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1. PART 2 - Interaction Effects and Symmetry Protected Topological

Phases

Overview of Part2: We will try to establish the following surprising facts, that arise
when interactions are added to the study of topological phases:

• Folklore: Integer quantum Hall states are classified by an integer Z. New
topological phases from interactions lead to classification by two distinct
integers Z ⇥ Z.

• Folklore: The 3D topological insulator surface must be gapless or break sym-
metry. A fully symmetric but gapped surface state of a TI is possible with
strong interactions.

• Folklore: Theories of strongly interacting topological phases have no exper-
imental consequences. New insights have led to testable predictions for an
experimentally observed state in the half filled Landau level.

1.1. Quantum Phases of Matter. Short vs. Long Range Entanglement. How
do we distinguish di↵erent phases of matter? We will be particularly interested in zero
temperature states - i.e. the ground state of an interacting bunch of particles. Typically,
the phases of matter are only sharply defined in the limit of an infinite number of particles.
Then, two states belong to di↵erent phases, if there is necessarily a phase transition sep-
arating them, where properties change in a singular fashion. For a while, people thought
they had figured out how to diagnose this. The answer they believed had to do with sym-
metry - at the fundamental level, breaking symmetry in di↵erent ways lead to di↵erent
phases. For example - in the Quantum Ising model, with two level systems arranged on a
line:
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there is a symmetry or flipping the spin �z ! ��z (similarly for the y spin direction). This
Z2 symmetry is spontaneously broken if g is small while it is restored if g is su�ciently
large. Thus there are two phases which can be distinguished by the order parameter h�z
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Symmetry is key to having a sharp distinction - if it is broken by hand, eg. by adding a
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Figure 1. The toric code model with generic perturbations, which has
two phases although they have the same symmetry. The Phase 2 is gapped
but has long range entanglement - as evidenced by having ground state
degeneracy with periodic boundary conditions, and anyone excitations with
nontrivial mutual statistics.

field along �z, then the phase transition can be converted into a crossover. For a while
it was thought that all phases of matter (apart from a few well characterized outliers like
metals) could be identified by such a procedure.

However, Wegner came up with a model with two phases which shared the same sym-
metry. Today we understand that they di↵er in their topology - here is the modern avatar
of that model, the Kitaev Toric code, which also has spins on the vertices of a 2D square
lattice. The coupling takes the following form - and includes 4 spin couplings around the
plaquettes (see figure 1).
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The two phases in this model include a ‘trivial’ phase which can be thought of as a
product state of spins pointing along a certain direction. The other phase does not have
any representation as a product state of a site or finite group of sites. It can be thought
of as a condensate of closed loops - where the loops are found by linking �z = �1 spins
for example. There are two kinds of point excitations in this phase - which violate the
individual plaquette terms. One is called a ‘charge’ and the other the ‘vortex’. Despite
ultimately being built out of bosons (the spins can equally be thought of as occupying



BOULDER SUMMER SCHOOL LECTURE NOTESTOPOLOGICAL SEMIMETALS AND SYMMETRY PROTECTED TOPOLOGICAL PHASES3

sites with hard core bosons), the excitations have unusual statistics. Taking one around
mother leads to a (-1) sign, hence they are mutual semions. This is an example of fractional
statistics, in the generalized sense, which includes both exchange of identical particles as
well as mutual statistics. This is an indication of long range entanglement (LRE). Another
signature is that when the system is defined with periodic boundary conditions (i.e. on
a torus), there is a ground state degeneracy. The degenerate states appear identical with
respect to any local operator (the degeneracy itself can be understood since the Hamiltonian
is a local operator). We define a short range entangled phase as one that does not have
these properties.

A Short Range Entangled (SRE) state is a gapped phase with a unique ground state on a
closed manifold. All excitations (particles with short range interactions) have conventional
statistics. For example, if the phase is built of bosons, all excitations are bosonic with
trivial mutual statistics.

We also allow for the possibility of a symmetry specified by the group G. We will restrict
attention to internal symmetries , that is, we do not consider symmetries that change
spatial coordinates, like inversion, reflection, translation etc. Common internal symmetries
that are encountered in condensed matter physics are charge conservation, various types
of spin rotation symmetry, and time reversal symmetry. The advantage of working with
internal symmetries is that we can consider disordered systems that respect the symmetry.
also the symmetries can be defined at the edge, while for spatial symmetries, one may
require a special edge configuration, to preserve symmetry. Some spatial symmetries like
inversion are always broken at the edge.

Gapped SRE ground states that preserve their internal symmetries only di↵er from the
trivial phase if they possess edge states. (For 1D systems, the edge states are always gapless
excitations, and rigorous statements can be made using matrix product state representation
of gapped phases.)

The fact that SRE topological phases only di↵er at the edge, not in the bulk (unlike
LRE state), makes them much easier to study. The set of SRE topological phases in a
given dimension with symmetry G actually has more structure than just a set. If we add
the trivial phase as an ‘identity’ element, the set of phases actually form an Abelian group.
The operations for the group are shown. The addition operation is obvious: take two
states and put them side-by-side. But it is not so obvious that a state has an inverse: how
is it possible to cancel out edge states? Two copies of a topological insulator cancel one
another, because the Dirac points can be coupled by a scattering term that makes a gap.
The inverse of a phase is its mirror image (i.e reverse one of the coordinates). To see this,
we must show that the state and its mirror image cancel; the argument is illustrated at
the bottom of figure 2. In one dimension, for example, take a closed loop of the state,
and flatten it. The ends are really part of the bulk of the loop before it was squashed, so
they are gapped. Therefore this state has no edge states. Because topological SRE phases
are classified by their edge states, it must be the trivial state. Therefore the Hamiltonian
describing the inverse of a particular state H(x, y, z . . . ) is, for example H(�x, y, z . . . ).
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Figure 2. SRE phases that preserve a symmetry must form an Abelian
group. This is not true for LRE phases, which typically get more compli-
cated on combining them together.

