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AcquiredGSautonomywas the first of the six capabili-
ties to be clearly defined by cancer researchers, in large
part because of the prevalence of dominant oncogenes
that have been found to modulate it. Three common
molecular strategies for achieving autonomy are evi-
dent, involving alteration of extracellular growth signals,
of transcellular transducers of those signals, or of intra-
cellular circuits that translate those signals into action.
While most soluble mitogenic growth factors (GFs) are
made by one cell type in order to stimulate proliferation
of another—the process of heterotypic signaling—many
cancer cells acquire the ability to synthesize GFs to
which they are responsive, creating a positive feedback
signaling loop often termed autocrine stimulation (Fedi
et al., 1997). Clearly, themanufacture of a GFby a cancer
cell obviates dependence on GFs from other cells within
the tissue. The production of PDGF (platelet-derived
growth factor) and TGF� (tumor growth factor �) by
glioblastomas and sarcomas, respectively, are two illus-
trative examples (Fedi et al., 1997).
The cell surface receptors that transduce growth-

stimulatory signals into the cell interior are themselves
targets of deregulation during tumor pathogenesis. GF
receptors, often carrying tyrosine kinase activities in
their cytoplasmic domains, are overexpressed in many
cancers. Receptor overexpression may enable the can-
cer cell to become hyperresponsive to ambient levelsFigure 1. Acquired Capabilities of Cancer
of GF that normally would not trigger proliferation (FediWe suggest that most if not all cancers have acquired the same set
et al., 1997). For example, the epidermal GF receptorof functional capabilities during their development, albeit through

various mechanistic strategies. (EGF-R/erb B) is upregulated in stomach, brain, and
breast tumors, while the HER2/neu receptor is overex-
pressed in stomach and mammary carcinomas (Slamon
et al., 1987; Yarden andUllrich, 1988). Additionally, grossWe describe each capability in turn below, illustrate with
overexpression of GF receptors can elicit ligand-inde-a few examples its functional importance, and indicate
pendent signaling (DiFiore et al., 1987). Ligand-indepen-strategies by which it is acquired in human cancers.
dent signaling can also be achieved through structural
alteration of receptors; for example, truncated versions

Acquired Capability: Self-Sufficiency
of the EGF receptor lacking much of its cytoplasmic

in Growth Signals domain fire constitutively (Fedi et al., 1997).
Normal cells require mitogenic growth signals (GS) be- Cancer cells can also switch the types of extracellular
fore they can move from a quiescent state into an active matrix receptors (integrins) they express, favoring ones
proliferative state. These signals are transmitted into the that transmit progrowth signals (Lukashev and Werb,
cell by transmembrane receptors that bind distinctive 1998; Giancotti andRuoslahti, 1999). These bifunctional,
classes of signaling molecules: diffusible growth fac- heterodimeric cell surface receptors physically link cells
tors, extracellular matrix components, and cell-to-cell to extracellular superstructures knownas the extracellu-
adhesion/interaction molecules. To our knowledge, no lar matrix (ECM). Successful binding to specific moieties
type of normal cell can proliferate in the absence of of the ECM enables the integrin receptors to transduce
such stimulatory signals. Many of the oncogenes in the signals into the cytoplasm that influence cell behavior,
cancer catalog act by mimicking normal growth signal- ranging from quiescence in normal tissue to motility,
ing in one way or another. resistance to apoptosis, and entrance into the active
Dependence on growth signaling is apparent when cell cycle. Conversely, the failure of integrins to forge

propagating normal cells in culture, which typically pro- these extracellular links can impair cell motility, induce
liferate only when supplied with appropriate diffusible apoptosis, or cause cell cycle arrest (Giancotti and Ru-
mitogenic factors and a proper substratum for their inte- oslahti, 1999). Both ligand-activated GF receptors and
grins. Such behavior contrasts strongly with that of tu- progrowth integrins engaged to extracellular matrix
mor cells, which invariably show a greatly reduced components can activate the SOS-Ras-Raf-MAP kinase
dependenceonexogenousgrowth stimulation. Thecon- pathway (Aplin et al., 1998; Giancotti and Ruoslahti,
clusion is that tumor cells generate many of their own 1999).
growth signals, thereby reducing their dependence on Themost complexmechanismsof acquiredGSauton-
stimulation from their normal tissue microenvironment. omy derive from alterations in components of the down-
This liberation from dependence on exogenously de- stream cytoplasmic circuitry that receives and pro-
rived signals disrupts a critically important homeostatic cesses the signals emitted by ligand-activated GF
mechanism that normally operates to ensure a proper receptors and integrins. The SOS-Ras-Raf-MAPK cas-

cade plays a central role here. In about 25% of humanbehavior of the various cell types within a tissue.
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evolve progressively from normalcy via a series of pre-Douglas Hanahan* and Robert A. Weinberg†

*Department of Biochemistry and Biophysics and malignant states into invasive cancers (Foulds, 1954).
These observations have been rendered more con-Hormone Research Institute

University of California at San Francisco crete by a large body of work indicating that the ge-
nomes of tumor cells are invariably altered at multipleSan Francisco, California 94143

†Whitehead Institute for Biomedical Research and sites, having suffered disruption through lesions as sub-
tle as point mutations and as obvious as changes inDepartment of Biology

Massachusetts Institute of Technology chromosome complement (e.g., Kinzler and Vogelstein,
1996). Transformation of cultured cells is itself aCambridge, Massachusetts 02142
multistep process: rodent cells require at least two intro-
duced genetic changes before they acquire tumorigenic
competence, while their human counterparts are moreAfter a quarter century of rapid advances, cancer re-
difficult to transform (Hahn et al., 1999). Transgenicsearch has generated a rich and complex body of knowl-
models of tumorigenesis have repeatedly supported theedge, revealing cancer to be a disease involving dy-
conclusion that tumorigenesis in mice involves multiplenamic changes in the genome. The foundation has been
rate-limiting steps (Bergers et al., 1998; see Oncogene,set in the discovery of mutations that produce onco-
1999, R. DePinho and T. E. Jacks, volume 18[38], pp.genes with dominant gain of function and tumor sup-
5248–5362). Taken together, observations of humanpressor genes with recessive loss of function; both
cancers and animal models argue that tumor develop-classes of cancer genes have been identified through
ment proceeds via a process formally analogous to Dar-their alteration in human and animal cancer cells and
winian evolution, in which a succession of geneticby their elicitation of cancer phenotypes in experimental
changes, each conferring one or another type of growthmodels (Bishop and Weinberg, 1996).
advantage, leads to the progressive conversion of nor-Some would argue that the search for the origin and
mal human cells into cancer cells (Foulds, 1954; Nowell,treatment of this disease will continue over the next
1976).quarter century in much the same manner as it has in

the recent past, by adding further layers of complexity
to a scientific literature that is already complex almost An Enumeration of the Traits
beyond measure. But we anticipate otherwise: those The barriers to development of cancer are embodied
researching the cancer problem will be practicing a dra- in a teleology: cancer cells have defects in regulatory
matically different type of science than we have experi- circuits that govern normal cell proliferation and homeo-
enced over the past 25 years. Surelymuch of this change stasis. There are more than 100 distinct types of cancer,
will be apparent at the technical level. But ultimately, and subtypes of tumors can be found within specific
the more fundamental change will be conceptual. organs. This complexity provokes a number of ques-
We foresee cancer research developing into a logical tions. How many distinct regulatory circuits within each

science, where the complexities of the disease, de- type of target cell must be disrupted in order for such
scribed in the laboratory and clinic, will become under- a cell to become cancerous? Does the same set of
standable in terms of a small number of underlying prin- cellular regulatory circuits suffer disruption in the cells
ciples. Some of these principles are even now in the of the disparate neoplasms arising in the human body?
midst of being codified. We discuss one set of them in Which of these circuits operate on a cell-autonomous
the present essay: rules that govern the transformation basis, and which are coupled to the signals that cells
of normal human cells into malignant cancers. We sug- receive from their surrounding microenvironment within
gest that research over the past decades has revealed a tissue? Can the large and diverse collection of cancer-
a small number of molecular, biochemical, and cellular associated genes be tied to the operations of a small
traits—acquired capabilities—shared by most and per- group of regulatory circuits?
hapsall typesof humancancer. Our faith in such simplifi- We suggest that the vast catalog of cancer cell geno-
cation derives directly from the teachings of cell biology types is amanifestation of six essential alterations in cell
that virtually all mammalian cells carry a similar molecu- physiology that collectively dictate malignant growth
lar machinery regulating their proliferation, differentia- (Figure 1): self-sufficiency in growth signals, insensitivity
tion, and death. to growth-inhibitory (antigrowth) signals, evasion of pro-
Several lines of evidence indicate that tumorigenesis grammed cell death (apoptosis), limitless replicative

in humans is a multistep process and that these steps potential, sustained angiogenesis, and tissue invasion
reflect genetic alterations that drive the progressive and metastasis. Each of these physiologic changes—
transformation of normal human cells into highly malig- novel capabilities acquired during tumor development—
nant derivatives. Many types of cancers are diagnosed represents the successful breaching of an anticancer
in the human population with an age-dependent inci- defense mechanism hardwired into cells and tissues.
dence implicating four to seven rate-limiting, stochastic We propose that these six capabilities are shared in
events (Renan, 1993). Pathological analyses of a number common by most and perhaps all types of human tu-
of organ sites reveal lesions that appear to represent mors. Thismultiplicity of defensesmay explain why can-

cer is relatively rare during an average human lifetime.the intermediate steps in a process through which cells
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Oncogenes	and	tumor	suppressors

• Oncogenes	--	need	to	be	ac4vated		
– by	muta4ons	(within	a	gene	or	regulatory	regions)	
– by	chromosomal	altera4ons	
– overexpression/modifica4ons  
one	copy	is	enough	

• Tumor	suppressors	--	need	to	be	inac4vated  
-	muta4ons,	chromosomal	loss,	modifica4ons  
		second	copy	needs	to	be	affected	(e.g.	lost,	LOH)
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Finding	driver	events
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Somatic Copy Number Alterations (SCNAs)
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We then inferred the sequence of SCNA events that led to each 
copy number profile, using the most parsimonious set of SCNAs that 
could generate the observed absolute allelic copy numbers (Online 
Methods and Supplementary Fig. 1a). We determined the lengths, 
locations and numbers of copies changed for each SCNA and, in many 
cases, allelic structure (Supplementary Fig. 1b). We identified a total 
of 202,244 SCNAs, a median of 39 per cancer sample, comprising 
6 categories: focal SCNAs that were shorter than the chromosome 
arm (median of 11 amplifications and 12 deletions per sample); arm-
level SCNAs that were chromosome-arm length or longer (median 
of 3 amplifications and 5 deletions per sample); copy-neutral loss-
of-heterozygosity (LOH) events in which one allele was deleted and 
the other was amplified coextensively (median of 1 per sample); and 
whole-genome duplications (WGDs; in 37% of cancers). By ampli-
fications and deletions, we refer to copy number gains and losses, 
respectively, of any length and amplitude.

Estimated purities and ploidies per cancer varied substantially 
within and across lineages (Fig. 1a). Purity estimates correlated with 
estimates derived from measurements of leukocyte and lymphocyte 
contamination using DNA methylation data from the same can-
cers (Supplementary Fig. 1c) (H.S., L. Yao, T. Tiche Jr., T. Hinoue,  
C. Kandoth et al., unpublished data) but tended to indicate lower purity, 
consistent with the presence of non-hematopoietic contaminating nor-
mal cells. Average ploidies within lineages mirrored WGD frequencies. 
The average estimated ploidy within samples that had undergone a 
single WGD was 3.31 (not 4), suggesting that WGD events are associ-
ated with large amounts of genome loss. By contrast, samples that had 
not undergone WGD had an average estimated ploidy of 1.99.

Compared to the near-diploid cancers within each lineage, cancers 
with WGD had higher rates of every other type of SCNA (Fig. 1b) and 
twice the rate of SCNAs overall. Across lineages, overall SCNA rates 
largely reflected rates of WGD (Supplementary Fig. 1d).

In cancers with WGD, most other SCNAs occurred after WGD  
(Fig. 1b and Online Methods). The fractions of amplifications and 
deletions that were estimated to occur before WGD were highly cor-
related across lineages (R = 0.64; Supplementary Fig. 1e), indicating 
a consistent estimate for the timing of WGD with respect to other 
SCNAs. WGD was inferred to occur earliest relative to focal SCNAs 
among lineages where WGD was common (ovarian, bladder and colo-
rectal cancers) and after most focal SCNAs in lineages in which WGD 
was least common (glioblastoma and kidney clear-cell carcinoma).

SCNA lengths suggest varied mechanisms of generation
Focal SCNAs for which one boundary is the telomere (telomere 
bounded) tended to be longer than SCNAs for which both boundaries 
were internal to the chromosome (median SCNA lengths for telomere-
bounded and internal events respectively: amplifications, 19.6 Mb versus 
0.9 Mb; deletions, 22.7 Mb versus 0.7 Mb). These differences reflect 

differences across the entire length distributions of telomere-bounded 
and internal events. Focal internal SCNAs were observed at frequen-
cies inversely proportional to their lengths (Fig. 2a and Supplementary  
Fig. 2a,b), as noted previously1. However, telomere-bounded SCNAs 
tended to follow a superposition of 1/length and uniform length distri-
butions. These distributions were the same whether measuring distance 
by kilobase, number of array markers or number of genes, indicating that 
this difference in length does not result from variation in array resolution 
or gene density across the genome (data not shown). Focal, telomere-
bounded SCNAs also accounted for more SCNAs than expected assum-
ing random SCNA locations (12% and 26% of focal amplifications and 
deletions, respectively; P < 0.0001). Both telomere-bounded and internal 
SCNAs were more likely to end within the centromere than expected 
given the centromere’s length (Supplementary Fig. 2c), but differences 
in their length distributions remained when centromere-bounded events 
were excluded. Differences between telomere-bounded and internal 
SCNAs were even more marked for copy-neutral LOH events and dis-
played no correlation across lineages (Supplementary Fig. 2d).

We detected chromothripsis in 5% of samples, ranging from 0% 
of head and neck squamous cell carcinomas to 16% of glioblastomas 
(Fig. 2b and Online Methods). The rate of chromothripsis was not 
related to overall rates of SCNA (R = 0.13; P = 0.3). As previously 
reported30, samples with chromothripsis were more likely to have 
chromothripsis on more than 1 chromosome (14/122 samples with 
chromothripsis had 2 or 3 such events; P = 0.003).

Many chromothripsis events were concentrated in a few genomic regions, 
often associated with known driver events (Fig. 2c). In glioblastomas,  

Percent of
samples with
WGD 6245 43 1143 2059 64 5327
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Figure 1 Distribution of SCNAs across lineages. (a) Sample purity (top) and 
ploidy (bottom) across lineages (LUAD, lung adenocarcinoma; LUSC, lung 
squamous cell; HNSC, head and neck squamous cell; KIRC, kidney renal 
cell; BRCA, breast; BLCA, bladder; CRC, colorectal; UCEC, uterine cervix; 
GBM, glioblastoma multiformae; OV, ovary). Box plots show the median, first 
quartile and third quartile of purity in each lineage. Near-diploid samples 
are designated in purple; cancers that have undergone one or more than one 
WGD event are designated in green and red, respectively. Summary data for 
all lineages are indicated on the right. (b) Numbers of arm-level (top) and 
focal (bottom) amplifications (left) and deletions (right) across lineages. For 
each lineage, near-diploid samples and those with WGD events are indicated 
by bars on the left and right, respectively; SCNA in samples with WGD are 
resolved according to their timing relative to the WGD event.



Cancer genomics 

Can some passengers
... be deleterious to cancer cells?  
... affect progression? 

