i [ffﬂfi“l;'
—q_ n‘f ‘?rﬂ )+ m) (E —q/(2m) + ir})
F=V+VGV +VG VG,V +... VGV + VGV +..) =V + VG, F
| ntegral equation: , Vik, —q) F(ki,q) d’q
: Flk) ko) =V(ks—k .
(1, ka) ez ) + [ e—hq2/2m+id (2r)?

Sol ution: F(e) = (9 — 1)/2miv(e)

with d(e) the scattering phase, v(e) = [d(e — E(p))d®p the density of states



Many-Body Theory

Causal Green's function G (z,2) = —i{T Y, (z)Ut ()
Retarded and advanced —

. C(t.1) = e T2t
Green's functions Gt ), Tt

G" (e, p) = 1/(e — &(p) £ i6)

1 —n(p) i n(p)

G(e,p) = (1 — n(p))G (e, p) + n(p)G*(e,p) = I )R

Summing the series for scattering on V obtain

F(e) = { (%0 —1)/2miv  e>p

=g — l/ miy €< U



The orthogonality catastrophe

1 J—
Dynamical overlap K, = (T exp(=i [ Hia(t)dt)),
R R b =1
—i)"(Hint (t1) Hint (t2) . . . Hiwa (tn) ) dtn. . . dt2dt
2{4 lm( (1) Hins (£2) . .. Hi (t0) )t ... it

Linked cluster expansion '~ 2 .

o o I




Example: second order contribution

s 0 O !

(i) S— 3 Tp—
P = f [ (T Hine () Fis (2))) dt’ dt = — [ [ (Hi (O R (¢))
et [ [U@UE) @ 00, 0) @E09t @) drd | ) = as®)()

(the exponent gamma regularizes contribution of long times)

o ¢
! ff?.u fﬁ' . | . )
= ~(oa)” [ f el (6 +i(t —1'))2 Re Fy = —(wa)"ln (B /7).
Powe law for the overlap: K| = (v/Er)3% | Gy = mow
Ground state overlap in a finite system o W 010 = (pol)*, | a= 82/

a power law function of system size

(rdate gamma to levd spacing)

Good only for weak perturbation --> Nonperturbative methods?



Nozieres-deDominicis approach

(1) Resummation of Feynman diagrams:

Ot = Casi(t =)+ G (6= 1)

:
w(t—t'+i0)

with G . unaffected by switching, G (t —1') =

G, t) = Ga(t —1), V — (6% —1)/(2miv)

(i1) Dyson equation for G gives a singular integral equation
(1i1) Use special technique (Muschelishvili) to obtain solution

Scal e decomposition of G good for dean Fermi liquid in equilibrium



LIMITATIONS OF THE CONVENTIONAL THEORY

Diagrammatic approach (Nozieres): (1) T-matrix by diagram
resummation; (2) Dyson equation for G(t); (3) Solve singular integral
equation.

Too cumbersome, not easy to generalize, was replaced by bosonization
(Schotte and Schotte)

Bosonization handles well many FES problems (e.g. Luttinger liquids, QH
edge, nanotubes)

However, bosonization isn't always helpful:
(1) FES in a nonequilibrium electron gas;

(2) FES in a system with complex scattering (nonseparable
potential, noncommuting scattering matrices, quantum dots) | g1

Bosonization needs equilibrium Fermi sea, requires separable
scattering channels, and thus is fairly fragile

Develop new technique (insight from work by Muzykantskii et
al. on counting statistics and its relation to FES)



GENERALIZED FES: A THREE-STEP APPROACH
Step |: A useful technical trick from linear algebra

Consider a many-body second quantized operator
L= Aqapcles
a,3

in many-particle Fock space. Restrict A to the one-particle
subspace: a = A,3. Then

tre? = Z (ni, ..,nnlet|ny, .., ny) = det(1 + €?)
ﬂl,..,TLNZU,l
(fermion partition function!)