1.2. Examples of SRE Topological phases. Let us give a couple of concrete examples
of SRE topological phases of bosons/spins. These are necessarily interacting - unlike free
fermions, there is no ‘band’ picture here.

1.2.1. Haldane phase of S=1 antiferromagnet in d=1. The following simple Hamiltonian
actually leads to a gapped phase with SRE, but gapless edge states:

H = J
X

i

~S
i

· ~S
i+1

The edge realizes e↵ectively a S = 1/2 state, despite the chain being built of S = 1 spins.
This phenomena has been observed experimentally in some nickel based insulating magnets,
e.g. Y2BaNiO5. The Ni atoms form S=1 spins, organized into chain like structures that
are relatively well isolated from one another . When a non magnetic atom is introduced
(like Zn) it disrupts the chains and releases a pair of S = 1/2 moments that are nearly
decoupled from one another. These contribute to magnetic susceptibility and specific heat
in a characteristic way that depends on dilution, and residual interactions between the edge
spins leads to a characteristic spectrum that is accessible to spectroscopic experiments [1]

The symmetry that is crucial to protecting this phase is SO(3) spin rotation symmetry.
However, it turns putt hat the full rotation symmetry is not required. It is su�cient to
just retain the 180 degree rotations about the x, y and z axes. This symmetry group
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{I, X, Y, Z}, contains the identity and the 3 rotation elements. This can be written as
{I, X} ⇥ {1, Y }, since Z = X ⇥ Y , the combination of two rotations is the third rotation.
Mathematically this group is Z2 ⇥ Z2. We will write down a model with this symmetry
(which is not quite reducing the S=1 down to this rotation symmetry), but which has the
advantage of being exactly soluble - not just for the ground state but also for all the excited
states. This model also has a nice interpretation - of arising from condensing domain walls
bound to spin flips.

1.3. Duality. It will be useful in many contexts to pass from a description involving
local degrees of freedom, to one that focuses on the topological defects. In particular we
will see that some SPT phases can be readily accessed in terms of condensing defects to
which symmetry quantum numbers are attached. We will focus on this mechanism in the
following. The simplest example will be the 1+1D transverse field Ising model, with an
additional Z2 quantum number attached.

1.3.1. An exactly soluble topological phase in d=1. Consider a spin model with Z2 ⇥ Z2

symmetry. There is a Z2 set of topological phases with this symmetry in d=1, and we will
explicitly construct the nontrivial topological phase. We will implement this symmetry by
a pair of Ising models (labeled � and ⌧) that live on a zig-zag lattice as shown in the Figure.
Consider beginning in the ordered state of the �, but where the ⌧ are disordered and point
along a transverse field ⌧x. Now, we would like to restore the Z2 symmetry of the � spins.
We do this by condensing the domain walls of the � spins. If we directly condense domain
walls we get the trivial symmetric state. However, we can choose to condense domain walls
with a spin flip of ⌧ attached. We will see that this gives the topological phase.

One way to do this is to write down a Hamiltonian that would lead to this binding. Note
that the operator �z

i

�z
i+1 detects a domain wall. Consider:
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where we have placed the � (⌧) on the even (odd) sites of the lattice. In the absence
of a domain wall, we have the usual transverse field term, whose sign changes when a
domain wall is encountered. We will show that this is a gapped phase with short range
entanglement, but has gapless edge states.

First, consider the system with periodic boundary conditions. We will leave it as an
exercise to show that each of the terms in the Hamiltonian 3 commutes with all others.
Then, for a system with N sites, we have exactly N terms which can be written as H =
�

P
i

�
�̃x2i + ⌧̃x2i+1

�
, where the tilde denote the three spin operators in the Hamiltonian 3.

Hence, this simply looks like each site has a modified transverse field, which implies a
unique ground state and a gap, in this system with periodic boundary conditions.

Now consider open boundary conditions as shown. Let us focus on the left edge, where
the end of the chain implies we lose �̃

x

operator. This will result in a two fold degeneracy
as we will show. The first term in the Hamiltonian is now ��z0⌧x1 �z2 . We can easily show
that the following two operators commute with the Hamiltonian ⌃z = �z0 and ⌃x = �x0⌧

z

1 .
However they anti commute with one another. Hence we can show the ground state must
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Figure 3. An exactly soluble model of a 1D SRE phase with gapless edge
states protected by Z2⇥Z2 symmetry. Terms in this Hamiltonian encourage
binding of domain walls to spin flips. The topological phase emerges on
condensing these ‘decorated’ domain walls.

be at least two fold degenerate. Say you had a unique ground state of the Hamiltonian,
| i. This must be an eigenstate of ⌃z, since it commutes with the Hamiltonian. Let us say
⌃z| i = �| i, where � = ±1. However, we can find an independent state | 0i = ⌃x| i.
This is a degenerate state since [⌃x, H] = 0. It is also a distinct state since it has a di↵erent
eigenvalue ⌃z| i = ��| i, due to ⌃z⌃x = �⌃x⌃z . Hence there are at least two ground
states (| i, | 0i). They only di↵er by application of an edge operator, hence this is an edge
degeneracy.

Note, it is important we preserve the symmetry - if we add ⌃a to the Hamiltonian we can
gap the edge state, but at the expense of also breaking the Z2 ⇥ Z2 symmetry. Hence this
is called a symmetry protected topological phase (SPT). This model has special properties
that make it exactly soluble - but adding general perturbations that are local and preserve
the symmetry lead to a more generic state. The presence of an energy gap implies that the
state is stable against weak perturbation, which means it will remain in the same phase.

1.4. A SPT Phase of Bosons in 2+1D. Here we will show that Bosons with charge q

can lead to a SRE topological phase with quantized hall conductance �
xy

= 2n q

2

h

. Note,
they are quantized to even integers [2], which is required by SRE. Therefore unit hall
conductance for bosons is considered a fractional quantum Hall state!