100-400 amino acid substitutions
   10-40 chromosomal rearrangements
    2-5 drivers
          the rest are passengers

High rate of somatic mutations/alterations
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In our stochastic model, individual cells can divide, potentially
acquiring driver or passenger alterations, and die. Population size
changes with the birth and death of individual cells (Fig. 1A).
Generally, the birth and death rates of a cell depend on the
effect of accumulated drivers and passengers, and the environ-
ment. Assuming that all drivers/passengers possess equal fitness
advantage/disadvantage, the birth and death rates B(d,p,N) and
D(d,p,N) of each cell depend on the number of drivers d, the
number of passengers p, and the total hyperplasia or population
size N. Driver mutations increase population size by either in-
creasing the birth rate (e.g., an activating mutation in KRAS) or
by decreasing the death rate [e.g., a TP53 knockout that
diminishes contact inhibition (23) and apoptosis]. Though spe-
cific drivers and passengers will have differing effects on the birth
and death rates, we find that aggregating the effects of mutations
into the birth rate, and placing the effects of population size into
the death rate, does not alter population dynamics from models
where mutational effects are split between the two (SI Appendix,
Fig. S1). Thus, we use

B
!
d; p

"
=
ð1+ sdÞd!
1+ sp

"p D
!
N
"
=
N
K

[1]

where sd is the fitness advantage (selection coefficient) of a driver,
sp is the fitness disadvantage conferred by a passenger, and K is
the initial equilibrium population size—reflecting the effects of
the tumor microenvironment. This model assumes multiplicative
epistasis and is equivalent or similar to other possible forms (SI
Appendix, SI Text), which all exhibit qualitatively similar behavior

(SI Appendix, Fig. S1). We also let D(N) = log(1 + N/K), for
large cancers (grown to 106 cells). For small N/K this reduces to
the linear model above [similar to previous neoplastic (24) and
ecological (25) models], but for large N/K this recapitulates
Gompertzian dynamics observed experimentally for large tumors
(26). The death rate’s dependence on population size is a coarse
approximation of many size-dependent factors that tumors must
overcome as they expand via additional drivers: contact inhibi-
tion, competition between cells for space and resources (e.g., due
to a limited crypt size), homeostatic pressure, hypoxia, angio-
genesis, limited paracrine signaling, and immune/inflammatory
responses to larger tumors (16).
We model cancer progression as a stochastic system of birth

(with or without mutations) and death events with defined re-
action rates using a standard Gillespie algorithm (27). The sys-
tem is fully defined by five parameters: sp, sd, μTp, μTd, and K, where
μ is the mutation rate and Td/p are the mutation target sizes for
drivers/passengers. Though driver and passenger alterations
take many forms, we parameterized our model using single-
nucleotide substitution data, as these mutations have been more
thoroughly quantified. Because of extensive cancer heterogeneity
and limited quantitative knowledge, we varied all parameters by
2–3 orders of magnitude. The ranges we explored centered on
values obtained from the literature (SI Appendix, Table S1). The
mutation rate (μ ∼10−8 nt−1 × division−1; range 10−10–10−6)
approximates cells with a mutator phenotype (28). Our initial
equilibrium population size (K ∼103 cells; range 102–104) was
estimated from hyperplasias within a mouse colonic crypt ob-
served 2 wk after an initiating APC deletion (29). The target size
for drivers (Td ∼700 nt; range 70–7,000) approximately 10 po-
tential hotspot mutations per gene (oncogene or tumor sup-
pressor) times 70 driver genes (4). This value was used in
previous simulations (19) and is close to the 571 loci with re-
current mutations in colon cancer (30). The target size for
functional (nonsynonymous) passengers (Tp ∼5 × 106 nt; range 5 ×
105 – 5 × 107) was estimated as 103 nonsynonymous loci per gene
times 5,000 well-expressed, non–cancer-related genes in cancer
(9). This value is comparable, but less than, a previous estimate of
10 million deleterious loci in cancer (31); does not attempt to
capture the 104–105 noncoding passenger mutations per cancer
genome (2, 32); and yet is thousands of times greater than Td. The
chosen driver strength [sd ∼0.1 (i.e., 10% growth increase per
driver); range 0.01–1] was shown to be congruent with cancer
onset (19). Passenger deleteriousness (sp ∼10−3; range 10−1–10−4)
was estimated from to the effects of near-neutral germ-line muta-
tions in humans (33) and randomly introduced mutations in yeast
(14). Simulations where drivers or passengers conferred a distribu-
tion of sp and sd did not significantly differ from our fixed-effect

Table 1. Passenger mutations in whole-genome sequences

Cancer(s)
Protein-coding

mutations Driver mutations* Ref(s).

11 breast 115.4 5.1 (4)
10 colon 75 4 (4)
4 astrocytomas 206 5.5 (52)
Acute myeloid leukemia 10 2 (53)
26 melanomas 366 4 (1, 32)
Small-cell lung 100 4 (2)

In most tumors, hundreds of protein-coding mutations accrue, yet only
a few are putative drivers. These values are consistent with our model’s
results. Deleterious passengers may be most exploitable in carcinomas, be-
cause leukemia and many blood cancers are generally more sensitive to DNA
damage and have earlier incidence rates.
*Classified as drivers by COSMIC (8).

Driver Muta onCell Division Event Death Event Passenger

sp

sd

Td

Tp

B(d,p) D(N) µTd µTp

+sd

-sp

B

N sp Exp[-µ Tp /sp ]=1

Muta on

A C

Fig. 1. Dynamics of cancer progression. (A) Our evolutionary model: individual cancer cells stochastically divide (potentially acquiring new drivers/passengers) and
die. A new driver increases the birth rate by sd, whereas a passenger decreases it by sp (Eq. 1). Drivers arise rarely, but have large effects, while passengers are
common, but have small individual effects. (B) Simulated cancer progression using a Gompertz death rate; despite identical parameters, trajectories exhibit markedly
different behavior, sometimes regressing to extinction or having long periods of dormancy. (C) The number of accumulated passengers increases with mutation rate
and depends, nonmonotonically, on passenger strength.

2 of 6 | www.pnas.org/cgi/doi/10.1073/pnas.1213968110 McFarland et al.

Drivers and passengers 



Somatic evolution of cancer

Passengers hitchhike to fixation



1. Can deleterious passenger mutations 
accumulate during cancer development?  

2. How deleterious are passenger mutations 
found in genotyped tumors? 

3. How can passengers affect neoplastic 
progression?  

Questions



1. Can deleterious passenger mutations 
accumulate during cancer development?  

Simulations
2. How deleterious are passenger mutations 

found in genotyped tumors? 
Genomics

3. How can passengers affect neoplastic 
progression?   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Model of cancer progression 

In our stochastic model, individual cells can divide, potentially
acquiring driver or passenger alterations, and die. Population size
changes with the birth and death of individual cells (Fig. 1A).
Generally, the birth and death rates of a cell depend on the
effect of accumulated drivers and passengers, and the environ-
ment. Assuming that all drivers/passengers possess equal fitness
advantage/disadvantage, the birth and death rates B(d,p,N) and
D(d,p,N) of each cell depend on the number of drivers d, the
number of passengers p, and the total hyperplasia or population
size N. Driver mutations increase population size by either in-
creasing the birth rate (e.g., an activating mutation in KRAS) or
by decreasing the death rate [e.g., a TP53 knockout that
diminishes contact inhibition (23) and apoptosis]. Though spe-
cific drivers and passengers will have differing effects on the birth
and death rates, we find that aggregating the effects of mutations
into the birth rate, and placing the effects of population size into
the death rate, does not alter population dynamics from models
where mutational effects are split between the two (SI Appendix,
Fig. S1). Thus, we use

B
!
d; p

"
=
ð1+ sdÞd!
1+ sp

"p D
!
N
"
=
N
K

[1]

where sd is the fitness advantage (selection coefficient) of a driver,
sp is the fitness disadvantage conferred by a passenger, and K is
the initial equilibrium population size—reflecting the effects of
the tumor microenvironment. This model assumes multiplicative
epistasis and is equivalent or similar to other possible forms (SI
Appendix, SI Text), which all exhibit qualitatively similar behavior

(SI Appendix, Fig. S1). We also let D(N) = log(1 + N/K), for
large cancers (grown to 106 cells). For small N/K this reduces to
the linear model above [similar to previous neoplastic (24) and
ecological (25) models], but for large N/K this recapitulates
Gompertzian dynamics observed experimentally for large tumors
(26). The death rate’s dependence on population size is a coarse
approximation of many size-dependent factors that tumors must
overcome as they expand via additional drivers: contact inhibi-
tion, competition between cells for space and resources (e.g., due
to a limited crypt size), homeostatic pressure, hypoxia, angio-
genesis, limited paracrine signaling, and immune/inflammatory
responses to larger tumors (16).
We model cancer progression as a stochastic system of birth

(with or without mutations) and death events with defined re-
action rates using a standard Gillespie algorithm (27). The sys-
tem is fully defined by five parameters: sp, sd, μTp, μTd, and K, where
μ is the mutation rate and Td/p are the mutation target sizes for
drivers/passengers. Though driver and passenger alterations
take many forms, we parameterized our model using single-
nucleotide substitution data, as these mutations have been more
thoroughly quantified. Because of extensive cancer heterogeneity
and limited quantitative knowledge, we varied all parameters by
2–3 orders of magnitude. The ranges we explored centered on
values obtained from the literature (SI Appendix, Table S1). The
mutation rate (μ ∼10−8 nt−1 × division−1; range 10−10–10−6)
approximates cells with a mutator phenotype (28). Our initial
equilibrium population size (K ∼103 cells; range 102–104) was
estimated from hyperplasias within a mouse colonic crypt ob-
served 2 wk after an initiating APC deletion (29). The target size
for drivers (Td ∼700 nt; range 70–7,000) approximately 10 po-
tential hotspot mutations per gene (oncogene or tumor sup-
pressor) times 70 driver genes (4). This value was used in
previous simulations (19) and is close to the 571 loci with re-
current mutations in colon cancer (30). The target size for
functional (nonsynonymous) passengers (Tp ∼5 × 106 nt; range 5 ×
105 – 5 × 107) was estimated as 103 nonsynonymous loci per gene
times 5,000 well-expressed, non–cancer-related genes in cancer
(9). This value is comparable, but less than, a previous estimate of
10 million deleterious loci in cancer (31); does not attempt to
capture the 104–105 noncoding passenger mutations per cancer
genome (2, 32); and yet is thousands of times greater than Td. The
chosen driver strength [sd ∼0.1 (i.e., 10% growth increase per
driver); range 0.01–1] was shown to be congruent with cancer
onset (19). Passenger deleteriousness (sp ∼10−3; range 10−1–10−4)
was estimated from to the effects of near-neutral germ-line muta-
tions in humans (33) and randomly introduced mutations in yeast
(14). Simulations where drivers or passengers conferred a distribu-
tion of sp and sd did not significantly differ from our fixed-effect

Table 1. Passenger mutations in whole-genome sequences

Cancer(s)
Protein-coding

mutations Driver mutations* Ref(s).

11 breast 115.4 5.1 (4)
10 colon 75 4 (4)
4 astrocytomas 206 5.5 (52)
Acute myeloid leukemia 10 2 (53)
26 melanomas 366 4 (1, 32)
Small-cell lung 100 4 (2)

In most tumors, hundreds of protein-coding mutations accrue, yet only
a few are putative drivers. These values are consistent with our model’s
results. Deleterious passengers may be most exploitable in carcinomas, be-
cause leukemia and many blood cancers are generally more sensitive to DNA
damage and have earlier incidence rates.
*Classified as drivers by COSMIC (8).
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Fig. 1. Dynamics of cancer progression. (A) Our evolutionary model: individual cancer cells stochastically divide (potentially acquiring new drivers/passengers) and
die. A new driver increases the birth rate by sd, whereas a passenger decreases it by sp (Eq. 1). Drivers arise rarely, but have large effects, while passengers are
common, but have small individual effects. (B) Simulated cancer progression using a Gompertz death rate; despite identical parameters, trajectories exhibit markedly
different behavior, sometimes regressing to extinction or having long periods of dormancy. (C) The number of accumulated passengers increases with mutation rate
and depends, nonmonotonically, on passenger strength.
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In our stochastic model, individual cells can divide, potentially
acquiring driver or passenger alterations, and die. Population size
changes with the birth and death of individual cells (Fig. 1A).
Generally, the birth and death rates of a cell depend on the
effect of accumulated drivers and passengers, and the environ-
ment. Assuming that all drivers/passengers possess equal fitness
advantage/disadvantage, the birth and death rates B(d,p,N) and
D(d,p,N) of each cell depend on the number of drivers d, the
number of passengers p, and the total hyperplasia or population
size N. Driver mutations increase population size by either in-
creasing the birth rate (e.g., an activating mutation in KRAS) or
by decreasing the death rate [e.g., a TP53 knockout that
diminishes contact inhibition (23) and apoptosis]. Though spe-
cific drivers and passengers will have differing effects on the birth
and death rates, we find that aggregating the effects of mutations
into the birth rate, and placing the effects of population size into
the death rate, does not alter population dynamics from models
where mutational effects are split between the two (SI Appendix,
Fig. S1). Thus, we use
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where sd is the fitness advantage (selection coefficient) of a driver,
sp is the fitness disadvantage conferred by a passenger, and K is
the initial equilibrium population size—reflecting the effects of
the tumor microenvironment. This model assumes multiplicative
epistasis and is equivalent or similar to other possible forms (SI
Appendix, SI Text), which all exhibit qualitatively similar behavior

(SI Appendix, Fig. S1). We also let D(N) = log(1 + N/K), for
large cancers (grown to 106 cells). For small N/K this reduces to
the linear model above [similar to previous neoplastic (24) and
ecological (25) models], but for large N/K this recapitulates
Gompertzian dynamics observed experimentally for large tumors
(26). The death rate’s dependence on population size is a coarse
approximation of many size-dependent factors that tumors must
overcome as they expand via additional drivers: contact inhibi-
tion, competition between cells for space and resources (e.g., due
to a limited crypt size), homeostatic pressure, hypoxia, angio-
genesis, limited paracrine signaling, and immune/inflammatory
responses to larger tumors (16).
We model cancer progression as a stochastic system of birth

(with or without mutations) and death events with defined re-
action rates using a standard Gillespie algorithm (27). The sys-
tem is fully defined by five parameters: sp, sd, μTp, μTd, and K, where
μ is the mutation rate and Td/p are the mutation target sizes for
drivers/passengers. Though driver and passenger alterations
take many forms, we parameterized our model using single-
nucleotide substitution data, as these mutations have been more
thoroughly quantified. Because of extensive cancer heterogeneity
and limited quantitative knowledge, we varied all parameters by
2–3 orders of magnitude. The ranges we explored centered on
values obtained from the literature (SI Appendix, Table S1). The
mutation rate (μ ∼10−8 nt−1 × division−1; range 10−10–10−6)
approximates cells with a mutator phenotype (28). Our initial
equilibrium population size (K ∼103 cells; range 102–104) was
estimated from hyperplasias within a mouse colonic crypt ob-
served 2 wk after an initiating APC deletion (29). The target size
for drivers (Td ∼700 nt; range 70–7,000) approximately 10 po-
tential hotspot mutations per gene (oncogene or tumor sup-
pressor) times 70 driver genes (4). This value was used in
previous simulations (19) and is close to the 571 loci with re-
current mutations in colon cancer (30). The target size for
functional (nonsynonymous) passengers (Tp ∼5 × 106 nt; range 5 ×
105 – 5 × 107) was estimated as 103 nonsynonymous loci per gene
times 5,000 well-expressed, non–cancer-related genes in cancer
(9). This value is comparable, but less than, a previous estimate of
10 million deleterious loci in cancer (31); does not attempt to
capture the 104–105 noncoding passenger mutations per cancer
genome (2, 32); and yet is thousands of times greater than Td. The
chosen driver strength [sd ∼0.1 (i.e., 10% growth increase per
driver); range 0.01–1] was shown to be congruent with cancer
onset (19). Passenger deleteriousness (sp ∼10−3; range 10−1–10−4)
was estimated from to the effects of near-neutral germ-line muta-
tions in humans (33) and randomly introduced mutations in yeast
(14). Simulations where drivers or passengers conferred a distribu-
tion of sp and sd did not significantly differ from our fixed-effect

Table 1. Passenger mutations in whole-genome sequences

Cancer(s)
Protein-coding

mutations Driver mutations* Ref(s).

