II. Hofstadter model
(1) Charged partides on a lattice in the presence of a magnetic field - Peels substitution

Reminder: Tharanov Bole

Lattice
complex tunneling matrix elements with Peiels phases $\phi_{m, n}^{i}, \quad i=\{x, y\} ; \quad \phi_{m, n}^{x}=-\frac{e}{\hbar} \int_{m}^{m+1} A_{x}(x, n) d x$
\Rightarrow Aharonov-Bohm phase around ane unit cell (plaquette)

$$
\Phi=\phi_{m, n}^{x}+\phi_{m+1, n}^{y}-\phi_{m, n+1}^{x}-\phi_{m, n}^{y}
$$

which is related to the vector potential \vec{A}

$$
\Phi_{A B}=-\frac{e}{\hbar} \oint_{c} \vec{A} \cdot d \vec{r}=-2 \pi \Phi_{B} / \Phi_{0}
$$

where Φ_{3} is the magnetic flux and $\Phi_{0}=h / e$ is
the magnetic flux quantum, which is
offer denoted as $\alpha=\Phi_{3} / \Phi_{0}=\Phi /(2 \pi)$

Tight-binding Hamiltonian

$$
\hat{H}=-\jmath \sum_{m, n}\left(e^{i \phi_{m n}^{x}} \hat{a}_{m+1, n}^{+} \hat{a}_{m, n}+e^{i \phi_{m, n}^{y}} \hat{a}_{m, n+1}^{+} \hat{a}_{m, n}+h . c .\right)
$$

How to solve this problem?

For zero man. flux $\Phi=0$:
\rightarrow lattice translation operators commute with the Hamiltonian and they commute with each other
\Rightarrow Bloch theorem

Translation operators:

$$
\begin{aligned}
& \hat{T}_{x}^{0}=\sum_{m, n} \hat{a}_{m+1, n}^{1+} \hat{a}_{m, n} \\
& \hat{T}_{y}^{0}=\sum_{m, n} \hat{a}_{m, n+1}^{1+} \hat{a}_{m n}
\end{aligned}
$$

$$
\Rightarrow\left[\hat{H}(\Phi=0), \hat{T}_{x, y}^{0}\right]=0 ;\left[\hat{T}_{x}^{0}, \hat{T}_{y}^{0}\right]=0
$$

In the presence of a vector potential (Peels phases). however, this is no longer true!
\Rightarrow The vector potential / Peiels phases $\phi_{m, n}^{i}$ are generally not invariant under discrete lattice translations, even if the \vec{B}-field is invariant
es. homogeneous flux:

\Rightarrow magnetic translation operators! (combination of translation a gauge transf.)

$$
\hat{T}_{x}^{M}=\sum_{m, n} \hat{a}_{m+1, n}^{+} \hat{a}_{m, n} e^{i \theta_{m, n}^{x}}
$$

In general: Conditions for $\theta_{m, n}^{i}$ can be derived using the formal requirement:

$$
\left[\hat{T}_{i}^{M}, \hat{H}\right]=0
$$

(3) Homogenous magnetic fields

$$
\rightarrow \text { flux } \Phi=\alpha \pi \Phi_{B} / \Phi_{0}=\alpha \pi \alpha
$$

per plaquette.
Compute the Commutator $\left[\hat{T}_{x}^{M}, \hat{T}_{y}^{M}\right]$:
by acting, for instance, on a localized singleparticle state $|i, j\rangle$.

$$
\Rightarrow e^{-i \Phi} \hat{T}_{x}^{M} \hat{T}_{y}^{M}=\hat{T}_{y}^{M} \hat{T}_{x}^{M}
$$

\Rightarrow The commutator vanishes, if and only if Φ is an integer multiple of 2π
\Rightarrow such a flux configuration is gauge- equivalent to the trivial case of zero flex.
\Rightarrow By constructing a supercell of dimension $k \times l$, one can construct magnetic translation operators that commute with the Hamiltonian and with each other

\Rightarrow For rational values $\alpha=p / q(p, q \in \mathbb{Z})$
the commutator vanishes, if

$$
k l \Phi=\alpha \pi p \frac{k l}{q} \stackrel{!}{=} \alpha \pi \times \nu \quad \text { where } \quad \nu \in \mathbb{Z}
$$

The smallest possible super cell for which $\left[\left(\hat{T}_{x}^{M}\right)^{k},\left(\hat{T}_{y}^{M}\right)^{l}\right]=0$ is given by $k l=9$ and is called magnetic unit cell.

The area of the magnetic unit cell is 9 times large than the normal lattice unit cell and Contains 9 non-equivalent sites within the unit call.