BOULDER SUMMER SCHOOL LECTURE NOTESTOPOLOGICAL SEMIMETALS AND SYMMETRY PROTECTED TOPOLOGICAL PHASES7

We construct this state as follows. We begin with two species of bosons (A,B) and
consider a superfluid of one component (A) and an insulator of the other. We then bind
a particle of B to a vortex of A )and a hole of B to an antivortex) and condense both
these object to obtain an insulator. We will show this is a topological phase protected by
U(1)

A

⇥ U(1)
B

. Finally we break this to a diagonal U(1) to obtain the bosonic integer
quantum Hall state.

1.4.1. E↵ective Field Theory. Let us write down an e↵ective theory to describe a fluid
built out of boson-vortex composites. The ‘A’ particles acquire a phase of 2⇡ on circling
vortices, hence the e↵ect go vortices can be modeled by a vector potential whose curl is
centered at the vortex locations: @

x

a
y
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y
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= 2⇡
P

j
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j

�(r�rv
j

), where (nv

j

, rv
j

) represent
the strength and location of the vortices. This vector potential will couple minimally to
the current L = ~j

A

· ~a, where the vectors are two-vectors. A rewriting o this formalism
to include motion of vortices results in the following generalization to the three current
jµ = (⇢, j

x

, j
y

) , and three gauge potential a
µ

= (a0, a
x

, a
y

). Also, since we assume the
vortices are bound to the bosons ‘B’ we can rewrite the equation for a as:

(4) ✏µ⌫�@
⌫

aB
�

= 2⇡jµ
B

where we have introduced a superscript ‘B’ for the vector potential. At the same time we
can utilize the continuity equation for the current j

A

, @
µ

jµ
A

= 0 to write:

(5) ✏µ⌫�@
⌫

aA
�

= 2⇡jµ
A

In order to keep track of the charge density of ‘A’ and ‘B’ bosons, it is useful to introduce
external vector potentials A(A,B) that couple to the currents of the ‘A’ and ‘B’ bosons.
This leads to our final topological Lagrangian:

L
topo

=
✏µ⌫�

2⇡

�
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@
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(6)

Z
topo

[AA, AB] = eiStopo =

Z
DaADaBei

R
dxdydtL

topo(7)

First, we would like to establish that this describes a phase with short range entanglement.
Note, the mutual phases involved are all 2⇡ implying the absence of fractional statistics.
One can also compute the ground state degeneracy on the torus - this turns out to be
directly computable from this theory - if we write

L =
K

IJ

4⇡
✏µ⌫�aI

µ

@
⌫

aJ
�

, the ground state degeneracy is |detK|. In this case K = �x, and there is a unique ground
state.

Given that it is a SRE phase, we can deduce two important consequences from this
theory- the first is regarding edge states, which can be shown to be equivalent to that
derived before, and the quantized Hall conductivity. The latter is obtained by integrating
out the a fields to obtain an action purely in terms of the external probe fields A. The
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current is then defined as j
A

= �S

�A

A

where Z = eiS . A gaussian integration of Eqn. 7
yields:

(8) S
topo

= �
Z

dxdydt
✏µ⌫�

2⇡
AA

µ

@
⌫

AB

�

thus we have:

(9) jµ
A
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✏µ⌫�@

⌫
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If we consider the spatial components of this equation we find: jx
A

= 1
2⇡Ey

B

, where E
B

is
the electric field applied on species ‘B’. Thus we have a crossed response Hall conductivity
�AB

xy

= 1
2⇡ , which , replacing charge Q

a

for the bosons and ~ gives �AB

xy

= Q

A

Q

B

h

.
We would like to apply these insights to electronic systems, where one may combine

pairs of electrons to form Cooper pairs with charge Q = 2e. However, in that case there
is a single conservation law. Topological phases with a single U(1) can be described by
the field theory above 7 , if we assume that the two species of bosons can tunnel into one
another and collapse the combined U(1)⇥U(1) symmetry into a single common U(1). This
amounts to replacing the pair of external vector potentials by a single one and the resting
topological response theory is:

(10) S
topo

= �
Z

dxdydt
✏µ⌫�

2⇡
A

µ

@
⌫

A
�

Now, di↵erentiating with respect to the vector potential we get two contributions and hence:

jµ = 2
2⇡ ✏

µ⌫�@
⌫

A
�

which implies a Hall conductivity, in units of the boson charge �
xy

= 2Q

2

h

.
This is the Bosonic Integer Quantum Hall (BIQH) phase. Somewhat surprisingly, its Hall
conductance is always an even integer. Potential realization of this phase in bilayer systems
of bosons in the lowest Landau level with net filling ⌫ = 2 have been discussed in recent
numerical work 1.

Note we have assumed commensurate filling to admit an insulator. Also, these models
are not exactly soluble in the same way that the previous models were - for other approaches
to construct models in this phase see 2 .

1.4.2. Implications for Interacting Quantum Hall State of Electrons: It is well known that
free fermion IQH states have a quantized Hall conductance �

xy

= n e

2

h

. At the same time,

they have a quantized thermal hall e↵ect 

xy

T

= c
⇡

2
k

2
B

3h where c = n. The latter simply
counts the di↵erence between the number of right moving and left moving edge states.
This equality is an expression of the Wiedemann Franz law that related thermal and
electrical conductivity for weakly interacting electrons. This leads to the familiar integer
classification of IQH Z. How is this modified in the presence of interactions? We will
continue to assume short range entanglement - so that fractional quantum Hall states are
excluded from our discussion. It has long been known that n must remain an integer if

1See arXiv:1305.0298, arXiv:1304.5716, arXiv:1304.7553
2See S. Gerdatis and O. Motrunich, arXiv:1302.1436 (in particular, Appendix C)
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charge is to remain unfractionalized. However, the equality n = c can be modified. In
fact, if we assume the electrons can combine into Cooper pairs which form the BIQH state,
the latter has Hall conductance �

xy

= 8 e

2

h

but 
xy

= 0. Thus we can have n � c = 8m.
Indeed this implies that the classification of interacting quantum Hall states of electrons
with SRE is Z ⇥ Z at least. Note, this also predicts a phase where n = 0 but c = 8. This
can be achieved by combining an n = 8 free fermion quantum Hall state with a BIQH
state of Cooper pairs to cancel the electrical Hall conductance. The remaining thermal
Hall conductance is c = 8. It can be shown that a ⇡ flux inserted in this state has trivial
statistics and can be condensed - which implies that all electrons are confined into bosonic
particles without disturbing the topological response of this phase. Alternately, one can
show that neutral bosons with short range interaction can lead to a topological phase with
chiral edge states, if they appear in multiples of eight[3]. Indeed one can write down a
multi component chern simons theory to describe this topological phase of neutral bosons,
in terms of a K matrix as described in detail below.