11 breast 115.4 5.1 (4)
10 colon 75 4 (4)
4 astrocytomas 206 5.5 (52)
Acute myeloid leukemia 10 2 (53)
26 melanomas 366 4 (1, 32)
Small-cell lung 100 4 (2)

In most tumors, hundreds of protein-coding mutations accrue, yet only
a few are putative drivers. These values are consistent with our model’s
results. Deleterious passengers may be most exploitable in carcinomas, be-
cause leukemia and many blood cancers are generally more sensitive to DNA
damage and have earlier incidence rates.
*Classified as drivers by COSMIC (8).
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common, but have small individual effects. (B) Simulated cancer progression using a Gompertz death rate; despite identical parameters, trajectories exhibit markedly
different behavior, sometimes regressing to extinction or having long periods of dormancy. (C) The number of accumulated passengers increases with mutation rate
and depends, nonmonotonically, on passenger strength.
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diminishes contact inhibition (23) and apoptosis]. Though spe-
cific drivers and passengers will have differing effects on the birth
and death rates, we find that aggregating the effects of mutations
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where sd is the fitness advantage (selection coefficient) of a driver,
sp is the fitness disadvantage conferred by a passenger, and K is
the initial equilibrium population size—reflecting the effects of
the tumor microenvironment. This model assumes multiplicative
epistasis and is equivalent or similar to other possible forms (SI
Appendix, SI Text), which all exhibit qualitatively similar behavior
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large cancers (grown to 106 cells). For small N/K this reduces to
the linear model above [similar to previous neoplastic (24) and
ecological (25) models], but for large N/K this recapitulates
Gompertzian dynamics observed experimentally for large tumors
(26). The death rate’s dependence on population size is a coarse
approximation of many size-dependent factors that tumors must
overcome as they expand via additional drivers: contact inhibi-
tion, competition between cells for space and resources (e.g., due
to a limited crypt size), homeostatic pressure, hypoxia, angio-
genesis, limited paracrine signaling, and immune/inflammatory
responses to larger tumors (16).
We model cancer progression as a stochastic system of birth

(with or without mutations) and death events with defined re-
action rates using a standard Gillespie algorithm (27). The sys-
tem is fully defined by five parameters: sp, sd, μTp, μTd, and K, where
μ is the mutation rate and Td/p are the mutation target sizes for
drivers/passengers. Though driver and passenger alterations
take many forms, we parameterized our model using single-
nucleotide substitution data, as these mutations have been more
thoroughly quantified. Because of extensive cancer heterogeneity
and limited quantitative knowledge, we varied all parameters by
2–3 orders of magnitude. The ranges we explored centered on
values obtained from the literature (SI Appendix, Table S1). The
mutation rate (μ ∼10−8 nt−1 × division−1; range 10−10–10−6)
approximates cells with a mutator phenotype (28). Our initial
equilibrium population size (K ∼103 cells; range 102–104) was
estimated from hyperplasias within a mouse colonic crypt ob-
served 2 wk after an initiating APC deletion (29). The target size
for drivers (Td ∼700 nt; range 70–7,000) approximately 10 po-
tential hotspot mutations per gene (oncogene or tumor sup-
pressor) times 70 driver genes (4). This value was used in
previous simulations (19) and is close to the 571 loci with re-
current mutations in colon cancer (30). The target size for
functional (nonsynonymous) passengers (Tp ∼5 × 106 nt; range 5 ×
105 – 5 × 107) was estimated as 103 nonsynonymous loci per gene
times 5,000 well-expressed, non–cancer-related genes in cancer
(9). This value is comparable, but less than, a previous estimate of
10 million deleterious loci in cancer (31); does not attempt to
capture the 104–105 noncoding passenger mutations per cancer
genome (2, 32); and yet is thousands of times greater than Td. The
chosen driver strength [sd ∼0.1 (i.e., 10% growth increase per
driver); range 0.01–1] was shown to be congruent with cancer
onset (19). Passenger deleteriousness (sp ∼10−3; range 10−1–10−4)
was estimated from to the effects of near-neutral germ-line muta-
tions in humans (33) and randomly introduced mutations in yeast
(14). Simulations where drivers or passengers conferred a distribu-
tion of sp and sd did not significantly differ from our fixed-effect

Table 1. Passenger mutations in whole-genome sequences

Cancer(s)
Protein-coding

mutations Driver mutations* Ref(s).

11 breast 115.4 5.1 (4)
10 colon 75 4 (4)
4 astrocytomas 206 5.5 (52)
Acute myeloid leukemia 10 2 (53)
26 melanomas 366 4 (1, 32)
Small-cell lung 100 4 (2)

In most tumors, hundreds of protein-coding mutations accrue, yet only
a few are putative drivers. These values are consistent with our model’s
results. Deleterious passengers may be most exploitable in carcinomas, be-
cause leukemia and many blood cancers are generally more sensitive to DNA
damage and have earlier incidence rates.
*Classified as drivers by COSMIC (8).
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common, but have small individual effects. (B) Simulated cancer progression using a Gompertz death rate; despite identical parameters, trajectories exhibit markedly
different behavior, sometimes regressing to extinction or having long periods of dormancy. (C) The number of accumulated passengers increases with mutation rate
and depends, nonmonotonically, on passenger strength.

2 of 6 | www.pnas.org/cgi/doi/10.1073/pnas.1213968110 McFarland et al.

Model of cancer progression 

sd >> sp 
Td <<Tp

sp ≈10
−3

sd ≈ 0.1
Tp ≈
Td ≈
K = 5000

5000 expressed genes x 1000 

70 genes x 10 hotspots  
carrying capacity 



• Two possible outcomes: 
   population growth (cancer)  
   population collapse (regression)  

cancer

regression

Results of the theory: 
1. Critical population size: N* 

2. Deleterious passengers 
can accumulate  

3. Critical mutation rate µ*

Model of cancer progression 



drivers

Critical population size

increases to a new stationary value. In between these rare driver
events, the population size gradually declines due to passenger
accumulation. The relative rates of these competing processes
determine whether a population grows rapidly or goes extinct.
The value of N* can be identified by considering the average

change in population size over time (〈dN/dt〉), which is the av-
erage population growth due to accumulating drivers (vd) minus
the population decline due to accumulating passengers (vp).
When a new driver fixates, the population size immediately
increases by ΔN = Nsd. These jumps occur randomly at a nearly
constant rate f = μdNsd [a product of the driver occurrence rate
μdN and its probability of fixation sd/(1 + sd) ≈ sd]. Thus, the
velocity due to drivers is vd = fΔN = μdN2s2d. Similarly, pas-
sengers’ velocity vp = μpNsp is a product of their rate of oc-
currence μpN, effect on population size Nsp, and fixation
probability (near-neutral ∼1/N; see SI Appendix for a more
precise estimate). Thus, we obtain
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where Np = Tpsp
Tds2d

is the critical population size. In this equation,
a population’s mean velocity is negative below N* and positive
above N*, explaining why populations above N* grow rapidly and
populations below N* continually decline.
These dynamics suggests that N* constitutes an effective bar-

rier to cancer, which can prevent most cancers from progressing
(Fig. 1C). Simulations support this conclusion because they ex-
hibit a sharp transition in the probability of progression at N*
(Fig. 1D). Indeed, drastically different probability curves col-
lapse onto a single curve when N0 is rescaled by N*.
By considering only the average dynamics, we miss the vari-

ability of outcomes in adapting populations. In SI Appendix, we
formulate and solve a stochastic generalization of Eq. 1 that
explains the variability of outcomes well (Fig. 1E). Outcome
variability depends only upon N* and the strength of drivers sd.
Higher values of sd lead to larger stochastic jumps ΔN, which
increases variability and leads to more gradual changes in the
probability of cancer across N0.
The effects ofN* and sd on cancer progression can be intuitively

understood using a simple random-walk analogy. The population’s
reverse sawtoothed path abides by a one-dimensional randomwalk

in an effective potential Ueff = −
R
ðdN=dtÞdN (Fig. 1C). Akin to

chemical reactions activated by thermal energy, cancer progression
is a rare event that transitions through an unstable state, requiring
a quick succession of driver fixations.
Our analytical formalism indicates that population dynamics

depend entirely on two dimensionless parameters: a deterministic
mean velocity dependent only upon N/N* and a stochastic step
size of ∼sd. By reducing the complexity of our evolutionary system
to two parameters, we were next able to infer their values from
real cancers without overfitting.

Model Validation Using Cancer Incidence and Genomics Data. Our
model of cancer progression predicts several properties of cancer:
the presence of an effective barrier that small lesions seldom
overcome, a broad distribution in the number of accumulated
drivers and passengers in tumors, and a tug-of-war between drivers
and passengers in individual cancers. We looked for evidence of
these phenomena in age–incidence data (25) and recent cancer
genomics data, which also allowed us to estimate sd, sp, and the
probability of cancer progression.
Fig. 2A presents the incidence rate of breast cancer versus age

(25) alongside the predictions from our model and a classic
driver-only model (SI Appendix). The incidence rate was calcu-
lated by assuming that precancerous lesions arise with a constant
rate r beginning at birth. Lesions then progress to cancer in time
τ with probability P(τ), determined from simulations (SI Ap-
pendix, Fig. S1). The age–incidence rate I(t) is then the convo-
lution of P(τ) with the lesion initiation rate r. Because many
lesions never progress and go extinct in our model, the incidence
rate saturates at old age: Imax = r

R∞
0 PðτÞdτ = rP∞, where P∞ is

the probability that a lesion ever progresses to cancer.
Observed age–incidence rates saturate with age, allowing us

to estimate the efficiency of cancer progression. We estimate the
rate of lesion formation in breast cancer r ≥ 10 per year, de-
ducible in two ways: by multiplying the number of human breast
epithelial stem cells by their rate of mutation into a lesion
(SI Appendix) or by considering the number of lesions observed
in normal breasts (21). By comparing this limit (r ∼ 10 y−1) to the
maximum observed breast cancer incidence rate Imax ∼ 10−2
cancers·year−1, we find that P∞ ∼ 10−3, or only ∼0.1% of lesions
ever progress. Likewise, most other cancer subtypes (84%) pla-
teau at old age, indicating that inefficient progression is common
(SI Appendix, Fig. S1). These findings are consistent with medical

Fig. 2. Signatures of balance between drivers and passengers in incidence and genomics data. (A) Predicted and observed breast cancer incidence rates
verses age. Incidence rates in our model and the data both plateau at old age, but a traditional driver-only model (I ∝tk) does not. (B) Histogram (blue) of the
collective number of protein-coding mutations (SNMs) in breast cancer, alongside predicted distributions (lines colors as in A). Our model captures the width
and asymmetry of the distribution when sd = 0.4, whereas a driver-only model predicts a narrower, less-skewed distribution. (C) (Upper) The total number of
aggregate SCNA and SNM drivers verses the total number of passengers in sequenced tumors (points) fitted by linear regression. (Lower Left) Aggregated
cancer genomics data plotted on log axes, with the y intercept from each subtype’s linear fit subtracted [lung cancer (green), colorectal cancer (MIN−, dark
purple; MIN+, light purple)]. (Lower Right) The distribution of slope values obtained by bootstrapping 10,000 samples of each tumor type. All cancers exhibit
positive slopes (P < 0.08 − 10−5 ), suggesting estimates of sp/sd of breast, 0.0060 ± 0.0010; melanoma, 0.016 ± 0.003; lung, 0.0094 ± 0.0093; colorectal, MIN−

0.028 ± 0.007 and MIN+ 0.041 ± 0.006.
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increases to a new stationary value. In between these rare driver
events, the population size gradually declines due to passenger
accumulation. The relative rates of these competing processes
determine whether a population grows rapidly or goes extinct.
The value of N* can be identified by considering the average

change in population size over time (〈dN/dt〉), which is the av-
erage population growth due to accumulating drivers (vd) minus
the population decline due to accumulating passengers (vp).
When a new driver fixates, the population size immediately
increases by ΔN = Nsd. These jumps occur randomly at a nearly
constant rate f = μdNsd [a product of the driver occurrence rate
μdN and its probability of fixation sd/(1 + sd) ≈ sd]. Thus, the
velocity due to drivers is vd = fΔN = μdN2s2d. Similarly, pas-
sengers’ velocity vp = μpNsp is a product of their rate of oc-
currence μpN, effect on population size Nsp, and fixation
probability (near-neutral ∼1/N; see SI Appendix for a more
precise estimate). Thus, we obtain
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is the critical population size. In this equation,
a population’s mean velocity is negative below N* and positive
above N*, explaining why populations above N* grow rapidly and
populations below N* continually decline.
These dynamics suggests that N* constitutes an effective bar-

rier to cancer, which can prevent most cancers from progressing
(Fig. 1C). Simulations support this conclusion because they ex-
hibit a sharp transition in the probability of progression at N*
(Fig. 1D). Indeed, drastically different probability curves col-
lapse onto a single curve when N0 is rescaled by N*.
By considering only the average dynamics, we miss the vari-

ability of outcomes in adapting populations. In SI Appendix, we
formulate and solve a stochastic generalization of Eq. 1 that
explains the variability of outcomes well (Fig. 1E). Outcome
variability depends only upon N* and the strength of drivers sd.
Higher values of sd lead to larger stochastic jumps ΔN, which
increases variability and leads to more gradual changes in the
probability of cancer across N0.
The effects ofN* and sd on cancer progression can be intuitively

understood using a simple random-walk analogy. The population’s
reverse sawtoothed path abides by a one-dimensional randomwalk

in an effective potential Ueff = −
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ðdN=dtÞdN (Fig. 1C). Akin to

chemical reactions activated by thermal energy, cancer progression
is a rare event that transitions through an unstable state, requiring
a quick succession of driver fixations.
Our analytical formalism indicates that population dynamics

depend entirely on two dimensionless parameters: a deterministic
mean velocity dependent only upon N/N* and a stochastic step
size of ∼sd. By reducing the complexity of our evolutionary system
to two parameters, we were next able to infer their values from
real cancers without overfitting.

Model Validation Using Cancer Incidence and Genomics Data. Our
model of cancer progression predicts several properties of cancer:
the presence of an effective barrier that small lesions seldom
overcome, a broad distribution in the number of accumulated
drivers and passengers in tumors, and a tug-of-war between drivers
and passengers in individual cancers. We looked for evidence of
these phenomena in age–incidence data (25) and recent cancer
genomics data, which also allowed us to estimate sd, sp, and the
probability of cancer progression.
Fig. 2A presents the incidence rate of breast cancer versus age

(25) alongside the predictions from our model and a classic
driver-only model (SI Appendix). The incidence rate was calcu-
lated by assuming that precancerous lesions arise with a constant
rate r beginning at birth. Lesions then progress to cancer in time
τ with probability P(τ), determined from simulations (SI Ap-
pendix, Fig. S1). The age–incidence rate I(t) is then the convo-
lution of P(τ) with the lesion initiation rate r. Because many
lesions never progress and go extinct in our model, the incidence
rate saturates at old age: Imax = r
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0 PðτÞdτ = rP∞, where P∞ is

the probability that a lesion ever progresses to cancer.
Observed age–incidence rates saturate with age, allowing us

to estimate the efficiency of cancer progression. We estimate the
rate of lesion formation in breast cancer r ≥ 10 per year, de-
ducible in two ways: by multiplying the number of human breast
epithelial stem cells by their rate of mutation into a lesion
(SI Appendix) or by considering the number of lesions observed
in normal breasts (21). By comparing this limit (r ∼ 10 y−1) to the
maximum observed breast cancer incidence rate Imax ∼ 10−2
cancers·year−1, we find that P∞ ∼ 10−3, or only ∼0.1% of lesions
ever progress. Likewise, most other cancer subtypes (84%) pla-
teau at old age, indicating that inefficient progression is common
(SI Appendix, Fig. S1). These findings are consistent with medical
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aggregate SCNA and SNM drivers verses the total number of passengers in sequenced tumors (points) fitted by linear regression. (Lower Left) Aggregated
cancer genomics data plotted on log axes, with the y intercept from each subtype’s linear fit subtracted [lung cancer (green), colorectal cancer (MIN−, dark
purple; MIN+, light purple)]. (Lower Right) The distribution of slope values obtained by bootstrapping 10,000 samples of each tumor type. All cancers exhibit
positive slopes (P < 0.08 − 10−5 ), suggesting estimates of sp/sd of breast, 0.0060 ± 0.0010; melanoma, 0.016 ± 0.003; lung, 0.0094 ± 0.0093; colorectal, MIN−

0.028 ± 0.007 and MIN+ 0.041 ± 0.006.