Using the new magnetic translation operators

$$
\hat{M}_{x}^{k} \equiv\left(\hat{T}_{x}^{M}\right)^{k} \quad ; \quad \hat{M}_{y}^{l}=\left(\hat{T}_{y}^{M}\right)^{l}
$$

we can use Bloch's theorem to find the eijenstates.

$$
\begin{aligned}
& \hat{M}_{x}^{k}\left|\psi_{q}(m, n)\right\rangle=e^{i q_{x} k a}\left|\psi_{q}(m, n)\right\rangle \\
& \hat{M}_{y}^{e}\left|\psi_{q}(m, n)\right\rangle=e^{i q_{y} l a}\left|\psi_{q}(m, n)\right\rangle
\end{aligned}
$$

where a is the lattice constant and $\vec{q}=\left(q_{x}, q_{y}\right)$
is defined within the first magnetic Brillouin zone

$$
-\pi / k a \leqslant q_{x} \leqslant \pi / k a \quad, \quad-\pi / l_{a} \leqslant q_{y} \leqslant \pi / l_{a}
$$

(4) Harper - Hofstadter model

$$
\hat{H}=-f \sum_{m, n}\left(e^{-i \Phi n} \hat{a}_{m+1, n} \hat{a}_{m, n}+\hat{a}_{m, n+1}^{+} \hat{a}_{m, n}+h \cdot c .\right)
$$

This Hamiltonian is expressed in the Landaus gauge
\rightarrow tunneling along x is complex
\rightarrow tunneling along y is real
Example: $\quad \alpha=\frac{1}{4}$

Q. What is the size of the unit cell?

Q Is it unique?

Compute single-particle energy spectrum for arbitrary $\alpha=\rho^{\prime} / q$ Landau e gauge:

Magnetic translation operators con be chosen to have particularly simple form:

$$
\begin{aligned}
& \hat{M}_{x}^{1}=\sum_{m, n} \hat{a}_{m+1, n}^{+} \hat{a}_{m, n} \\
& \hat{M}_{y}^{q}=\sum_{m, n} \hat{a}_{m, n+q}^{\dagger} \hat{a}_{m n}
\end{aligned}
$$

\Rightarrow Take the form of simple lattice translation operators:

- translation by one lattice site along x
- translation by 9 lattice sites along y
\Rightarrow magnetic unit cell oriented along y with dimensions $(1 \times q) \cdot a^{2}$
\Rightarrow Area of magnetic unit cell: $A=q \cdot a^{2}$
\Rightarrow The magnetic unit cell contains a flux $p \times 2 \pi$

Ansatz for wave function:

$$
\left|\psi_{q}\right\rangle=\sum_{m, n} e^{i q_{x} m a} e^{i q_{y} n a} \psi_{n}|m, n\rangle, \quad \psi_{n+q}=\psi_{n}
$$

$\Rightarrow 9$ non-equivalent lattice sites with amplitudes ψ_{n}

Insert this ansatz into Schrodinger equation:

$$
\begin{aligned}
E_{q} \psi_{n} & =-j\left[2 \cos \left(q_{x}-\Phi n\right) \psi_{n}+\right. \\
& \left.+e^{i q_{y} a} \psi_{n+1}+e^{-i q_{y} a} \psi_{n-1}\right]
\end{aligned}
$$

\Rightarrow-dimensional eigenvalue equation

$$
E_{\vec{q}}\left(\begin{array}{c}
\psi_{0} \\
\vdots \\
\psi_{n}
\end{array}\right)=H(\vec{q})\left(\begin{array}{c}
\psi_{0} \\
\vdots \\
\psi_{n}
\end{array}\right)
$$

with $H(\vec{q})$ the 9×9 matrix

$$
H(\vec{g})=-J\left(\begin{array}{cccc}
h_{0} & e^{i q_{y} a} & 0 & e^{-i q_{y} a} \\
e^{-i q_{y} a} & h_{1} & e^{i q_{y} a} & \vdots \\
0 & e^{-i q_{y} a} & & \vdots \\
\vdots & & & \\
e^{i q_{y} a} & & h_{q-1}
\end{array}\right)
$$

with $h_{q}=\alpha \cos \left(q_{x} a-q \cdot \Phi\right)$
\Rightarrow For $\alpha \in \mathbb{Z}$:
we obtain a single energy band

$$
E_{q}=-2 J \cos \left(q_{x} a\right)-2 J \cos \left(q_{y} a\right)
$$

\Rightarrow For $\alpha=8 / q$:
Hofstadter butterfly

example:

$$
\alpha=1 / 4
$$

a

$$
\alpha=1 / 5
$$

b

$$
\alpha=1 / 6
$$

In general: Spectrum symmetric around $E=0$

$$
\sum_{i} V_{i}=0
$$