A phase without topological order is characterized by a symmetric K matrix with
| detK| = 1. A chiral state in 2 + 1-D requires the signature (n+, n�) of its K matrix
to satisfy that n+ 6= n�. We therefore seek a K matrix with the following properties (1)
| detK| = 1 (2) the diagonal elements K

I,I

are all even integers so that all excitations are
bosons and (3) a maximally chiral phases, where all the edge states propagate in a single
direction. Then, all eigenvalues of K must have the same sign (say positive), so K is a
positive definite symmetric unimodular matrix.

It is helpful to map the problem of finding such a K to the following crystallographic
problem. Diagonalizing K and multiplying each normalized eigenvector by the square root
of its eigenvalue one obtains a set of primitive lattice vectors e

I

such that K
IJ

= e
I

· e
J

.
The inner product of a pair of vectors l

I

e
I

and l0
I

e
I

are given by l0
I

K
IJ

l
J

, while the volume

of the unit cell is given by [DetK]1/2. The latter can be seen by writing the components
of the vectors as a square matrix: [k]

aI

= [e
I

]
a

. Then Detk is the volume of the unit cell.
However, K

IJ

=
P

a

k
aI

k
aJ

= (kTk)
IJ

. Thus DetK = [Detk]2.
Thus, for a phase without topological order, we require the volume of the lattice unit

cell to be unity [Detk] = 1 (unimodular lattice). Furthermore, for a bosonic state, we need
that all lattice vectors have even length l

I

K
IJ

l
J

= even integer, since the K matrix has
even diagonal entries (even lattice). It is known that the minimum dimension this can
occur in is eight. In fact, the root lattice of the exceptional Lie group E8 is the smallest
dimensional unimodular, even lattice3. Such lattices only occur in dimensions that are a
multiple of 8.

3See wikipedia entry for E8 root lattice (Gosset lattice)



10 ASHVIN VISHWANATH HARVARD UNIVERSITY, USA.

A specific form of the K matrix is:

(11) K =

0

BBBBBBBBBB@

2 �1 0 0 0 0 0 0
�1 2 �1 0 0 0 0 0
0 �1 2 �1 0 0 0 �1
0 0 �1 2 �1 0 0 0
0 0 0 �1 2 �1 0 0
0 0 0 0 �1 2 �1 0
0 0 0 0 0 �1 2 0
0 0 �1 0 0 0 0 2

1

CCCCCCCCCCA

This matrix has unit determinant and all eigenvalues are positive. It defines a topological
phase of bosons without topological order, with eight chiral bosons at the edge[2]. We will
call this the E8 state since it is related to the E8 group.

Exercises:

(1) Verify that the terms in Eqn. 3 commute with one another, in a chain with
periodic boundary conditions. With open boundaries, explicitly write out a
Hamiltonian and check that the edge operators ⌃a commutes with it.

(2) Use the Jordan Wigner procedure to map Eqn. 3 onto fermion operators.

Recall, for the 1D quantum Ising model, the transformation is c†
j

= �+
j

S
j

where the string operator is S
j

=
Q

i>j

�x
i

. Show that the same mapping
leads to a topological phase of these nonocal fermions. Note however there
are some important di↵erences with a topological phase of electrons. Argue
that in the latter case there must always be a residual symmetry that cannot
be broken by any physical operator, unlike in the fermionized version of the
problem above.

References

[1] M. Yoshida, K. Shiraki, S. Okubo, H. Ohta, T. Ito, H. Takagi, M. Kaburagi, and Y. Ajiro Phys. Rev.
Lett. 95, 117202 (2005).

[2] YM Lu and A Vishwanath, Physical Review B 86 (12), 125119 (2012).
[3] A. Kitaev, Annals of Physics 321, 2 (2006).



Particle vortex duality for Dirac Fermions

L =  ̄e(p� eA)µ�
µ e

L =  ̄CF (p� a)µ�
µ CF

+
✏µ⌫�
4⇡

Aµ@⌫a�

Particle Description Dual Description

Magnetic field 
B

Number density of composite Fermions: 
n=B/4π

Electron Density 
dN

Magnetic field 
b = Curl a 

Particle Hole Symmetry Time Reversal symmetry

(Son; Metltiski &AV; Wang-Senthil;Mross-Alicea-Motrunich)



Application I: Surface topological order of 
Topological Insulator

• Surface topological order - strongly correlated state. Hard to access in 
electronic variables. 

• BUT - simple in dual variables! 

• Consider superconductivity of composite Dirac fermions - Fu Kane 
superconductor! This is an INSULATOR of electrons, and it preserves 
time reversal symmetry. Excitations: 

• “h/2e” vortex (flux = electronic charge. Charge e/4) and Binds a Majorana 
mode. 