McFarland et al. PNAS Early Edition | 3 of 6

EV
O
LU

TI
O
N

increases to a new stationary value. In between these rare driver
events, the population size gradually declines due to passenger
accumulation. The relative rates of these competing processes
determine whether a population grows rapidly or goes extinct.
The value of N* can be identified by considering the average

change in population size over time (〈dN/dt〉), which is the av-
erage population growth due to accumulating drivers (vd) minus
the population decline due to accumulating passengers (vp).
When a new driver fixates, the population size immediately
increases by ΔN = Nsd. These jumps occur randomly at a nearly
constant rate f = μdNsd [a product of the driver occurrence rate
μdN and its probability of fixation sd/(1 + sd) ≈ sd]. Thus, the
velocity due to drivers is vd = fΔN = μdN2s2d. Similarly, pas-
sengers’ velocity vp = μpNsp is a product of their rate of oc-
currence μpN, effect on population size Nsp, and fixation
probability (near-neutral ∼1/N; see SI Appendix for a more
precise estimate). Thus, we obtain
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is the critical population size. In this equation,
a population’s mean velocity is negative below N* and positive
above N*, explaining why populations above N* grow rapidly and
populations below N* continually decline.
These dynamics suggests that N* constitutes an effective bar-

rier to cancer, which can prevent most cancers from progressing
(Fig. 1C). Simulations support this conclusion because they ex-
hibit a sharp transition in the probability of progression at N*
(Fig. 1D). Indeed, drastically different probability curves col-
lapse onto a single curve when N0 is rescaled by N*.
By considering only the average dynamics, we miss the vari-

ability of outcomes in adapting populations. In SI Appendix, we
formulate and solve a stochastic generalization of Eq. 1 that
explains the variability of outcomes well (Fig. 1E). Outcome
variability depends only upon N* and the strength of drivers sd.
Higher values of sd lead to larger stochastic jumps ΔN, which
increases variability and leads to more gradual changes in the
probability of cancer across N0.
The effects ofN* and sd on cancer progression can be intuitively

understood using a simple random-walk analogy. The population’s
reverse sawtoothed path abides by a one-dimensional randomwalk

in an effective potential Ueff = −
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chemical reactions activated by thermal energy, cancer progression
is a rare event that transitions through an unstable state, requiring
a quick succession of driver fixations.
Our analytical formalism indicates that population dynamics

depend entirely on two dimensionless parameters: a deterministic
mean velocity dependent only upon N/N* and a stochastic step
size of ∼sd. By reducing the complexity of our evolutionary system
to two parameters, we were next able to infer their values from
real cancers without overfitting.

Model Validation Using Cancer Incidence and Genomics Data. Our
model of cancer progression predicts several properties of cancer:
the presence of an effective barrier that small lesions seldom
overcome, a broad distribution in the number of accumulated
drivers and passengers in tumors, and a tug-of-war between drivers
and passengers in individual cancers. We looked for evidence of
these phenomena in age–incidence data (25) and recent cancer
genomics data, which also allowed us to estimate sd, sp, and the
probability of cancer progression.
Fig. 2A presents the incidence rate of breast cancer versus age

(25) alongside the predictions from our model and a classic
driver-only model (SI Appendix). The incidence rate was calcu-
lated by assuming that precancerous lesions arise with a constant
rate r beginning at birth. Lesions then progress to cancer in time
τ with probability P(τ), determined from simulations (SI Ap-
pendix, Fig. S1). The age–incidence rate I(t) is then the convo-
lution of P(τ) with the lesion initiation rate r. Because many
lesions never progress and go extinct in our model, the incidence
rate saturates at old age: Imax = r

R∞
0 PðτÞdτ = rP∞, where P∞ is

the probability that a lesion ever progresses to cancer.
Observed age–incidence rates saturate with age, allowing us

to estimate the efficiency of cancer progression. We estimate the
rate of lesion formation in breast cancer r ≥ 10 per year, de-
ducible in two ways: by multiplying the number of human breast
epithelial stem cells by their rate of mutation into a lesion
(SI Appendix) or by considering the number of lesions observed
in normal breasts (21). By comparing this limit (r ∼ 10 y−1) to the
maximum observed breast cancer incidence rate Imax ∼ 10−2
cancers·year−1, we find that P∞ ∼ 10−3, or only ∼0.1% of lesions
ever progress. Likewise, most other cancer subtypes (84%) pla-
teau at old age, indicating that inefficient progression is common
(SI Appendix, Fig. S1). These findings are consistent with medical

Fig. 2. Signatures of balance between drivers and passengers in incidence and genomics data. (A) Predicted and observed breast cancer incidence rates
verses age. Incidence rates in our model and the data both plateau at old age, but a traditional driver-only model (I ∝tk) does not. (B) Histogram (blue) of the
collective number of protein-coding mutations (SNMs) in breast cancer, alongside predicted distributions (lines colors as in A). Our model captures the width
and asymmetry of the distribution when sd = 0.4, whereas a driver-only model predicts a narrower, less-skewed distribution. (C) (Upper) The total number of
aggregate SCNA and SNM drivers verses the total number of passengers in sequenced tumors (points) fitted by linear regression. (Lower Left) Aggregated
cancer genomics data plotted on log axes, with the y intercept from each subtype’s linear fit subtracted [lung cancer (green), colorectal cancer (MIN−, dark
purple; MIN+, light purple)]. (Lower Right) The distribution of slope values obtained by bootstrapping 10,000 samples of each tumor type. All cancers exhibit
positive slopes (P < 0.08 − 10−5 ), suggesting estimates of sp/sd of breast, 0.0060 ± 0.0010; melanoma, 0.016 ± 0.003; lung, 0.0094 ± 0.0093; colorectal, MIN−

0.028 ± 0.007 and MIN+ 0.041 ± 0.006.
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increases to a new stationary value. In between these rare driver
events, the population size gradually declines due to passenger
accumulation. The relative rates of these competing processes
determine whether a population grows rapidly or goes extinct.
The value of N* can be identified by considering the average

change in population size over time (〈dN/dt〉), which is the av-
erage population growth due to accumulating drivers (vd) minus
the population decline due to accumulating passengers (vp).
When a new driver fixates, the population size immediately
increases by ΔN = Nsd. These jumps occur randomly at a nearly
constant rate f = μdNsd [a product of the driver occurrence rate
μdN and its probability of fixation sd/(1 + sd) ≈ sd]. Thus, the
velocity due to drivers is vd = fΔN = μdN2s2d. Similarly, pas-
sengers’ velocity vp = μpNsp is a product of their rate of oc-
currence μpN, effect on population size Nsp, and fixation
probability (near-neutral ∼1/N; see SI Appendix for a more
precise estimate). Thus, we obtain

!
dN
dt

"
= μpspN

#
N
Np

− 1
$
; [1]

where Np = Tpsp
Tds2d

is the critical population size. In this equation,
a population’s mean velocity is negative below N* and positive
above N*, explaining why populations above N* grow rapidly and
populations below N* continually decline.
These dynamics suggests that N* constitutes an effective bar-

rier to cancer, which can prevent most cancers from progressing
(Fig. 1C). Simulations support this conclusion because they ex-
hibit a sharp transition in the probability of progression at N*
(Fig. 1D). Indeed, drastically different probability curves col-
lapse onto a single curve when N0 is rescaled by N*.
By considering only the average dynamics, we miss the vari-

ability of outcomes in adapting populations. In SI Appendix, we
formulate and solve a stochastic generalization of Eq. 1 that
explains the variability of outcomes well (Fig. 1E). Outcome
variability depends only upon N* and the strength of drivers sd.
Higher values of sd lead to larger stochastic jumps ΔN, which
increases variability and leads to more gradual changes in the
probability of cancer across N0.
The effects ofN* and sd on cancer progression can be intuitively

understood using a simple random-walk analogy. The population’s
reverse sawtoothed path abides by a one-dimensional randomwalk

in an effective potential Ueff = −
R
ðdN=dtÞdN (Fig. 1C). Akin to

chemical reactions activated by thermal energy, cancer progression
is a rare event that transitions through an unstable state, requiring
a quick succession of driver fixations.
Our analytical formalism indicates that population dynamics

depend entirely on two dimensionless parameters: a deterministic
mean velocity dependent only upon N/N* and a stochastic step
size of ∼sd. By reducing the complexity of our evolutionary system
to two parameters, we were next able to infer their values from
real cancers without overfitting.

Model Validation Using Cancer Incidence and Genomics Data. Our
model of cancer progression predicts several properties of cancer:
the presence of an effective barrier that small lesions seldom
overcome, a broad distribution in the number of accumulated
drivers and passengers in tumors, and a tug-of-war between drivers
and passengers in individual cancers. We looked for evidence of
these phenomena in age–incidence data (25) and recent cancer
genomics data, which also allowed us to estimate sd, sp, and the
probability of cancer progression.
Fig. 2A presents the incidence rate of breast cancer versus age

(25) alongside the predictions from our model and a classic
driver-only model (SI Appendix). The incidence rate was calcu-
lated by assuming that precancerous lesions arise with a constant
rate r beginning at birth. Lesions then progress to cancer in time
τ with probability P(τ), determined from simulations (SI Ap-
pendix, Fig. S1). The age–incidence rate I(t) is then the convo-
lution of P(τ) with the lesion initiation rate r. Because many
lesions never progress and go extinct in our model, the incidence
rate saturates at old age: Imax = r

R∞
0 PðτÞdτ = rP∞, where P∞ is

the probability that a lesion ever progresses to cancer.
Observed age–incidence rates saturate with age, allowing us

to estimate the efficiency of cancer progression. We estimate the
rate of lesion formation in breast cancer r ≥ 10 per year, de-
ducible in two ways: by multiplying the number of human breast
epithelial stem cells by their rate of mutation into a lesion
(SI Appendix) or by considering the number of lesions observed
in normal breasts (21). By comparing this limit (r ∼ 10 y−1) to the
maximum observed breast cancer incidence rate Imax ∼ 10−2
cancers·year−1, we find that P∞ ∼ 10−3, or only ∼0.1% of lesions
ever progress. Likewise, most other cancer subtypes (84%) pla-
teau at old age, indicating that inefficient progression is common
(SI Appendix, Fig. S1). These findings are consistent with medical

Fig. 2. Signatures of balance between drivers and passengers in incidence and genomics data. (A) Predicted and observed breast cancer incidence rates
verses age. Incidence rates in our model and the data both plateau at old age, but a traditional driver-only model (I ∝tk) does not. (B) Histogram (blue) of the
collective number of protein-coding mutations (SNMs) in breast cancer, alongside predicted distributions (lines colors as in A). Our model captures the width
and asymmetry of the distribution when sd = 0.4, whereas a driver-only model predicts a narrower, less-skewed distribution. (C) (Upper) The total number of
aggregate SCNA and SNM drivers verses the total number of passengers in sequenced tumors (points) fitted by linear regression. (Lower Left) Aggregated
cancer genomics data plotted on log axes, with the y intercept from each subtype’s linear fit subtracted [lung cancer (green), colorectal cancer (MIN−, dark
purple; MIN+, light purple)]. (Lower Right) The distribution of slope values obtained by bootstrapping 10,000 samples of each tumor type. All cancers exhibit
positive slopes (P < 0.08 − 10−5 ), suggesting estimates of sp/sd of breast, 0.0060 ± 0.0010; melanoma, 0.016 ± 0.003; lung, 0.0094 ± 0.0093; colorectal, MIN−

0.028 ± 0.007 and MIN+ 0.041 ± 0.006.
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increases to a new stationary value. In between these rare driver
events, the population size gradually declines due to passenger
accumulation. The relative rates of these competing processes
determine whether a population grows rapidly or goes extinct.
The value of N* can be identified by considering the average

change in population size over time (〈dN/dt〉), which is the av-
erage population growth due to accumulating drivers (vd) minus
the population decline due to accumulating passengers (vp).
When a new driver fixates, the population size immediately
increases by ΔN = Nsd. These jumps occur randomly at a nearly
constant rate f = μdNsd [a product of the driver occurrence rate
μdN and its probability of fixation sd/(1 + sd) ≈ sd]. Thus, the
velocity due to drivers is vd = fΔN = μdN2s2d. Similarly, pas-
sengers’ velocity vp = μpNsp is a product of their rate of oc-
currence μpN, effect on population size Nsp, and fixation
probability (near-neutral ∼1/N; see SI Appendix for a more
precise estimate). Thus, we obtain

!
dN
dt

"
= μpspN

#
N
Np

− 1
$
; [1]

where Np = Tpsp
Tds2d

is the critical population size. In this equation,
a population’s mean velocity is negative below N* and positive
above N*, explaining why populations above N* grow rapidly and
populations below N* continually decline.
These dynamics suggests that N* constitutes an effective bar-

rier to cancer, which can prevent most cancers from progressing
(Fig. 1C). Simulations support this conclusion because they ex-
hibit a sharp transition in the probability of progression at N*
(Fig. 1D). Indeed, drastically different probability curves col-
lapse onto a single curve when N0 is rescaled by N*.
By considering only the average dynamics, we miss the vari-

ability of outcomes in adapting populations. In SI Appendix, we
formulate and solve a stochastic generalization of Eq. 1 that
explains the variability of outcomes well (Fig. 1E). Outcome
variability depends only upon N* and the strength of drivers sd.
Higher values of sd lead to larger stochastic jumps ΔN, which
increases variability and leads to more gradual changes in the
probability of cancer across N0.
The effects ofN* and sd on cancer progression can be intuitively

understood using a simple random-walk analogy. The population’s
reverse sawtoothed path abides by a one-dimensional randomwalk

in an effective potential Ueff = −
R
ðdN=dtÞdN (Fig. 1C). Akin to

chemical reactions activated by thermal energy, cancer progression
is a rare event that transitions through an unstable state, requiring
a quick succession of driver fixations.
Our analytical formalism indicates that population dynamics

depend entirely on two dimensionless parameters: a deterministic
mean velocity dependent only upon N/N* and a stochastic step
size of ∼sd. By reducing the complexity of our evolutionary system
to two parameters, we were next able to infer their values from
real cancers without overfitting.

Model Validation Using Cancer Incidence and Genomics Data. Our
model of cancer progression predicts several properties of cancer:
the presence of an effective barrier that small lesions seldom
overcome, a broad distribution in the number of accumulated
drivers and passengers in tumors, and a tug-of-war between drivers
and passengers in individual cancers. We looked for evidence of
these phenomena in age–incidence data (25) and recent cancer
genomics data, which also allowed us to estimate sd, sp, and the
probability of cancer progression.
Fig. 2A presents the incidence rate of breast cancer versus age

(25) alongside the predictions from our model and a classic
driver-only model (SI Appendix). The incidence rate was calcu-
lated by assuming that precancerous lesions arise with a constant
rate r beginning at birth. Lesions then progress to cancer in time
τ with probability P(τ), determined from simulations (SI Ap-
pendix, Fig. S1). The age–incidence rate I(t) is then the convo-
lution of P(τ) with the lesion initiation rate r. Because many
lesions never progress and go extinct in our model, the incidence
rate saturates at old age: Imax = r

R∞
0 PðτÞdτ = rP∞, where P∞ is

the probability that a lesion ever progresses to cancer.
Observed age–incidence rates saturate with age, allowing us

to estimate the efficiency of cancer progression. We estimate the
rate of lesion formation in breast cancer r ≥ 10 per year, de-
ducible in two ways: by multiplying the number of human breast
epithelial stem cells by their rate of mutation into a lesion
(SI Appendix) or by considering the number of lesions observed
in normal breasts (21). By comparing this limit (r ∼ 10 y−1) to the
maximum observed breast cancer incidence rate Imax ∼ 10−2
cancers·year−1, we find that P∞ ∼ 10−3, or only ∼0.1% of lesions
ever progress. Likewise, most other cancer subtypes (84%) pla-
teau at old age, indicating that inefficient progression is common
(SI Appendix, Fig. S1). These findings are consistent with medical

Fig. 2. Signatures of balance between drivers and passengers in incidence and genomics data. (A) Predicted and observed breast cancer incidence rates
verses age. Incidence rates in our model and the data both plateau at old age, but a traditional driver-only model (I ∝tk) does not. (B) Histogram (blue) of the
collective number of protein-coding mutations (SNMs) in breast cancer, alongside predicted distributions (lines colors as in A). Our model captures the width
and asymmetry of the distribution when sd = 0.4, whereas a driver-only model predicts a narrower, less-skewed distribution. (C) (Upper) The total number of
aggregate SCNA and SNM drivers verses the total number of passengers in sequenced tumors (points) fitted by linear regression. (Lower Left) Aggregated
cancer genomics data plotted on log axes, with the y intercept from each subtype’s linear fit subtracted [lung cancer (green), colorectal cancer (MIN−, dark
purple; MIN+, light purple)]. (Lower Right) The distribution of slope values obtained by bootstrapping 10,000 samples of each tumor type. All cancers exhibit
positive slopes (P < 0.08 − 10−5 ), suggesting estimates of sp/sd of breast, 0.0060 ± 0.0010; melanoma, 0.016 ± 0.003; lung, 0.0094 ± 0.0093; colorectal, MIN−