Thus, a trace over many-particle Fock space can be expressed
via the determinant over the one-particle subspace.



A pedagogical example: With A = 0 have

tr(ed) =2V, det(l+ed)=2x...x2=2N

This can be generalized to ANY number of operators™

I 2 i Klich '02
te(e“e”) = det(1 + e%e®),

ey

tr(e‘"ﬁieﬁeé) = det(1 + e?ePe®)

(*) Holds for quadratic operators only.




Apply the determinant formula to FES

Link the orthogonality catastrophe overlap factor
D(t) = (0]0") = tr (e~*H1tet 05,

to one-particle evolution operators e ™7, e~*"07  Note that

De = H(npa;jap + (1 —mp)apay) = — exp Z Apbs iy
p

. ﬂ(f )

with e " = Tnle) From the determinant formula obtain

D(t) = det (1 — ni(e) + ehl’reif”“’rﬁ(f))

Holds for generic evolution operators (quantum dots, billiards,
scattering, etc.)



Step Il: Scattering Matrix

Interpret forward-backward evolution operator

. 4 —1
S’ s e—hl‘Te'ihDT - 5t y v Sl SO:, O < t?t! < T
’ 1, else

as the single-particle scattering operator!

At

Single channel: Sp; = 2% ST1G, = eildo—o)



Step Ill: Solving an Integral Equation

Fal

Evaluate D = det (1 — i 5&)) with noncommuting n, S
g, XN _wm g
O0ln D = tr {(l—ﬁ,—l—Sﬁ) (S—l)éﬁ]

Need to invert integral operator A = 1 — i1 + Sh
(linked by Muzykantskii & Adamov to generalized Riemann-Hilbert problem)
(1) Nonequilibrium FES: used time-energy duality;

(2) Nonseparable FES at 7' = 0: ng(e) generates Cauchy
kernel nu(t,t") < 1/(t — t' + i0), same equation as in Nozieres



Example: Orthogonality Catastrophe

Wanted: the determinant e = det(1 + (S — 1)7), with the scattering operator S diagonal
in the time domain, n diagonal in the energy domain:

_ihr ik . S8 O<t<r « i ielt—¢ de
e thTB!ﬁDT i 1~0 - - _ /E ie(t f)n N
s { L, else T 9t — ¢ +10) r{ )2?1'

S

~

S, n are operators in the Hilbert space of functions of ¢ (or, alternatively, of €).
Using the identity dIndet X = tr (X~'dX), obtain

dsC = dlndet(14 (S —1)n) = tr [(l + (S — 1)?*!..)_1d55ﬂ'ﬁ] , dsS = 2ie*® { é Sl;it =T

To invert 14 (S — 1)7 represent S(t) as a product of Y, (¢), Y_'(¢), analytic in the upper
and in the lower halfplane, respectively:

%S(t}:};(f)}’:l(t), nYa(t) = / In S{E) _ g (1)

B 5

which gives Yi(t) = (t — 7 £i0)/™/(t £40)°/7. In terms of Yy the variation dF reads
dC = tr [(Y'a+ Y (1—#)) Yo dSil

Note analytic properties of Y. and n: nY_n = Y_n, (1L —a)Yo (1 —n) = Y (1l —n).
Simplify: dC' = tr [Y__ laY. d@;S] and. taking into account the form of Y., obtain

:I IIIIIIII ? IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII



PRL 94, 186803 (2005)
FES ouT OF EQUILIBRIUM

Generic energy distribution n(e), e.g. a split Fermi step
n(e) = (1 — 2)np(e — ) + znp(e — o)

with g1 o potentials in the leads (Pothier et al. '97)
Found: splitting of FES resonance N (e) = Im G(e),

G(e) / ( . X D(e — €')de

& — ) (€ — i)™

with complez exponents a1 = 2(§ — ) /7, aa = 28/ and

5 = %ln(l —il?—l—f_’,%g:l?)