• Topological order T-Pfaffian. (Chen-Fidkowski-AV/Bonderson-Qi-Nayak) 

• Closely related to Read Moore Pfaffian state but compatible with time reversal 
symmetry. (R-MPfaffian = Ising x U(1)8  while T-Pfaffian = Ising* x U(1)8)



Application II: Half Filled Landau Level
• Magnetic field on a particle hole symmetric Dirac

3

photon
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T�! ✏��0c�0

B

L =  ̄e(p� eA)µ�
µ e

L =  ̄CF (p� a)µ�
µ CF

+
✏µ⌫�
4⇡

Aµ@⌫a�

Time Reversal symmetry Particle-Hole Symmetry

Magnetic Field B Composite Fermion Density δN 

Electron Composite Fermion



Experimental Consequences?

Want to distinguish Dirac from `conventional ‘ Halperin-Lee-
Read composite fermions.  

Measure the Berry phase at Fermi surface? 

• Physical consequence - suppressed 2kF backscattering by 
particle-hole symmetric scattering. 

• Broken PH - Berry phase can interpolate between pi and 
0.

2

tative signature of the composite Fermi surface topology.
Moreover, we show how the Nernst e↵ect in combination
with conductivity and thermopower measurements can
be used to quantitatively extract the composite Fermi-
surface Berry phase.

Thermoelectric coe�cients and PH Symmetry –
We begin by briefly recounting symmetry constraints on
thermoelectric transport coe�cients. The thermal drift
of charged particles down a thermal gradient, �rT , pro-
duces an electric current, such that in the presence of
(small) voltage and thermal gradients the electrical cur-
rent can be written as j = �E + ↵(�rT ), where �,↵
are the electric and thermoelectric conductivity tensors
respectively. Thermoelectric responses are typically mea-
sured in the absence of conducting leads, so that no net
electric current flows through any cross section of the
sample. In this geometry, an electric field E = SrT ,
must develop to cancel the thermally generated current,
where, S = ��1↵ is the Seebeck tensor, whose diagonal
component Sxx is typically referred to as simply, ther-
mopower, and whose antisymmetric o↵-diagonal compo-
nent Sxy is typically expressed through the Nernst coef-
ficient: ⌫N = Sxy/B.

The longitudinal electric current, ↵xx (�@xT ), associ-
ated with charge-carrier flow induced by a thermal gradi-
ent has opposite signs for systems with electron and hole
carriers, as carriers flow from hot towards cold regions
independent of their charge. Hence local PHS, generated
by exchanging particles and holes, c(r) ! c†(r), con-
strains ↵xx,�xy = 0, implying vanishing thermopower,
Sxx = 0. In contrast, a number of thermopower mea-
surements have been previously performed on the com-
posite Fermi liquid state of the half-filled Landau level
in GaAs[12, 13]. There, a sizable Seebeck coe�cient was
observed, whose magnitude agrees reasonably well with
that of an ordinary Fermi liquid with the same density
of particles as the composite Fermi-surface. Given the
expectation that particle-hole symmetry results in van-
ishing thermopower, such observations naively seem to
rule out a (even approximately) particle-hole symmetric
description of the CFL in GaAs.

Can one reconcile the experimentally observed large
thermopower with the expectation of (at least approxi-
mate) particle-hole symmetry? The key to resolving this
apparent contradiction, is to note that the PHS present
in the half-filled LL is inherently non-local, involving not
only exchange of particles and holes but also filling a LL
|0i ! Q

n2LL c†n|0i, where c†n create an electron in the
nth orbital of the LL. For example this non-local PHS
exchanges �xy ! ��xy + 1 e2

h requiring non-vanishing

Hall conductance: �xy = 1
2

e2

h in a PHS state. Then,
non-vanishing thermopower can arise in a system with
non-local PHS, due to the non-vanishing combination
Sxx = ⇢xy↵xy. We note that non-local PHS still con-
strains ↵xx = 0, as a filled Landau level makes no contri-
bution to ↵. Given these basic symmetry constraints on
transport coe�cients, we now turn to their computation
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FIG. 1. Schematic of charge vortex duality for trans-
port - a) An electron (blue dot) is a source of electric field
E (blue line) and �4⇡ flux of the emergent gauge field b (cir-
culating dashed red line indicates winding of phase for Dirac
composite fermion). The Dirac composite fermion object (red
dot) is a dual object that is a source of emergent electric field
lines e (dashed red lines) and 4⇡ flux of the electron phase
(circulating blue line). Panel b) shows the electron phase,
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, winding by 4⇡ across the y-direction for each compos-
ite fermion propagating along x. Panels c,d) schematically
depict the composite fermion dispersion and Fermi-surface
pseudospin texture for the Dirac (⇡ Berry phase) and HLR
(0 Berry phase) respectively.

from an e↵ective field theory.

Thermoelectric properties of the composite Dirac
liquid – The composite Dirac liquid is described by the
e↵ective field theory[6]:
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where  is the Dirac CF field, µ = ⌧, x, y are (Euclidean)
space-time indices, aµ is an emergent U(1) gauge field
whose magnetic field b = r ⇥ a is 2⇡ times the electron
density, Dµ = @µ + iaµ are covariant derivatives, and
we have abbreviated Chern-Simons terms ✏µ⌫�Aµ@⌫A� ⌘
AdA. The last term represents Coulomb interactions be-
tween electrons with dielectric constant ✏r, and (. . . ) indi-
cates other terms that are less important at low-energies.
Particle-hole symmetry requires vanishing Dirac mass,
m = 0, (we use the convention sgn(0) = 0, so that the
ada term is absent with particle-hole symmetry).

A straightforward derivation of Eq. 1 from a par-
ton description, as well as a computation of its trans-
port properties obtained by a self-consistent RPA treat-
ment of gauge fluctuations (in a similar spirit to Io↵e
and Larkin’s analysis of conductivity in a U(1) spin liq-
uid [14]) is presented in Appendices A,B. Here, we in-
stead obtain the same results by a simple physical pic-
ture by making an analogy to vortex motion in a super-
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posite Fermi liquid state of the half-filled Landau level
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observed, whose magnitude agrees reasonably well with
that of an ordinary Fermi liquid with the same density
of particles as the composite Fermi-surface. Given the
expectation that particle-hole symmetry results in van-
ishing thermopower, such observations naively seem to
rule out a (even approximately) particle-hole symmetric
description of the CFL in GaAs.