0.028 ± 0.007 and MIN+ 0.041 ± 0.006.
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increases to a new stationary value. In between these rare driver
events, the population size gradually declines due to passenger
accumulation. The relative rates of these competing processes
determine whether a population grows rapidly or goes extinct.
The value of N* can be identified by considering the average

change in population size over time (〈dN/dt〉), which is the av-
erage population growth due to accumulating drivers (vd) minus
the population decline due to accumulating passengers (vp).
When a new driver fixates, the population size immediately
increases by ΔN = Nsd. These jumps occur randomly at a nearly
constant rate f = μdNsd [a product of the driver occurrence rate
μdN and its probability of fixation sd/(1 + sd) ≈ sd]. Thus, the
velocity due to drivers is vd = fΔN = μdN2s2d. Similarly, pas-
sengers’ velocity vp = μpNsp is a product of their rate of oc-
currence μpN, effect on population size Nsp, and fixation
probability (near-neutral ∼1/N; see SI Appendix for a more
precise estimate). Thus, we obtain

!
dN
dt

"
= μpspN

#
N
Np

− 1
$
; [1]

where Np = Tpsp
Tds2d

is the critical population size. In this equation,
a population’s mean velocity is negative below N* and positive
above N*, explaining why populations above N* grow rapidly and
populations below N* continually decline.
These dynamics suggests that N* constitutes an effective bar-

rier to cancer, which can prevent most cancers from progressing
(Fig. 1C). Simulations support this conclusion because they ex-
hibit a sharp transition in the probability of progression at N*
(Fig. 1D). Indeed, drastically different probability curves col-
lapse onto a single curve when N0 is rescaled by N*.
By considering only the average dynamics, we miss the vari-

ability of outcomes in adapting populations. In SI Appendix, we
formulate and solve a stochastic generalization of Eq. 1 that
explains the variability of outcomes well (Fig. 1E). Outcome
variability depends only upon N* and the strength of drivers sd.
Higher values of sd lead to larger stochastic jumps ΔN, which
increases variability and leads to more gradual changes in the
probability of cancer across N0.
The effects ofN* and sd on cancer progression can be intuitively

understood using a simple random-walk analogy. The population’s
reverse sawtoothed path abides by a one-dimensional randomwalk

in an effective potential Ueff = −
R
ðdN=dtÞdN (Fig. 1C). Akin to

chemical reactions activated by thermal energy, cancer progression
is a rare event that transitions through an unstable state, requiring
a quick succession of driver fixations.
Our analytical formalism indicates that population dynamics

depend entirely on two dimensionless parameters: a deterministic
mean velocity dependent only upon N/N* and a stochastic step
size of ∼sd. By reducing the complexity of our evolutionary system
to two parameters, we were next able to infer their values from
real cancers without overfitting.

Model Validation Using Cancer Incidence and Genomics Data. Our
model of cancer progression predicts several properties of cancer:
the presence of an effective barrier that small lesions seldom
overcome, a broad distribution in the number of accumulated
drivers and passengers in tumors, and a tug-of-war between drivers
and passengers in individual cancers. We looked for evidence of
these phenomena in age–incidence data (25) and recent cancer
genomics data, which also allowed us to estimate sd, sp, and the
probability of cancer progression.
Fig. 2A presents the incidence rate of breast cancer versus age

(25) alongside the predictions from our model and a classic
driver-only model (SI Appendix). The incidence rate was calcu-
lated by assuming that precancerous lesions arise with a constant
rate r beginning at birth. Lesions then progress to cancer in time
τ with probability P(τ), determined from simulations (SI Ap-
pendix, Fig. S1). The age–incidence rate I(t) is then the convo-
lution of P(τ) with the lesion initiation rate r. Because many
lesions never progress and go extinct in our model, the incidence
rate saturates at old age: Imax = r

R∞
0 PðτÞdτ = rP∞, where P∞ is

the probability that a lesion ever progresses to cancer.
Observed age–incidence rates saturate with age, allowing us

to estimate the efficiency of cancer progression. We estimate the
rate of lesion formation in breast cancer r ≥ 10 per year, de-
ducible in two ways: by multiplying the number of human breast
epithelial stem cells by their rate of mutation into a lesion
(SI Appendix) or by considering the number of lesions observed
in normal breasts (21). By comparing this limit (r ∼ 10 y−1) to the
maximum observed breast cancer incidence rate Imax ∼ 10−2
cancers·year−1, we find that P∞ ∼ 10−3, or only ∼0.1% of lesions
ever progress. Likewise, most other cancer subtypes (84%) pla-
teau at old age, indicating that inefficient progression is common
(SI Appendix, Fig. S1). These findings are consistent with medical

Fig. 2. Signatures of balance between drivers and passengers in incidence and genomics data. (A) Predicted and observed breast cancer incidence rates
verses age. Incidence rates in our model and the data both plateau at old age, but a traditional driver-only model (I ∝tk) does not. (B) Histogram (blue) of the
collective number of protein-coding mutations (SNMs) in breast cancer, alongside predicted distributions (lines colors as in A). Our model captures the width
and asymmetry of the distribution when sd = 0.4, whereas a driver-only model predicts a narrower, less-skewed distribution. (C) (Upper) The total number of
aggregate SCNA and SNM drivers verses the total number of passengers in sequenced tumors (points) fitted by linear regression. (Lower Left) Aggregated
cancer genomics data plotted on log axes, with the y intercept from each subtype’s linear fit subtracted [lung cancer (green), colorectal cancer (MIN−, dark
purple; MIN+, light purple)]. (Lower Right) The distribution of slope values obtained by bootstrapping 10,000 samples of each tumor type. All cancers exhibit
positive slopes (P < 0.08 − 10−5 ), suggesting estimates of sp/sd of breast, 0.0060 ± 0.0010; melanoma, 0.016 ± 0.003; lung, 0.0094 ± 0.0093; colorectal, MIN−

0.028 ± 0.007 and MIN+ 0.041 ± 0.006.
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increases to a new stationary value. In between these rare driver
events, the population size gradually declines due to passenger
accumulation. The relative rates of these competing processes
determine whether a population grows rapidly or goes extinct.
The value of N* can be identified by considering the average

change in population size over time (〈dN/dt〉), which is the av-
erage population growth due to accumulating drivers (vd) minus
the population decline due to accumulating passengers (vp).
When a new driver fixates, the population size immediately
increases by ΔN = Nsd. These jumps occur randomly at a nearly
constant rate f = μdNsd [a product of the driver occurrence rate
μdN and its probability of fixation sd/(1 + sd) ≈ sd]. Thus, the
velocity due to drivers is vd = fΔN = μdN2s2d. Similarly, pas-
sengers’ velocity vp = μpNsp is a product of their rate of oc-
currence μpN, effect on population size Nsp, and fixation
probability (near-neutral ∼1/N; see SI Appendix for a more
precise estimate). Thus, we obtain

!
dN
dt

"
= μpspN

#
N
Np

− 1
$
; [1]

where Np = Tpsp
Tds2d

is the critical population size. In this equation,
a population’s mean velocity is negative below N* and positive
above N*, explaining why populations above N* grow rapidly and
populations below N* continually decline.
These dynamics suggests that N* constitutes an effective bar-

rier to cancer, which can prevent most cancers from progressing
(Fig. 1C). Simulations support this conclusion because they ex-
hibit a sharp transition in the probability of progression at N*
(Fig. 1D). Indeed, drastically different probability curves col-
lapse onto a single curve when N0 is rescaled by N*.
By considering only the average dynamics, we miss the vari-

ability of outcomes in adapting populations. In SI Appendix, we
formulate and solve a stochastic generalization of Eq. 1 that
explains the variability of outcomes well (Fig. 1E). Outcome
variability depends only upon N* and the strength of drivers sd.
Higher values of sd lead to larger stochastic jumps ΔN, which
increases variability and leads to more gradual changes in the
probability of cancer across N0.
The effects ofN* and sd on cancer progression can be intuitively

understood using a simple random-walk analogy. The population’s
reverse sawtoothed path abides by a one-dimensional randomwalk

in an effective potential Ueff = −
R
ðdN=dtÞdN (Fig. 1C). Akin to

chemical reactions activated by thermal energy, cancer progression
is a rare event that transitions through an unstable state, requiring
a quick succession of driver fixations.
Our analytical formalism indicates that population dynamics

depend entirely on two dimensionless parameters: a deterministic
mean velocity dependent only upon N/N* and a stochastic step
size of ∼sd. By reducing the complexity of our evolutionary system
to two parameters, we were next able to infer their values from
real cancers without overfitting.

Model Validation Using Cancer Incidence and Genomics Data. Our
model of cancer progression predicts several properties of cancer:
the presence of an effective barrier that small lesions seldom
overcome, a broad distribution in the number of accumulated
drivers and passengers in tumors, and a tug-of-war between drivers
and passengers in individual cancers. We looked for evidence of
these phenomena in age–incidence data (25) and recent cancer
genomics data, which also allowed us to estimate sd, sp, and the
probability of cancer progression.
Fig. 2A presents the incidence rate of breast cancer versus age

(25) alongside the predictions from our model and a classic
driver-only model (SI Appendix). The incidence rate was calcu-
lated by assuming that precancerous lesions arise with a constant
rate r beginning at birth. Lesions then progress to cancer in time
τ with probability P(τ), determined from simulations (SI Ap-
pendix, Fig. S1). The age–incidence rate I(t) is then the convo-
lution of P(τ) with the lesion initiation rate r. Because many
lesions never progress and go extinct in our model, the incidence
rate saturates at old age: Imax = r

R∞
0 PðτÞdτ = rP∞, where P∞ is

the probability that a lesion ever progresses to cancer.
Observed age–incidence rates saturate with age, allowing us

to estimate the efficiency of cancer progression. We estimate the
rate of lesion formation in breast cancer r ≥ 10 per year, de-
ducible in two ways: by multiplying the number of human breast
epithelial stem cells by their rate of mutation into a lesion
(SI Appendix) or by considering the number of lesions observed
in normal breasts (21). By comparing this limit (r ∼ 10 y−1) to the
maximum observed breast cancer incidence rate Imax ∼ 10−2
cancers·year−1, we find that P∞ ∼ 10−3, or only ∼0.1% of lesions
ever progress. Likewise, most other cancer subtypes (84%) pla-
teau at old age, indicating that inefficient progression is common
(SI Appendix, Fig. S1). These findings are consistent with medical

Fig. 2. Signatures of balance between drivers and passengers in incidence and genomics data. (A) Predicted and observed breast cancer incidence rates
verses age. Incidence rates in our model and the data both plateau at old age, but a traditional driver-only model (I ∝tk) does not. (B) Histogram (blue) of the
collective number of protein-coding mutations (SNMs) in breast cancer, alongside predicted distributions (lines colors as in A). Our model captures the width
and asymmetry of the distribution when sd = 0.4, whereas a driver-only model predicts a narrower, less-skewed distribution. (C) (Upper) The total number of
aggregate SCNA and SNM drivers verses the total number of passengers in sequenced tumors (points) fitted by linear regression. (Lower Left) Aggregated
cancer genomics data plotted on log axes, with the y intercept from each subtype’s linear fit subtracted [lung cancer (green), colorectal cancer (MIN−, dark
purple; MIN+, light purple)]. (Lower Right) The distribution of slope values obtained by bootstrapping 10,000 samples of each tumor type. All cancers exhibit
positive slopes (P < 0.08 − 10−5 ), suggesting estimates of sp/sd of breast, 0.0060 ± 0.0010; melanoma, 0.016 ± 0.003; lung, 0.0094 ± 0.0093; colorectal, MIN−

0.028 ± 0.007 and MIN+ 0.041 ± 0.006.
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near-neutral

increases to a new stationary value. In between these rare driver
events, the population size gradually declines due to passenger
accumulation. The relative rates of these competing processes
determine whether a population grows rapidly or goes extinct.
The value of N* can be identified by considering the average

change in population size over time (〈dN/dt〉), which is the av-
erage population growth due to accumulating drivers (vd) minus
the population decline due to accumulating passengers (vp).
When a new driver fixates, the population size immediately
increases by ΔN = Nsd. These jumps occur randomly at a nearly
constant rate f = μdNsd [a product of the driver occurrence rate
μdN and its probability of fixation sd/(1 + sd) ≈ sd]. Thus, the
velocity due to drivers is vd = fΔN = μdN2s2d. Similarly, pas-
sengers’ velocity vp = μpNsp is a product of their rate of oc-
currence μpN, effect on population size Nsp, and fixation
probability (near-neutral ∼1/N; see SI Appendix for a more
precise estimate). Thus, we obtain

!
dN
dt

"
= μpspN

#
N
Np

− 1
$
; [1]

where Np = Tpsp
Tds2d

is the critical population size. In this equation,
a population’s mean velocity is negative below N* and positive
above N*, explaining why populations above N* grow rapidly and
populations below N* continually decline.
These dynamics suggests that N* constitutes an effective bar-

rier to cancer, which can prevent most cancers from progressing
(Fig. 1C). Simulations support this conclusion because they ex-
hibit a sharp transition in the probability of progression at N*
(Fig. 1D). Indeed, drastically different probability curves col-
lapse onto a single curve when N0 is rescaled by N*.
By considering only the average dynamics, we miss the vari-

ability of outcomes in adapting populations. In SI Appendix, we
formulate and solve a stochastic generalization of Eq. 1 that
explains the variability of outcomes well (Fig. 1E). Outcome
variability depends only upon N* and the strength of drivers sd.
Higher values of sd lead to larger stochastic jumps ΔN, which
increases variability and leads to more gradual changes in the
probability of cancer across N0.
The effects ofN* and sd on cancer progression can be intuitively

understood using a simple random-walk analogy. The population’s
reverse sawtoothed path abides by a one-dimensional randomwalk

in an effective potential Ueff = −
R
ðdN=dtÞdN (Fig. 1C). Akin to

chemical reactions activated by thermal energy, cancer progression
is a rare event that transitions through an unstable state, requiring
a quick succession of driver fixations.
Our analytical formalism indicates that population dynamics

depend entirely on two dimensionless parameters: a deterministic
mean velocity dependent only upon N/N* and a stochastic step
size of ∼sd. By reducing the complexity of our evolutionary system
to two parameters, we were next able to infer their values from
real cancers without overfitting.

Model Validation Using Cancer Incidence and Genomics Data. Our
model of cancer progression predicts several properties of cancer:
the presence of an effective barrier that small lesions seldom
overcome, a broad distribution in the number of accumulated
drivers and passengers in tumors, and a tug-of-war between drivers
and passengers in individual cancers. We looked for evidence of
these phenomena in age–incidence data (25) and recent cancer
genomics data, which also allowed us to estimate sd, sp, and the
probability of cancer progression.
Fig. 2A presents the incidence rate of breast cancer versus age

(25) alongside the predictions from our model and a classic
driver-only model (SI Appendix). The incidence rate was calcu-
lated by assuming that precancerous lesions arise with a constant
rate r beginning at birth. Lesions then progress to cancer in time
τ with probability P(τ), determined from simulations (SI Ap-
pendix, Fig. S1). The age–incidence rate I(t) is then the convo-
lution of P(τ) with the lesion initiation rate r. Because many
lesions never progress and go extinct in our model, the incidence
rate saturates at old age: Imax = r

R∞
0 PðτÞdτ = rP∞, where P∞ is

the probability that a lesion ever progresses to cancer.
Observed age–incidence rates saturate with age, allowing us

to estimate the efficiency of cancer progression. We estimate the
rate of lesion formation in breast cancer r ≥ 10 per year, de-
ducible in two ways: by multiplying the number of human breast
epithelial stem cells by their rate of mutation into a lesion
(SI Appendix) or by considering the number of lesions observed
in normal breasts (21). By comparing this limit (r ∼ 10 y−1) to the
maximum observed breast cancer incidence rate Imax ∼ 10−2
cancers·year−1, we find that P∞ ∼ 10−3, or only ∼0.1% of lesions
ever progress. Likewise, most other cancer subtypes (84%) pla-
teau at old age, indicating that inefficient progression is common
(SI Appendix, Fig. S1). These findings are consistent with medical

Fig. 2. Signatures of balance between drivers and passengers in incidence and genomics data. (A) Predicted and observed breast cancer incidence rates
verses age. Incidence rates in our model and the data both plateau at old age, but a traditional driver-only model (I ∝tk) does not. (B) Histogram (blue) of the
collective number of protein-coding mutations (SNMs) in breast cancer, alongside predicted distributions (lines colors as in A). Our model captures the width
and asymmetry of the distribution when sd = 0.4, whereas a driver-only model predicts a narrower, less-skewed distribution. (C) (Upper) The total number of
aggregate SCNA and SNM drivers verses the total number of passengers in sequenced tumors (points) fitted by linear regression. (Lower Left) Aggregated
cancer genomics data plotted on log axes, with the y intercept from each subtype’s linear fit subtracted [lung cancer (green), colorectal cancer (MIN−, dark
purple; MIN+, light purple)]. (Lower Right) The distribution of slope values obtained by bootstrapping 10,000 samples of each tumor type. All cancers exhibit
positive slopes (P < 0.08 − 10−5 ), suggesting estimates of sp/sd of breast, 0.0060 ± 0.0010; melanoma, 0.016 ± 0.003; lung, 0.0094 ± 0.0093; colorectal, MIN−

0.028 ± 0.007 and MIN+ 0.041 ± 0.006.
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offers a new interpretation of cancer treatment strategies, and
explains a previously paradoxical relationship between cancer
mutation rates and clinical outcomes. Most importantly, it sug-
gests that deleterious passengers offer a new, unexploited av-
enue of cancer therapy.