At small 0 < 1, the exponents are expressed through partial
density of states: oy = (1 —x) X 20/7, g = & X 20/



BROADENING OF FES: ORTHOGONALITY
CATASTROPHE

The broadening function D(e) = [ €*"D(7)dr with

(1— i,wr)gg/ﬂz

_ _§2/972
g ey ié) T exp(—)

D(r) =

The energy width parameter (Effective temperature)

i = iﬁ%ln(l—llzc(l—m)sm 5),, = g — 1

Width scales with the step separation: v o< p x (1 — z)d% (small §)

Note divergence at x = 1/2, § = w/2; A nonperturbative effect!



SpLiT FES (I)

Tunneling density of states, a.u.
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Tunneling density of states for different step mixing ratios  at 6 = 0.3



SpLIT FES (II)

0.25+4
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Tunneling density of states

0.4
-1 o 02 Step mixing ratio, x

Tunneling density of states for different step mixing ratios « at 0 = 0.6

Note broadening nonmonotonic in x, increasing with ¢



NONEQUILIBRIUM FES FEATURES:

(1) Factorization into open line and closed loop
contributions: G(t) = L(t)D(t)

(2) In equilibrium, . = 0, agree with the textbook result;

(3) Golden Rule interpretation of broadening: tunnel below
Fermi sea with de-excitation of pairs; effective temperature
T, = [n(e)(1 —n(e))de

(4) True (split) singularity in the open line contribution L(¢)
broadened after convolution with D(¢)

(5) Relation to Kondo problem? (Recent controversy about
singlarities at finite bias)



Tunneling In an Open Quantum Dot:
M esoscopic FES

(1) Scattering after tunneling, multiple returns,
enhanced interaction "
(1) FES depends on full S-matrix --- tunability
(111) Mesoscopic fluctuations over FES

L, k™
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Tunneling Spectroscopy
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Fermi Edge Resonance?



M esoscopic fluctuations
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Quantum dot as a compound scatterer

Difficulty for theory: non-commuting matrices (Yamada & Yosida)
Microscopic parameter: the backscattering phase 9

~ Open up the small dot, define an extended scattering matrix

S of size (N +1) x (N +1).

Relate S and S?

o S = S =oe .

Si(N+1)S(V4+1);
0206 _

R

Sii = S + i,j=1...N,

=

with the backscattering amplitude r = S(N+1)(N+1)

PRL 93, 126802 (2004)



Matrix R

FES for non-commuting scattering matrices is described by

Energy-independent

_— =15/
R=1500)5"()  pgow Thouless energy

i u . e el Y
Note: in the simplest case N = 1 have S = €?*® and R = €?72% a5 in
Mahan and Nozieres et al.

For open quantum dot, using extended S-matrix, obtain

( ) *
o= U 1) wtu

where .
210

U(5) = et —p

o 62?.'5?’* |
Note: R = 1+ (a rank one matrix)




The effect of scattering on FES exponent

The matrix R has just one nontrivial eigenvalue. Thus obtain

_om 1 (U)
=~y ﬁ2mln(U(5’))

Scattering affects the FES exponent through a single parameter,
the backscattering amplitude 7.

The amplitude r is part of a random matrix. Thus,
1) Changing r, one can tune « in the range 0 < a < 1;
2) Statistics of « sensitive to magnetic field;

3) Small r limit:

(B) = Bo, (a)=o0p— '

— disorder-enhanced orthogonality.



M esoscopic FES summary

¢ FES depends on backscattering, full S-matrix
¢ FES exponent tunable
¢ Diffeent powe law for fluctuations (in progress)

The dependence of o on the phase of r:
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More broadly:

(1) FES for generic mesoscopic
scatterer;

(i1) Generalization to disordered
metals.

resonant tunnding, two-levd
systems



Conclusions

¢ Effiaent technique for FES outsde conventional
approach

¢ Onepartide S-matrices appear early in thecal-
culation

¢ Applicableto general energy digribution and
noncommuting scattering matrices. noneguilib-
rium transport, mesosoopic systems