Can one reconcile the experimentally observed large
thermopower with the expectation of (at least approxi-
mate) particle-hole symmetry? The key to resolving this
apparent contradiction, is to note that the PHS present
in the half-filled LL is inherently non-local, involving not
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non-vanishing thermopower can arise in a system with
non-local PHS, due to the non-vanishing combination
Sxx = ⇢xy↵xy. We note that non-local PHS still con-
strains ↵xx = 0, as a filled Landau level makes no contri-
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transport coe�cients, we now turn to their computation

jD

0

2⇡

�2⇡
x

y

d)

kx

ky

"(k)

kx

ky

"(k)

E e

electron Dirac CF

a)

b)

c)

�e

FIG. 1. Schematic of charge vortex duality for trans-
port - a) An electron (blue dot) is a source of electric field
E (blue line) and �4⇡ flux of the emergent gauge field b (cir-
culating dashed red line indicates winding of phase for Dirac
composite fermion). The Dirac composite fermion object (red
dot) is a dual object that is a source of emergent electric field
lines e (dashed red lines) and 4⇡ flux of the electron phase
(circulating blue line). Panel b) shows the electron phase,
�

e

, winding by 4⇡ across the y-direction for each compos-
ite fermion propagating along x. Panels c,d) schematically
depict the composite fermion dispersion and Fermi-surface
pseudospin texture for the Dirac (⇡ Berry phase) and HLR
(0 Berry phase) respectively.

from an e↵ective field theory.

Thermoelectric properties of the composite Dirac
liquid – The composite Dirac liquid is described by the
e↵ective field theory[6]:

Le↵ = † (D⌧ � µ � ivD ⇥ � � m�z) +

+ i


�AdA

8⇡
+

adA

4⇡
� sgn(m)

ada

8⇡

�
+

+

Z

r0

b(r)b(r0)

4⇡2✏r|r � r0| + . . . (1)

where  is the Dirac CF field, µ = ⌧, x, y are (Euclidean)
space-time indices, aµ is an emergent U(1) gauge field
whose magnetic field b = r ⇥ a is 2⇡ times the electron
density, Dµ = @µ + iaµ are covariant derivatives, and
we have abbreviated Chern-Simons terms ✏µ⌫�Aµ@⌫A� ⌘
AdA. The last term represents Coulomb interactions be-
tween electrons with dielectric constant ✏r, and (. . . ) indi-
cates other terms that are less important at low-energies.
Particle-hole symmetry requires vanishing Dirac mass,
m = 0, (we use the convention sgn(0) = 0, so that the
ada term is absent with particle-hole symmetry).

A straightforward derivation of Eq. 1 from a par-
ton description, as well as a computation of its trans-
port properties obtained by a self-consistent RPA treat-
ment of gauge fluctuations (in a similar spirit to Io↵e
and Larkin’s analysis of conductivity in a U(1) spin liq-
uid [14]) is presented in Appendices A,B. Here, we in-
stead obtain the same results by a simple physical pic-
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tative signature of the composite Fermi surface topology.
Moreover, we show how the Nernst e↵ect in combination
with conductivity and thermopower measurements can
be used to quantitatively extract the composite Fermi-
surface Berry phase.

Thermoelectric coe�cients and PH Symmetry –
We begin by briefly recounting symmetry constraints on
thermoelectric transport coe�cients. The thermal drift
of charged particles down a thermal gradient, �rT , pro-
duces an electric current, such that in the presence of
(small) voltage and thermal gradients the electrical cur-
rent can be written as j = �E + ↵(�rT ), where �,↵
are the electric and thermoelectric conductivity tensors
respectively. Thermoelectric responses are typically mea-
sured in the absence of conducting leads, so that no net
electric current flows through any cross section of the
sample. In this geometry, an electric field E = SrT ,
must develop to cancel the thermally generated current,
where, S = ��1↵ is the Seebeck tensor, whose diagonal
component Sxx is typically referred to as simply, ther-
mopower, and whose antisymmetric o↵-diagonal compo-
nent Sxy is typically expressed through the Nernst coef-
ficient: ⌫N = Sxy/B.

The longitudinal electric current, ↵xx (�@xT ), associ-
ated with charge-carrier flow induced by a thermal gradi-
ent has opposite signs for systems with electron and hole
carriers, as carriers flow from hot towards cold regions
independent of their charge. Hence local PHS, generated
by exchanging particles and holes, c(r) ! c†(r), con-
strains ↵xx,�xy = 0, implying vanishing thermopower,
Sxx = 0. In contrast, a number of thermopower mea-
surements have been previously performed on the com-
posite Fermi liquid state of the half-filled Landau level
in GaAs[12, 13]. There, a sizable Seebeck coe�cient was
observed, whose magnitude agrees reasonably well with
that of an ordinary Fermi liquid with the same density
of particles as the composite Fermi-surface. Given the
expectation that particle-hole symmetry results in van-
ishing thermopower, such observations naively seem to
rule out a (even approximately) particle-hole symmetric
description of the CFL in GaAs.