Results
Model. In simulations, each cell can divide, mutate (in a general
sense, i.e., including copy number alterations, chromosomal gains
and losses, epigenetic changes, etc.), and die stochastically. Mu-
tations occur during cell divisions with a per-locus rate μ. The
frequency of driver mutations per cell division is the overall mu-
tation rate times the number of driver loci in the genome (i.e.,
target size) Td; hence, μd = μTd. The frequency of passenger
mutations is μp = μTp. Because there are many more passenger
loci than driver loci, Tp ! Td (SI Appendix).
A single cell’s fitness w is determined by its number of accu-

mulated drivers nd that each increase its fitness by sd, and its
number of accumulated passengers np that each decrease fitness
by sp: w= ð1+ sdÞndð1+ spÞ−np . This form assumes that mutations
act independently, i.e., no epistasis. In SI Appendix and Discus-
sion, we consider a simple two-hit form of epistasis. Constant
values of sd and sp are used here because previous work showed
that sampling s from various distributions exhibits qualitatively
similar dynamics (12). We assume here and estimate from data
below that sd > sp.
Cell fitness w and the population size N determine the birth

and the death rate of that cell. The death rate increases with
N according to a Gompertzian function often used to describe
cancer dynamics (9). Stochastic cell division (with mutations)

and death were modeled using a Gillespie algorithm. To develop
the most tractable and foundational model, we assume that all
parameters stay constant in time.
Adaptive processes occur within a broad range of evolutionary

parameters. For example, μ varies dramatically across cancers
(8), whereas estimates of sd range from 0.0001 (4) to 0.58 (23).
Hence, we varied each parameter by 1,000-fold (SI Appendix,
Table S1) and found that dynamics varied considerably over this
range but fell into two broad categories: adaptation (cancer) and
extinction (no progression). Previous studies have concluded that
passengers minimally affect progression when lethal (7) or if only
deleterious in a few housekeeping genes (24); however, we pre-
viously presented genomic evidence that cancers accumulate
myriad mildly deleterious passengers (12).

A Critical Population Size. Fig. 1A shows the dynamics N(t) of in-
dividual populations starting at different initial sizes N0, which cor-
respond to different potential hyperplasia sizes (trajectories begin
immediately after a stem cell acquires its first driver; see SI Appendix
for a discussion of dynamics before this point). Populations exhibit
two ultimate outcomes, growth to a macroscopic size (i.e., cancer
progression) or extinction, which depend on a critical population
size N*. Larger populations (N > N*) generally commit to rapid
growth, whereas smaller populations (N < N*) generally commit to
extinction.
To understand the origin of this critical population size N*, we

examined the short-term dynamics of populations. All trajectories
follow a reversed sawtoothed pattern (Fig. 1B), resulting from
a tug-of-war between drivers and passengers (12). When a new
driver arises and fixates in the population, the population size

Fig. 1. Tug-of-war between drivers and passengers leads to a critical population size. (A) Population size verses time of simulations initiated at various sizes
(N0 = 500, 1,000, or 2,000). For all simulations presented in this paper, μ = 10−8, Td = 1,400, Tp = 107, sd = 0.1, and sp = 0.001 (SI Appendix, Table S1), unless
specified otherwise. (B) A segment of a trajectory shows periods of rapid growth and gradual decline. New drivers arrive with a frequency f(N), abruptly
increasing the population size by an amount ΔN. Passenger accumulation causes a gradual decline with rate vp. (C) Analytically computed mean velocity of
population growth (Upper) and an effective barrier (Lower) as a function of population size N. Velocity is negative below N* and positive above it. (D) The
probability of adaptation (cancer) as a function of initial population size N (Left) and a relative initial population size (N/N*; Right) for nine sets of evolu-
tionary parameters. Curves collapse and behave similarly when plotted relative to N*. (E) Same as in D for simulations and theory but for different values of
sd. Higher values of sd leads to a more gradual transition from nonadaptive to adaptive regime. In our formalism, an increase in sd results in a larger jump size
ΔN and lower potential barrier, allowing more populations to overcome the barrier (Right).
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increases to a new stationary value. In between these rare driver
events, the population size gradually declines due to passenger
accumulation. The relative rates of these competing processes
determine whether a population grows rapidly or goes extinct.
The value of N* can be identified by considering the average

change in population size over time (〈dN/dt〉), which is the av-
erage population growth due to accumulating drivers (vd) minus
the population decline due to accumulating passengers (vp).
When a new driver fixates, the population size immediately
increases by ΔN = Nsd. These jumps occur randomly at a nearly
constant rate f = μdNsd [a product of the driver occurrence rate
μdN and its probability of fixation sd/(1 + sd) ≈ sd]. Thus, the
velocity due to drivers is vd = fΔN = μdN2s2d. Similarly, pas-
sengers’ velocity vp = μpNsp is a product of their rate of oc-
currence μpN, effect on population size Nsp, and fixation
probability (near-neutral ∼1/N; see SI Appendix for a more
precise estimate). Thus, we obtain

!
dN
dt

"
= μpspN

#
N
Np

− 1
$
; [1]

where Np = Tpsp
Tds2d

is the critical population size. In this equation,
a population’s mean velocity is negative below N* and positive
above N*, explaining why populations above N* grow rapidly and
populations below N* continually decline.
These dynamics suggests that N* constitutes an effective bar-

rier to cancer, which can prevent most cancers from progressing
(Fig. 1C). Simulations support this conclusion because they ex-
hibit a sharp transition in the probability of progression at N*
(Fig. 1D). Indeed, drastically different probability curves col-
lapse onto a single curve when N0 is rescaled by N*.
By considering only the average dynamics, we miss the vari-

ability of outcomes in adapting populations. In SI Appendix, we
formulate and solve a stochastic generalization of Eq. 1 that
explains the variability of outcomes well (Fig. 1E). Outcome
variability depends only upon N* and the strength of drivers sd.
Higher values of sd lead to larger stochastic jumps ΔN, which
increases variability and leads to more gradual changes in the
probability of cancer across N0.
The effects ofN* and sd on cancer progression can be intuitively

understood using a simple random-walk analogy. The population’s
reverse sawtoothed path abides by a one-dimensional randomwalk

in an effective potential Ueff = −
R
ðdN=dtÞdN (Fig. 1C). Akin to

chemical reactions activated by thermal energy, cancer progression
is a rare event that transitions through an unstable state, requiring
a quick succession of driver fixations.
Our analytical formalism indicates that population dynamics

depend entirely on two dimensionless parameters: a deterministic
mean velocity dependent only upon N/N* and a stochastic step
size of ∼sd. By reducing the complexity of our evolutionary system
to two parameters, we were next able to infer their values from
real cancers without overfitting.

Model Validation Using Cancer Incidence and Genomics Data. Our
model of cancer progression predicts several properties of cancer:
the presence of an effective barrier that small lesions seldom
overcome, a broad distribution in the number of accumulated
drivers and passengers in tumors, and a tug-of-war between drivers
and passengers in individual cancers. We looked for evidence of
these phenomena in age–incidence data (25) and recent cancer
genomics data, which also allowed us to estimate sd, sp, and the
probability of cancer progression.
Fig. 2A presents the incidence rate of breast cancer versus age

(25) alongside the predictions from our model and a classic
driver-only model (SI Appendix). The incidence rate was calcu-
lated by assuming that precancerous lesions arise with a constant
rate r beginning at birth. Lesions then progress to cancer in time
τ with probability P(τ), determined from simulations (SI Ap-
pendix, Fig. S1). The age–incidence rate I(t) is then the convo-
lution of P(τ) with the lesion initiation rate r. Because many
lesions never progress and go extinct in our model, the incidence
rate saturates at old age: Imax = r

R∞
0 PðτÞdτ = rP∞, where P∞ is

the probability that a lesion ever progresses to cancer.
Observed age–incidence rates saturate with age, allowing us

to estimate the efficiency of cancer progression. We estimate the
rate of lesion formation in breast cancer r ≥ 10 per year, de-
ducible in two ways: by multiplying the number of human breast
epithelial stem cells by their rate of mutation into a lesion
(SI Appendix) or by considering the number of lesions observed
in normal breasts (21). By comparing this limit (r ∼ 10 y−1) to the
maximum observed breast cancer incidence rate Imax ∼ 10−2
cancers·year−1, we find that P∞ ∼ 10−3, or only ∼0.1% of lesions
ever progress. Likewise, most other cancer subtypes (84%) pla-
teau at old age, indicating that inefficient progression is common
(SI Appendix, Fig. S1). These findings are consistent with medical

Fig. 2. Signatures of balance between drivers and passengers in incidence and genomics data. (A) Predicted and observed breast cancer incidence rates
verses age. Incidence rates in our model and the data both plateau at old age, but a traditional driver-only model (I ∝tk) does not. (B) Histogram (blue) of the
collective number of protein-coding mutations (SNMs) in breast cancer, alongside predicted distributions (lines colors as in A). Our model captures the width
and asymmetry of the distribution when sd = 0.4, whereas a driver-only model predicts a narrower, less-skewed distribution. (C) (Upper) The total number of
aggregate SCNA and SNM drivers verses the total number of passengers in sequenced tumors (points) fitted by linear regression. (Lower Left) Aggregated
cancer genomics data plotted on log axes, with the y intercept from each subtype’s linear fit subtracted [lung cancer (green), colorectal cancer (MIN−, dark
purple; MIN+, light purple)]. (Lower Right) The distribution of slope values obtained by bootstrapping 10,000 samples of each tumor type. All cancers exhibit
positive slopes (P < 0.08 − 10−5 ), suggesting estimates of sp/sd of breast, 0.0060 ± 0.0010; melanoma, 0.016 ± 0.003; lung, 0.0094 ± 0.0093; colorectal, MIN−

0.028 ± 0.007 and MIN+ 0.041 ± 0.006.
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Accumula4on	of	passengers:	hitchhiking
model (SI Appendix, Fig. S1 and discussed below), suggesting that
this fixed-effect model adequately captures cancer dynamics. We
find that deleterious passengers accumulate under a broad range of
conditions (SI Appendix, Fig. S2).
We consider death to be any process that prevents a cell from

replicating indefinitely, i.e., necrosis, apoptosis, senescence, or
differentiation. Thus, N represents only cells capable of infinite
division and of carrying the (epi)genetic information in cancer.
For this reason, our model lacks asymmetric cell divisions, as this
yields differentiated cells. Because we explored the initial pop-
ulation size across two orders of magnitude, our model applies
equally well to tumor subtypes dominated by only a small cohort
of cancer stem cells and subtypes where cancer may arise from
progenitor cells (34). Our model ignores the spatial structure of
cancer. Previous studies of asexual populations suggest that ig-
noring spatial structure will (i) underestimate the time for ben-
eficial drivers to sweep through the population and hence the
degree of clonal interference, and (ii) overestimate the effective
strength of selection, which only acts at the geographic boundary
between clones (35, 36). Hence, models considering spatial
structure should find that more passengers fixate relative to those
that do not, strengthening the conclusions of our model.

Moderately Deleterious Passengers Fixate and Alter Cancer Progression.
Fig. 1B presents typical population trajectories of cancer beginning
at the first driver mutation. All trajectories consist of intervals
of rapid growth and gradual decline. A new driver leads to
a clonal expansion of the subpopulation carrying this driver,
causing short periods of rapid growth. Growth stops when the
effect of this driver is balanced by the death rate, which
increases with population size. While the population waits for
the next driver to arise, passengers steadily accumulate, causing
a gradual decline of population size. Together, these processes
cause trajectories to grow in a sawtooth pattern.
Simulated tumors exhibit either unconstrained growth or re-

gression, often after a period of dormancy (Fig. 1B). We find that
the probability of either outcome depends on the tumor size:
tumors larger than a critical size (Ncritical) are likely to progress,
whereas smaller tumors are likely to regress (SI Appendix, Fig.
S3). Indeed, larger populations acquire drivers more frequently,
as they have more cells in which drivers can arise. Moreover,
natural selection weeds out deleterious mutations more effi-
ciently in larger populations (Fig. 2B). The phenomena of dor-
mancy and spontaneous regression, observed both in our model
and clinically (37), do not occur in models lacking deleterious
passengers. In SI Appendix, SI Text, we estimate Ncritical for
cancer and provide a framework for understanding where dele-
terious passengers are most relevant (SI Appendix, Fig. S4).
Importantly, simulations show that hyperplasias that progress to

clinical size (i.e., 106 cells, 15–20 drivers) accumulate many dele-
terious passengers. Evasion of purifying selection and fixation of
deleterious passengers is an unexpected result not programmed
into the model. Although the exact number of accumulated pas-
sengers depends on μ and sp (Fig. 1C), 102–103 deleterious pas-
sengers are obtained for a broad range of parameters, consistent
with the numbers of nonsynonymous substitutions observed in
cancer genomics studies (Table 1), suggesting that observed pas-
sengers in sequencing data can be moderately deleterious.
We then studied how deleterious mutations can accumulate

despite negative selection. Previous studies have calculated the
rate of accumulation of deleterious mutations in the absence of
clonal expansions (38–40). We identified two previously known
processes that allow passengers to evade negative selection in
cancer: hitchhiking alongside a driver and Muller’s ratchet (25)
(Fig. 2). Deleterious passengers hitchhike when the cell they re-
side in acquires a new driver, which then leads to a clonal ex-
pansion and fixation of all the mutations in that cell. Muller’s
ratchet, in turn, is a process of gradual accumulation of deleterious
mutations and population decline in the absence of drivers. In
Muller’s ratchet, a mutation-selection balance arises after driver
sweeps, which creates a steady-state Poisson distribution of the

number of passengers per cell with mean and variance μTp/sp (first
described in ref. 41; SI Appendix, SI Text and Fig. S5). The fittest
subpopulation—cells with the fewest passengers: ∼NExp½−μTp=sp"
cells—is much smaller than the whole population, so it can
spontaneously shrink to extinction (Fig. 2C). When back muta-
tions are rare, such an extinction leads to the irreversible loss of
this least-mutated fraction of cell and corresponds to a “click” of
Muller’s ratchet (25). This process is especially rapid during
clonal expansions when the size of the expanding clone is small.
Both of the above processes, well known in population genetics,
are augmented in cancer because of the presence of strong
drivers.
Simulations show that moderately deleterious, rather than highly

deleterious or neutral, passengers have a major effect on cancer
progression (Fig. 3A). Indeed, almost-neutral passengers have
very little effect on cancer cells, and passengers of large effect do
not accumulate (31). By slowing progression to cancer, moder-
ately deleterious passengers accumulate in even greater numbers
than neutral mutations despite their slower accumulation rate
(Fig. 3A). Importantly, we find that moderately deleterious
passengers affect progression for sp from 10−3 to 2 × 10−2, which
subsumes the best literature estimates of the strength of

A

B

C

Fig. 2. Mechanisms of passenger accumulation. (A) Spurts of population
growth, caused by the acquisition of a new driver, are interspersed with
a gradual decline due to passenger accumulation. (B) Passengers accumulate
both steadily between the arrival of drivers and by hitchhiking during clonal
expansions. (C) Each subclone, containing a unique number of passengers
(shown by color), grows and declines stochastically, eventually to extinction.
In between drivers, the population becomes heterogeneous. A new driver
will promotes only one clone, creating a clonal population. Afterward, new
mutations on top of the previous hitchhikers restore heterogeneity.
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deleterious mutations (14, 33). Such small selection coefficients
for individual passengers are typically undetectable in cell cul-
tures, yet critical for long-term cancer dynamics.
We then relaxed our assumption that sp is constant for all

passengers, by simulating cancer progression with passengers
drawn from distributions of deleteriousness (SI Appendix, Fig.
S6). The strength of driver and passenger mutations affects their
fixation probability (Fig. 3 B and C). For passengers, the varia-
tion in fitness within a population is mostly invariant to the type
of distribution of passenger effects (Fig. 3B). Negative selection
against passenger fixation appears to be largely inefficient, except
for highly deleterious passengers (Fig. 3C).
The significant variance in cell fitness within the population,

caused by deleterious passengers (Fig. 3B), also affects the
probability of driver fixation. Because a driver will generally
occur in a cell of average fitness, it is unlikely to fixate unless its
new fitness is greater than the fittest cells. The difference be-
tween the fittest cells and average cells in the population is ap-
proximately μTp and independent of sp (Fig. 3B) (17); therefore,
a driver must confer a benefit greater than μTp to fixate (SI
Appendix, Fig. S1). This argues that weak drivers are unlikely to
fixate in cancer or be observed in genomic sequencing.
In summary, our simulations demonstrate that despite the

moderately deleterious effect of individual passengers, they ac-
cumulate in large numbers during neoplastic progression, re-
ducing the fitness of cancer cells and altering the course of
neoplastic progression. We find several reasons why deleterious
passengers accumulate more than might be expected a priori: (i)
mutator phenotypes [a hallmark of cancer (28)] accelerate ac-
cumulation rates; (ii) small population sizes in the early stages of
cancer progression enhance accumulation rates; (iii) driver-in-
duced bottlenecks and hitchhiking contribute additional pas-
sengers; (iv) passengers prolong progression—offering more
time for accumulation; and (v) passengers arising as part of a dis-
tribution of deleteriousness fixate more often than equivalent
passengers considered in isolation. These first three phenomenon,
though undocumented in cancer theory, have been previously
observed in population genetics (12).