Can one reconcile the experimentally observed large
thermopower with the expectation of (at least approxi-
mate) particle-hole symmetry? The key to resolving this
apparent contradiction, is to note that the PHS present
in the half-filled LL is inherently non-local, involving not
only exchange of particles and holes but also filling a LL
|0i ! Q

n2LL c†n|0i, where c†n create an electron in the
nth orbital of the LL. For example this non-local PHS
exchanges �xy ! ��xy + 1 e2

h requiring non-vanishing

Hall conductance: �xy = 1
2

e2

h in a PHS state. Then,
non-vanishing thermopower can arise in a system with
non-local PHS, due to the non-vanishing combination
Sxx = ⇢xy↵xy. We note that non-local PHS still con-
strains ↵xx = 0, as a filled Landau level makes no contri-
bution to ↵. Given these basic symmetry constraints on
transport coe�cients, we now turn to their computation
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Thermoelectric properties of the composite Dirac
liquid – The composite Dirac liquid is described by the
e↵ective field theory[6]:
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where  is the Dirac CF field, µ = ⌧, x, y are (Euclidean)
space-time indices, aµ is an emergent U(1) gauge field
whose magnetic field b = r ⇥ a is 2⇡ times the electron
density, Dµ = @µ + iaµ are covariant derivatives, and
we have abbreviated Chern-Simons terms ✏µ⌫�Aµ@⌫A� ⌘
AdA. The last term represents Coulomb interactions be-
tween electrons with dielectric constant ✏r, and (. . . ) indi-
cates other terms that are less important at low-energies.
Particle-hole symmetry requires vanishing Dirac mass,
m = 0, (we use the convention sgn(0) = 0, so that the
ada term is absent with particle-hole symmetry).

A straightforward derivation of Eq. 1 from a par-
ton description, as well as a computation of its trans-
port properties obtained by a self-consistent RPA treat-
ment of gauge fluctuations (in a similar spirit to Io↵e
and Larkin’s analysis of conductivity in a U(1) spin liq-
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stead obtain the same results by a simple physical pic-
ture by making an analogy to vortex motion in a super-
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Sxx = 0. In contrast, a number of thermopower mea-
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posite Fermi liquid state of the half-filled Landau level
in GaAs[12, 13]. There, a sizable Seebeck coe�cient was
observed, whose magnitude agrees reasonably well with
that of an ordinary Fermi liquid with the same density
of particles as the composite Fermi-surface. Given the
expectation that particle-hole symmetry results in van-
ishing thermopower, such observations naively seem to
rule out a (even approximately) particle-hole symmetric
description of the CFL in GaAs.

Can one reconcile the experimentally observed large
thermopower with the expectation of (at least approxi-
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where  is the Dirac CF field, µ = ⌧, x, y are (Euclidean)
space-time indices, aµ is an emergent U(1) gauge field
whose magnetic field b = r ⇥ a is 2⇡ times the electron
density, Dµ = @µ + iaµ are covariant derivatives, and
we have abbreviated Chern-Simons terms ✏µ⌫�Aµ@⌫A� ⌘
AdA. The last term represents Coulomb interactions be-
tween electrons with dielectric constant ✏r, and (. . . ) indi-
cates other terms that are less important at low-energies.
Particle-hole symmetry requires vanishing Dirac mass,
m = 0, (we use the convention sgn(0) = 0, so that the
ada term is absent with particle-hole symmetry).

A straightforward derivation of Eq. 1 from a par-
ton description, as well as a computation of its trans-
port properties obtained by a self-consistent RPA treat-
ment of gauge fluctuations (in a similar spirit to Io↵e
and Larkin’s analysis of conductivity in a U(1) spin liq-
uid [14]) is presented in Appendices A,B. Here, we in-
stead obtain the same results by a simple physical pic-
ture by making an analogy to vortex motion in a super-

E = SrT
Sxx - Thermopower 
Sxy - Nernst effect

S
xy

S
xx

�
xx

= 2
h

e2
(Dirac)

= 0 (HLR)
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I. OVERVIEW OF SYMMETRY

We will be studying the Hamiltonian:

H = �J
"
X

i

�z

i

�z

i+1

+ g
X

i

�x

i

#
(1)

We note that ther eis a competition between the two terms, leading to interesting physics. The first ferromag-
netic term wants adjacent pairs of spins to be both up or both down, while the second term wants to polarize
the spins in the horizaontal direction. However there is more to that - consider for example the Hamiltonian:
H = �J [

P
i

�z

i

+ g
P

i

�x]. Here too there is a competition of the two terms, but the evolution as a fiunction of
g is smooth.

The key di↵erence is one of symmetry - the first Hamiltonian posesses a Z 2 symmetry that is spontaneously broken
at small values of g , giving rise to two phases. Intuitively, the symmetry is the fact that the Hamitlonain does not
distinguish between spins being up or down.

To formalize this - the mathematical structure that describes symmetry is group theory. Symmetry is an invariance
(you make a transformation to the system and ask if that brings it to a distinct but equivalent state). Clearly,
a combination of two such invariance operations is also an invariance. This is the property of closure that group
elements satisfy, where the group product is performing one action after another, and the group elements are the
transformations that leave the system in an equivalanet state. Similarly the other properties of groups - associativity,
and existence of an identity and inverse, can be redily checked.

What is the group here? Our symmetry takes up to down spins - this is implemented as (�
x

, �
y

, �
z

) !
(�

x

, ��
y

, ��
z

). Obviously doing this twice is doeing nothing. So the group is Z
2

, the elements are (1,U), where
Uˆ2=1. The operator that implements this symmetry is U =

Q
i

�x

i

. Clearly H = U†HU hence this is a symmetry.

II. QUANTUM DISORDERED STATE (SYMMETRY PRESERVED)

Analyze the limit g � 1. First we ignore the ferromagnetic term and just satisfy the second term. This gives a
unique ground state with all spins along the ‘x’ direction which we represent as |0i = | !!! · · · !i. Clearly this
ground state respects the symmetry as can be seen by applying U : U |0i = |0i . The first excited states are gotten
by reversing the spin at some point ‘i’: |1i = | !! · · ·!i, |ii = |!!! · · · · · ·!i. These excited states have
energy �E = 2gJ above the ground state, whose energy we label as E

0

. However there are ‘N’ of them for a length
‘N’ chain and are simply localized in this limit. However adding the ferromagnetic term as a perturbation gives them
a dispersion. Restricting to the low energy space of a single spin flip, the ferromagnetic term induces a transition
from|ii ! |i+ 1i, |i� 1i. So we can write the approximate Eigenvalue equation:

H|ii = �J [|i+ 1i+ |i� 1i] + (E
0

+ 2gJ)|ii

It is simplest to consider the system on a circle, with ‘N’ sites, so the displaced indices i ± 1 are interpreted with
periodic boundary conditions at the edges. Then, this is readily solved by a Fourier transform. By writing in Fourier
space: |ii = 1p

N

P
j

eikrj |ki, where the locations of the spins are at r
j

= ja, we see that the momentum labels ‘k’ must

satisfy k = 2⇡ m

Na

, in order to satisy periodic boundary conditions with integer ‘m’. Furthemore, only m 2 1, 2, . . . , N
are distinct. In the limit of N !1, we get all values in the line k 2 [�⇡/a, ⇡/a]

In these variables we find:

[H � E
0

] |ki = [�2J cos k + 2gJ ] |ki
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thus, for a given momentum thereis a specific energy ✏(k) = 2J [g� cos k]. This is a particle excitation - for a given
momentum there is a fixed energy. Hence the lowest excitations above the symmetric state are gapped particles, with
energy gap � = 2J(g � 1) and a dispersion ✏(k) ⇠ � + Jk2, for small momenta. The operator that measures the
number of particles is �x

i

while the one that creates them is �z

i

. Since these particles have a Z
2

character, the creation
and annihilation operators are identical.

Naively, if we simply extend the calculation well beyond its regime of validity at g � 1, we anticipate a transition
at g = 1, where the gap to these excitations close, and they ‘condense’. Serendipiously this turns out to be the exact
value.

III. BROKEN SYMMETRY STATE

Consider now the weak coupling limit - g ⌧ 1. Actually, let us set g = 0, and then carefully discuss what happens
at finite but small g. Now, since the first term is the only one it is minimized by states |+i = | " " " . . . "i and by
|�i = | ### . . . #i and by any combination of them. Clearly these ground states break symmetry so that U |+i = |�i.
However, the linear combinations (|+i± |�i) do respect the symmetry. If we are at any nonzero g, there is a finite
matrix element for |+i to mix with |�i. Thus they are not eigenstates. However, the matrix element is vanishingly
small in the themrodynamic limit of N ! 1. We will argue this has to do with the gapped excitations in these states.
However, if we assume that for a moment, then we can see how spontaneous symmetry breaking appears. While at
any finite system size the ground states actually respect the symmetry, if one prepares the system in say all spin up,
it takes an extremely long time to evolve out of it and demonstrate that it is not an eigenstate. So for all practical
purposes we can consider it to be an eigenstate, and one can make the approximation better and better by going to
larger systems, keeping all parameters fixed. We will see later that

Let us begin with the state|+i = | " " " . . . "i. What is the lowest energy excitation here? For simplicity consider
an open chain. One may naively say this is again a spin flip - now the flip occurs from up to down, and costs
�E = 4J . However there is actually a lower energy excitation - a domain wall with energy 2J. On the periodic
boundary conditions system we need to make a pair of domain walls, however these are independent excitations - i.e.
the single spin flip is not a ‘particle’ it does not have a fixed energy momentum relation in general. A Given energy
may be divided into various momenta. So we get a ‘2-particle continuum’. However there are particle like excitations
- domain walls, which however are non local objects. You need to change the state of a macroscopic number of spins
to create them.

As before, we see that the fist excited states are at energy 2J, and represent single domain walls, that are localized
in the limit of g=0. Consider now the action of the perturbation g

P
i

�x

i

. This will cause the Domain walls to move.
The domain walls are most naturally represented as living on the bonds i.e. |̄i = i+ 1/2i . Flipping a spin will move
it either to the left or right. Hence, we have a very similar situation as above, which can be written as :

(H � E
0

)|̄ii = �gJ [|̄i+ 1i+ |̄i� 1i] + 2J |̄ii

Again, by Fourier transforming we get the spectrum ✏(k) = 2J [1� g cos k]- for the domain walls. (We have glossed
over the fact that we now have periodic boundary conditions and hence have an even number of domain walls, but
this can be justified). Again one may expect a transition when the domain walls condense at g=1.

Now, one can see why the broken symmetry state is stable - one needs to create a pair of domain walls and make
them move around the system and annihilate. However these are gapped excitations - the energy cost to do this is

2J, while the perturbation gJ is the one that moves it through the system. Thus, the action cost is S ⇠ e�N log

1
g

which vanishes in the thermodynamic limit.

IV. DUALITY

There is a suggestive symmetry between dispersion of single domain wall and single spin flip - seem to require
g\rightarrow 1/g. Indeed this duality between strong and weak coupling (and spin flips and defects) can be made
completely rigorous in the quantum Ising model as we explain below.

First assume open boundaries. Then, the state of the spin system can be completely specified by a knowledge of
the location of domain walls and one spin (say the first one). So we can rewrite the problem in terms of domain wall
variables. We would like to know the operators that create a domain wall and measure it, like for the case of spin
flips. By analogy we will call them ⌧z

¯

i

and ⌧x
¯

i

. Clearly:



3

⌧x
¯

i

= �z

¯

i+

1
2
�z

¯

i� 1
2

(2)

while the operator to insert a single domain wall is: ⌧z
¯

i

=
Q

j>

¯

i

�x

j

. Furthermore this can be inverted to give:

�x

i

= ⌧z
¯

i� 1
2
⌧z
¯

i+

1
2

(3)

Clearly these may be represented as Pauli spin operators. Now, we may represent the Hamiltonian as:

H = �J

"
g
X

¯

i

⌧z
¯

i

⌧z
¯

i+1

+
X

i

⌧x
¯

i

#
(4)

Thus the Hamiltonian is self dual, which exchanges weak and strong coupling g ! 1/g. Thus if there is a single
transiton it must occur at g = 1.

Note, there is not a perfect symmetry between the two sides of the phase diagram - we have glossed over a few
details while doing this duality and we will come back and fix it in the problem sets.

For example, if a field along ‘z’ is appled, the domain walls are confined. These are analogs of quarks bound into a
meson and show resonances. Later we will discuss an experimental observation of these resonances.
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