Passenger Mutations Observed in Cancer Can Be Damaging. Our
model makes several testable predictions: (i) accumulated
passengers in cancer populations can be deleterious to cancer
cells; (ii) the deleterious effect of an individual passenger has
little bearing on its likelihood of accumulation; and (iii) fixed

drivers should have larger effects on phenotype than pas-
sengers. Cancer genomics data provide an opportunity to test
these predictions. First, we test whether nonsynonymous pas-
sengers found in cancer are damaging or neutral to protein
function using comparative genomics. Second, we test whether
selection acting against passengers is effective at preventing fix-
ation or largely ineffective, as suggested by our simulations.
We analyzed 116,977 cancer mutations curated by the Cata-

logue of Somatic Mutations in Cancer (COSMIC) and The
Cancer Genome Atlas (TCGA). We classified them as driver and
passenger mutation groups and then characterized their effects
using PolyPhen, a tool widely used in population and medical
genetics to predict the damaging effect of missense mutations
(15). Passengers were identified as missense mutations that show
no recurrence and affect genes not listed in a census of possible
cancer-causing genes (SI Appendix, SI Text). The ΔPSIC metric
of PolyPhen measures the degree of evolutionary conservation of
a mutated residue (42) by calculating the negative log-likelihood
of observing a specific mutation, given the evolutionary history
of the protein. Specifically, a mutation with a ΔPSIC of 1 is
e(= 2.71. . .) times less likely to be observed than the wild-type
allele, as computed from a multiple alignment. Thus, a mutation
with high ΔPSIC is more likely to be damaging to molecular
function (43) because this implies the mutation disrupts a well-
conserved residue. PolyPhen has been extensively tested and
benchmarked (15).
Fig. 4 presents this analysis for passengers, drivers, and three

reference datasets: (i) common human missense SNPs; (ii) simu-
lated de novo mutations (randomly generated using a cancer-
specific three-parameter model; SI Appendix, SI Text); and (iii)
damaging, pathogenic missense mutations causing human Men-
delian diseases (from the Human Gene Mutation Database). As
expected, common SNPs are benign and exhibit small ΔPSIC
values, whereas disease-causing mutations, with known damaging
effect, exhibit large ΔPSIC values (Fig. 4A). Driver mutations
exhibit similarly high values of ΔPSIC, significantly greater than
randomly generated mutations, indicating that drivers tend to
occur at well-conserved loci. From a biochemical perspective, this
result shows that, to activate an oncogene or to disable a tumor
suppressor, the driver mutation must change a critical and well-
conserved residue, e.g., the GTP binding site of Ras or DNA
binding domain of p53. From an evolutionary perspective, the
conservation of residues that promote tumorigenesis when mu-
tated suggests strong natural selection against the early de-
velopment of cancer. The ability of ΔPSIC score to identify drivers
as having highly nonneutral phenotypes (i.e., damaging or altering

E ectively neutral
(µ Tp sp << sd )

Strongly deleterious
(N sp Exp[-µ Tp /sp ]~1)

Mildly deleterious
A B

C

Fig. 3. Moderately deleterious passengers alter cancer progression and
mostly evade selection. (A) Passengers of intermediate fitness effect sp
prolong the time to cancer and accumulate in large, highly variable quan-
tities (red solid, mean; dotted, ±1 SD). Moderately deleterious passengers
affect cancer only if they are strong or frequent enough to be comparable
to the effects of drivers, yet weak enough to avoid selection (SI Appendix,
SI Text). Experimentally observed fitness effects of random point muta-
tions in YFP in yeast ranged from 0.007 to 0.028 (green shading) (14). (B)
Population dynamics did not change noticeably when passengers were drawn
from various distributions of fitness distributions (SI Appendix, SI Text).
(C) Passenger fixation probability declined only moderately with increasing
deleteriousness.
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Fig. 4. Characterization of missense mutations in cancer sequencing data.
(A) Mutations were assayed using the ΔPSIC score of PolyPhen, which esti-
mates the damaging effect of a new mutation, given known homologs;
mutations with high ΔPSIC scores are most likely damaging (43). Passengers
have large ΔPSIC, close to random mutations, suggesting that they are
deleterious. (B) Deleterious passenger phenotypes were observed in all
subsets of passengers studied, arguing that these results cannot be
explained by recessive phenotypes, or lack of expression, or database biases.
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deleterious mutations (14, 33). Such small selection coefficients
for individual passengers are typically undetectable in cell cul-
tures, yet critical for long-term cancer dynamics.
We then relaxed our assumption that sp is constant for all

passengers, by simulating cancer progression with passengers
drawn from distributions of deleteriousness (SI Appendix, Fig.
S6). The strength of driver and passenger mutations affects their
fixation probability (Fig. 3 B and C). For passengers, the varia-
tion in fitness within a population is mostly invariant to the type
of distribution of passenger effects (Fig. 3B). Negative selection
against passenger fixation appears to be largely inefficient, except
for highly deleterious passengers (Fig. 3C).
The significant variance in cell fitness within the population,

caused by deleterious passengers (Fig. 3B), also affects the
probability of driver fixation. Because a driver will generally
occur in a cell of average fitness, it is unlikely to fixate unless its
new fitness is greater than the fittest cells. The difference be-
tween the fittest cells and average cells in the population is ap-
proximately μTp and independent of sp (Fig. 3B) (17); therefore,
a driver must confer a benefit greater than μTp to fixate (SI
Appendix, Fig. S1). This argues that weak drivers are unlikely to
fixate in cancer or be observed in genomic sequencing.
In summary, our simulations demonstrate that despite the

moderately deleterious effect of individual passengers, they ac-
cumulate in large numbers during neoplastic progression, re-
ducing the fitness of cancer cells and altering the course of
neoplastic progression. We find several reasons why deleterious
passengers accumulate more than might be expected a priori: (i)
mutator phenotypes [a hallmark of cancer (28)] accelerate ac-
cumulation rates; (ii) small population sizes in the early stages of
cancer progression enhance accumulation rates; (iii) driver-in-
duced bottlenecks and hitchhiking contribute additional pas-
sengers; (iv) passengers prolong progression—offering more
time for accumulation; and (v) passengers arising as part of a dis-
tribution of deleteriousness fixate more often than equivalent
passengers considered in isolation. These first three phenomenon,
though undocumented in cancer theory, have been previously
observed in population genetics (12).

Passenger Mutations Observed in Cancer Can Be Damaging. Our
model makes several testable predictions: (i) accumulated
passengers in cancer populations can be deleterious to cancer
cells; (ii) the deleterious effect of an individual passenger has
little bearing on its likelihood of accumulation; and (iii) fixed

drivers should have larger effects on phenotype than pas-
sengers. Cancer genomics data provide an opportunity to test
these predictions. First, we test whether nonsynonymous pas-
sengers found in cancer are damaging or neutral to protein
function using comparative genomics. Second, we test whether
selection acting against passengers is effective at preventing fix-
ation or largely ineffective, as suggested by our simulations.
We analyzed 116,977 cancer mutations curated by the Cata-

logue of Somatic Mutations in Cancer (COSMIC) and The
Cancer Genome Atlas (TCGA). We classified them as driver and
passenger mutation groups and then characterized their effects
using PolyPhen, a tool widely used in population and medical
genetics to predict the damaging effect of missense mutations
(15). Passengers were identified as missense mutations that show
no recurrence and affect genes not listed in a census of possible
cancer-causing genes (SI Appendix, SI Text). The ΔPSIC metric
of PolyPhen measures the degree of evolutionary conservation of
a mutated residue (42) by calculating the negative log-likelihood
of observing a specific mutation, given the evolutionary history
of the protein. Specifically, a mutation with a ΔPSIC of 1 is
e(= 2.71. . .) times less likely to be observed than the wild-type
allele, as computed from a multiple alignment. Thus, a mutation
with high ΔPSIC is more likely to be damaging to molecular
function (43) because this implies the mutation disrupts a well-
conserved residue. PolyPhen has been extensively tested and
benchmarked (15).
Fig. 4 presents this analysis for passengers, drivers, and three

reference datasets: (i) common human missense SNPs; (ii) simu-
lated de novo mutations (randomly generated using a cancer-
specific three-parameter model; SI Appendix, SI Text); and (iii)
damaging, pathogenic missense mutations causing human Men-
delian diseases (from the Human Gene Mutation Database). As
expected, common SNPs are benign and exhibit small ΔPSIC
values, whereas disease-causing mutations, with known damaging
effect, exhibit large ΔPSIC values (Fig. 4A). Driver mutations
exhibit similarly high values of ΔPSIC, significantly greater than
randomly generated mutations, indicating that drivers tend to
occur at well-conserved loci. From a biochemical perspective, this
result shows that, to activate an oncogene or to disable a tumor
suppressor, the driver mutation must change a critical and well-
conserved residue, e.g., the GTP binding site of Ras or DNA
binding domain of p53. From an evolutionary perspective, the
conservation of residues that promote tumorigenesis when mu-
tated suggests strong natural selection against the early de-
velopment of cancer. The ability of ΔPSIC score to identify drivers
as having highly nonneutral phenotypes (i.e., damaging or altering

E ectively neutral
(µ Tp sp << sd )

Strongly deleterious
(N sp Exp[-µ Tp /sp ]~1)

Mildly deleterious
A B

C

Fig. 3. Moderately deleterious passengers alter cancer progression and
mostly evade selection. (A) Passengers of intermediate fitness effect sp
prolong the time to cancer and accumulate in large, highly variable quan-
tities (red solid, mean; dotted, ±1 SD). Moderately deleterious passengers
affect cancer only if they are strong or frequent enough to be comparable
to the effects of drivers, yet weak enough to avoid selection (SI Appendix,
SI Text). Experimentally observed fitness effects of random point muta-
tions in YFP in yeast ranged from 0.007 to 0.028 (green shading) (14). (B)
Population dynamics did not change noticeably when passengers were drawn
from various distributions of fitness distributions (SI Appendix, SI Text).
(C) Passenger fixation probability declined only moderately with increasing
deleteriousness.
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Fig. 4. Characterization of missense mutations in cancer sequencing data.
(A) Mutations were assayed using the ΔPSIC score of PolyPhen, which esti-
mates the damaging effect of a new mutation, given known homologs;
mutations with high ΔPSIC scores are most likely damaging (43). Passengers
have large ΔPSIC, close to random mutations, suggesting that they are
deleterious. (B) Deleterious passenger phenotypes were observed in all
subsets of passengers studied, arguing that these results cannot be
explained by recessive phenotypes, or lack of expression, or database biases.
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deleterious mutations (14, 33). Such small selection coefficients
for individual passengers are typically undetectable in cell cul-
tures, yet critical for long-term cancer dynamics.
We then relaxed our assumption that sp is constant for all

passengers, by simulating cancer progression with passengers
drawn from distributions of deleteriousness (SI Appendix, Fig.
S6). The strength of driver and passenger mutations affects their
fixation probability (Fig. 3 B and C). For passengers, the varia-
tion in fitness within a population is mostly invariant to the type
of distribution of passenger effects (Fig. 3B). Negative selection
against passenger fixation appears to be largely inefficient, except
for highly deleterious passengers (Fig. 3C).
The significant variance in cell fitness within the population,

caused by deleterious passengers (Fig. 3B), also affects the
probability of driver fixation. Because a driver will generally
occur in a cell of average fitness, it is unlikely to fixate unless its
new fitness is greater than the fittest cells. The difference be-
tween the fittest cells and average cells in the population is ap-
proximately μTp and independent of sp (Fig. 3B) (17); therefore,
a driver must confer a benefit greater than μTp to fixate (SI
Appendix, Fig. S1). This argues that weak drivers are unlikely to
fixate in cancer or be observed in genomic sequencing.
In summary, our simulations demonstrate that despite the

moderately deleterious effect of individual passengers, they ac-
cumulate in large numbers during neoplastic progression, re-
ducing the fitness of cancer cells and altering the course of
neoplastic progression. We find several reasons why deleterious
passengers accumulate more than might be expected a priori: (i)
mutator phenotypes [a hallmark of cancer (28)] accelerate ac-
cumulation rates; (ii) small population sizes in the early stages of
cancer progression enhance accumulation rates; (iii) driver-in-
duced bottlenecks and hitchhiking contribute additional pas-
sengers; (iv) passengers prolong progression—offering more
time for accumulation; and (v) passengers arising as part of a dis-
tribution of deleteriousness fixate more often than equivalent
passengers considered in isolation. These first three phenomenon,
though undocumented in cancer theory, have been previously
observed in population genetics (12).

Passenger Mutations Observed in Cancer Can Be Damaging. Our
model makes several testable predictions: (i) accumulated
passengers in cancer populations can be deleterious to cancer
cells; (ii) the deleterious effect of an individual passenger has
little bearing on its likelihood of accumulation; and (iii) fixed

drivers should have larger effects on phenotype than pas-
sengers. Cancer genomics data provide an opportunity to test
these predictions. First, we test whether nonsynonymous pas-
sengers found in cancer are damaging or neutral to protein
function using comparative genomics. Second, we test whether
selection acting against passengers is effective at preventing fix-
ation or largely ineffective, as suggested by our simulations.
We analyzed 116,977 cancer mutations curated by the Cata-

logue of Somatic Mutations in Cancer (COSMIC) and The
Cancer Genome Atlas (TCGA). We classified them as driver and
passenger mutation groups and then characterized their effects
using PolyPhen, a tool widely used in population and medical
genetics to predict the damaging effect of missense mutations
(15). Passengers were identified as missense mutations that show
no recurrence and affect genes not listed in a census of possible
cancer-causing genes (SI Appendix, SI Text). The ΔPSIC metric
of PolyPhen measures the degree of evolutionary conservation of
a mutated residue (42) by calculating the negative log-likelihood
of observing a specific mutation, given the evolutionary history
of the protein. Specifically, a mutation with a ΔPSIC of 1 is
e(= 2.71. . .) times less likely to be observed than the wild-type
allele, as computed from a multiple alignment. Thus, a mutation
with high ΔPSIC is more likely to be damaging to molecular
function (43) because this implies the mutation disrupts a well-
conserved residue. PolyPhen has been extensively tested and
benchmarked (15).
Fig. 4 presents this analysis for passengers, drivers, and three

reference datasets: (i) common human missense SNPs; (ii) simu-
lated de novo mutations (randomly generated using a cancer-
specific three-parameter model; SI Appendix, SI Text); and (iii)
damaging, pathogenic missense mutations causing human Men-
delian diseases (from the Human Gene Mutation Database). As
expected, common SNPs are benign and exhibit small ΔPSIC
values, whereas disease-causing mutations, with known damaging
effect, exhibit large ΔPSIC values (Fig. 4A). Driver mutations
exhibit similarly high values of ΔPSIC, significantly greater than
randomly generated mutations, indicating that drivers tend to
occur at well-conserved loci. From a biochemical perspective, this
result shows that, to activate an oncogene or to disable a tumor
suppressor, the driver mutation must change a critical and well-
conserved residue, e.g., the GTP binding site of Ras or DNA
binding domain of p53. From an evolutionary perspective, the
conservation of residues that promote tumorigenesis when mu-
tated suggests strong natural selection against the early de-
velopment of cancer. The ability of ΔPSIC score to identify drivers
as having highly nonneutral phenotypes (i.e., damaging or altering
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Fig. 3. Moderately deleterious passengers alter cancer progression and
mostly evade selection. (A) Passengers of intermediate fitness effect sp
prolong the time to cancer and accumulate in large, highly variable quan-
tities (red solid, mean; dotted, ±1 SD). Moderately deleterious passengers
affect cancer only if they are strong or frequent enough to be comparable
to the effects of drivers, yet weak enough to avoid selection (SI Appendix,
SI Text). Experimentally observed fitness effects of random point muta-
tions in YFP in yeast ranged from 0.007 to 0.028 (green shading) (14). (B)
Population dynamics did not change noticeably when passengers were drawn
from various distributions of fitness distributions (SI Appendix, SI Text).
(C) Passenger fixation probability declined only moderately with increasing
deleteriousness.
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Fig. 4. Characterization of missense mutations in cancer sequencing data.
(A) Mutations were assayed using the ΔPSIC score of PolyPhen, which esti-
mates the damaging effect of a new mutation, given known homologs;
mutations with high ΔPSIC scores are most likely damaging (43). Passengers
have large ΔPSIC, close to random mutations, suggesting that they are
deleterious. (B) Deleterious passenger phenotypes were observed in all
subsets of passengers studied, arguing that these results cannot be
explained by recessive phenotypes, or lack of expression, or database biases.
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deleterious mutations (14, 33). Such small selection coefficients
for individual passengers are typically undetectable in cell cul-
tures, yet critical for long-term cancer dynamics.
We then relaxed our assumption that sp is constant for all

passengers, by simulating cancer progression with passengers
drawn from distributions of deleteriousness (SI Appendix, Fig.
S6). The strength of driver and passenger mutations affects their
fixation probability (Fig. 3 B and C). For passengers, the varia-
tion in fitness within a population is mostly invariant to the type
of distribution of passenger effects (Fig. 3B). Negative selection
against passenger fixation appears to be largely inefficient, except
for highly deleterious passengers (Fig. 3C).
The significant variance in cell fitness within the population,

caused by deleterious passengers (Fig. 3B), also affects the
probability of driver fixation. Because a driver will generally
occur in a cell of average fitness, it is unlikely to fixate unless its
new fitness is greater than the fittest cells. The difference be-
tween the fittest cells and average cells in the population is ap-
proximately μTp and independent of sp (Fig. 3B) (17); therefore,
a driver must confer a benefit greater than μTp to fixate (SI
Appendix, Fig. S1). This argues that weak drivers are unlikely to
fixate in cancer or be observed in genomic sequencing.
In summary, our simulations demonstrate that despite the

moderately deleterious effect of individual passengers, they ac-
cumulate in large numbers during neoplastic progression, re-
ducing the fitness of cancer cells and altering the course of
neoplastic progression. We find several reasons why deleterious
passengers accumulate more than might be expected a priori: (i)
mutator phenotypes [a hallmark of cancer (28)] accelerate ac-
cumulation rates; (ii) small population sizes in the early stages of
cancer progression enhance accumulation rates; (iii) driver-in-
duced bottlenecks and hitchhiking contribute additional pas-
sengers; (iv) passengers prolong progression—offering more
time for accumulation; and (v) passengers arising as part of a dis-
tribution of deleteriousness fixate more often than equivalent
passengers considered in isolation. These first three phenomenon,
though undocumented in cancer theory, have been previously
observed in population genetics (12).

Passenger Mutations Observed in Cancer Can Be Damaging. Our
model makes several testable predictions: (i) accumulated
passengers in cancer populations can be deleterious to cancer
cells; (ii) the deleterious effect of an individual passenger has
little bearing on its likelihood of accumulation; and (iii) fixed

drivers should have larger effects on phenotype than pas-
sengers. Cancer genomics data provide an opportunity to test
these predictions. First, we test whether nonsynonymous pas-
sengers found in cancer are damaging or neutral to protein
function using comparative genomics. Second, we test whether
selection acting against passengers is effective at preventing fix-
ation or largely ineffective, as suggested by our simulations.
We analyzed 116,977 cancer mutations curated by the Cata-

logue of Somatic Mutations in Cancer (COSMIC) and The
Cancer Genome Atlas (TCGA). We classified them as driver and
passenger mutation groups and then characterized their effects
using PolyPhen, a tool widely used in population and medical
genetics to predict the damaging effect of missense mutations
(15). Passengers were identified as missense mutations that show
no recurrence and affect genes not listed in a census of possible
cancer-causing genes (SI Appendix, SI Text). The ΔPSIC metric
of PolyPhen measures the degree of evolutionary conservation of
a mutated residue (42) by calculating the negative log-likelihood
of observing a specific mutation, given the evolutionary history
of the protein. Specifically, a mutation with a ΔPSIC of 1 is
e(= 2.71. . .) times less likely to be observed than the wild-type
allele, as computed from a multiple alignment. Thus, a mutation
with high ΔPSIC is more likely to be damaging to molecular
function (43) because this implies the mutation disrupts a well-
conserved residue. PolyPhen has been extensively tested and
benchmarked (15).
Fig. 4 presents this analysis for passengers, drivers, and three

reference datasets: (i) common human missense SNPs; (ii) simu-
lated de novo mutations (randomly generated using a cancer-
specific three-parameter model; SI Appendix, SI Text); and (iii)
damaging, pathogenic missense mutations causing human Men-
delian diseases (from the Human Gene Mutation Database). As
expected, common SNPs are benign and exhibit small ΔPSIC
values, whereas disease-causing mutations, with known damaging
effect, exhibit large ΔPSIC values (Fig. 4A). Driver mutations
exhibit similarly high values of ΔPSIC, significantly greater than
randomly generated mutations, indicating that drivers tend to
occur at well-conserved loci. From a biochemical perspective, this
result shows that, to activate an oncogene or to disable a tumor
suppressor, the driver mutation must change a critical and well-
conserved residue, e.g., the GTP binding site of Ras or DNA
binding domain of p53. From an evolutionary perspective, the
conservation of residues that promote tumorigenesis when mu-
tated suggests strong natural selection against the early de-
velopment of cancer. The ability of ΔPSIC score to identify drivers
as having highly nonneutral phenotypes (i.e., damaging or altering
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Fig. 3. Moderately deleterious passengers alter cancer progression and
mostly evade selection. (A) Passengers of intermediate fitness effect sp
prolong the time to cancer and accumulate in large, highly variable quan-
tities (red solid, mean; dotted, ±1 SD). Moderately deleterious passengers
affect cancer only if they are strong or frequent enough to be comparable
to the effects of drivers, yet weak enough to avoid selection (SI Appendix,
SI Text). Experimentally observed fitness effects of random point muta-
tions in YFP in yeast ranged from 0.007 to 0.028 (green shading) (14). (B)
Population dynamics did not change noticeably when passengers were drawn
from various distributions of fitness distributions (SI Appendix, SI Text).
(C) Passenger fixation probability declined only moderately with increasing
deleteriousness.
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Fig. 4. Characterization of missense mutations in cancer sequencing data.
(A) Mutations were assayed using the ΔPSIC score of PolyPhen, which esti-
mates the damaging effect of a new mutation, given known homologs;
mutations with high ΔPSIC scores are most likely damaging (43). Passengers
have large ΔPSIC, close to random mutations, suggesting that they are
deleterious. (B) Deleterious passenger phenotypes were observed in all
subsets of passengers studied, arguing that these results cannot be
explained by recessive phenotypes, or lack of expression, or database biases.
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deleterious mutations (14, 33). Such small selection coefficients
for individual passengers are typically undetectable in cell cul-
tures, yet critical for long-term cancer dynamics.
We then relaxed our assumption that sp is constant for all

passengers, by simulating cancer progression with passengers
drawn from distributions of deleteriousness (SI Appendix, Fig.
S6). The strength of driver and passenger mutations affects their
fixation probability (Fig. 3 B and C). For passengers, the varia-
tion in fitness within a population is mostly invariant to the type
of distribution of passenger effects (Fig. 3B). Negative selection
against passenger fixation appears to be largely inefficient, except
for highly deleterious passengers (Fig. 3C).
The significant variance in cell fitness within the population,

caused by deleterious passengers (Fig. 3B), also affects the
probability of driver fixation. Because a driver will generally
occur in a cell of average fitness, it is unlikely to fixate unless its
new fitness is greater than the fittest cells. The difference be-
tween the fittest cells and average cells in the population is ap-
proximately μTp and independent of sp (Fig. 3B) (17); therefore,
a driver must confer a benefit greater than μTp to fixate (SI
Appendix, Fig. S1). This argues that weak drivers are unlikely to
fixate in cancer or be observed in genomic sequencing.
In summary, our simulations demonstrate that despite the

moderately deleterious effect of individual passengers, they ac-
cumulate in large numbers during neoplastic progression, re-
ducing the fitness of cancer cells and altering the course of
neoplastic progression. We find several reasons why deleterious
passengers accumulate more than might be expected a priori: (i)
mutator phenotypes [a hallmark of cancer (28)] accelerate ac-
cumulation rates; (ii) small population sizes in the early stages of
cancer progression enhance accumulation rates; (iii) driver-in-
duced bottlenecks and hitchhiking contribute additional pas-
sengers; (iv) passengers prolong progression—offering more
time for accumulation; and (v) passengers arising as part of a dis-
tribution of deleteriousness fixate more often than equivalent
passengers considered in isolation. These first three phenomenon,
though undocumented in cancer theory, have been previously
observed in population genetics (12).

Passenger Mutations Observed in Cancer Can Be Damaging. Our
model makes several testable predictions: (i) accumulated
passengers in cancer populations can be deleterious to cancer
cells; (ii) the deleterious effect of an individual passenger has
little bearing on its likelihood of accumulation; and (iii) fixed

drivers should have larger effects on phenotype than pas-
sengers. Cancer genomics data provide an opportunity to test
these predictions. First, we test whether nonsynonymous pas-
sengers found in cancer are damaging or neutral to protein
function using comparative genomics. Second, we test whether
selection acting against passengers is effective at preventing fix-
ation or largely ineffective, as suggested by our simulations.
We analyzed 116,977 cancer mutations curated by the Cata-

logue of Somatic Mutations in Cancer (COSMIC) and The
Cancer Genome Atlas (TCGA). We classified them as driver and
passenger mutation groups and then characterized their effects
using PolyPhen, a tool widely used in population and medical
genetics to predict the damaging effect of missense mutations
(15). Passengers were identified as missense mutations that show
no recurrence and affect genes not listed in a census of possible
cancer-causing genes (SI Appendix, SI Text). The ΔPSIC metric
of PolyPhen measures the degree of evolutionary conservation of
a mutated residue (42) by calculating the negative log-likelihood
of observing a specific mutation, given the evolutionary history
of the protein. Specifically, a mutation with a ΔPSIC of 1 is
e(= 2.71. . .) times less likely to be observed than the wild-type
allele, as computed from a multiple alignment. Thus, a mutation
with high ΔPSIC is more likely to be damaging to molecular
function (43) because this implies the mutation disrupts a well-
conserved residue. PolyPhen has been extensively tested and
benchmarked (15).
Fig. 4 presents this analysis for passengers, drivers, and three

reference datasets: (i) common human missense SNPs; (ii) simu-
lated de novo mutations (randomly generated using a cancer-
specific three-parameter model; SI Appendix, SI Text); and (iii)
damaging, pathogenic missense mutations causing human Men-
delian diseases (from the Human Gene Mutation Database). As
expected, common SNPs are benign and exhibit small ΔPSIC
values, whereas disease-causing mutations, with known damaging
effect, exhibit large ΔPSIC values (Fig. 4A). Driver mutations
exhibit similarly high values of ΔPSIC, significantly greater than
randomly generated mutations, indicating that drivers tend to
occur at well-conserved loci. From a biochemical perspective, this
result shows that, to activate an oncogene or to disable a tumor
suppressor, the driver mutation must change a critical and well-
conserved residue, e.g., the GTP binding site of Ras or DNA
binding domain of p53. From an evolutionary perspective, the
conservation of residues that promote tumorigenesis when mu-
tated suggests strong natural selection against the early de-
velopment of cancer. The ability of ΔPSIC score to identify drivers
as having highly nonneutral phenotypes (i.e., damaging or altering
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Fig. 3. Moderately deleterious passengers alter cancer progression and
mostly evade selection. (A) Passengers of intermediate fitness effect sp
prolong the time to cancer and accumulate in large, highly variable quan-
tities (red solid, mean; dotted, ±1 SD). Moderately deleterious passengers
affect cancer only if they are strong or frequent enough to be comparable
to the effects of drivers, yet weak enough to avoid selection (SI Appendix,
SI Text). Experimentally observed fitness effects of random point muta-
tions in YFP in yeast ranged from 0.007 to 0.028 (green shading) (14). (B)
Population dynamics did not change noticeably when passengers were drawn
from various distributions of fitness distributions (SI Appendix, SI Text).
(C) Passenger fixation probability declined only moderately with increasing
deleteriousness.
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Fig. 4. Characterization of missense mutations in cancer sequencing data.
(A) Mutations were assayed using the ΔPSIC score of PolyPhen, which esti-
mates the damaging effect of a new mutation, given known homologs;
mutations with high ΔPSIC scores are most likely damaging (43). Passengers
have large ΔPSIC, close to random mutations, suggesting that they are
deleterious. (B) Deleterious passenger phenotypes were observed in all
subsets of passengers studied, arguing that these results cannot be
explained by recessive phenotypes, or lack of expression, or database biases.
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deleterious mutations (14, 33). Such small selection coefficients
for individual passengers are typically undetectable in cell cul-
tures, yet critical for long-term cancer dynamics.
We then relaxed our assumption that sp is constant for all

passengers, by simulating cancer progression with passengers
drawn from distributions of deleteriousness (SI Appendix, Fig.
S6). The strength of driver and passenger mutations affects their
fixation probability (Fig. 3 B and C). For passengers, the varia-
tion in fitness within a population is mostly invariant to the type
of distribution of passenger effects (Fig. 3B). Negative selection
against passenger fixation appears to be largely inefficient, except
for highly deleterious passengers (Fig. 3C).
The significant variance in cell fitness within the population,

caused by deleterious passengers (Fig. 3B), also affects the
probability of driver fixation. Because a driver will generally
occur in a cell of average fitness, it is unlikely to fixate unless its
new fitness is greater than the fittest cells. The difference be-
tween the fittest cells and average cells in the population is ap-
proximately μTp and independent of sp (Fig. 3B) (17); therefore,
a driver must confer a benefit greater than μTp to fixate (SI
Appendix, Fig. S1). This argues that weak drivers are unlikely to
fixate in cancer or be observed in genomic sequencing.
In summary, our simulations demonstrate that despite the

moderately deleterious effect of individual passengers, they ac-
cumulate in large numbers during neoplastic progression, re-
ducing the fitness of cancer cells and altering the course of
neoplastic progression. We find several reasons why deleterious
passengers accumulate more than might be expected a priori: (i)
mutator phenotypes [a hallmark of cancer (28)] accelerate ac-
cumulation rates; (ii) small population sizes in the early stages of
cancer progression enhance accumulation rates; (iii) driver-in-
duced bottlenecks and hitchhiking contribute additional pas-
sengers; (iv) passengers prolong progression—offering more
time for accumulation; and (v) passengers arising as part of a dis-
tribution of deleteriousness fixate more often than equivalent
passengers considered in isolation. These first three phenomenon,
though undocumented in cancer theory, have been previously
observed in population genetics (12).

Passenger Mutations Observed in Cancer Can Be Damaging. Our
model makes several testable predictions: (i) accumulated
passengers in cancer populations can be deleterious to cancer
cells; (ii) the deleterious effect of an individual passenger has
little bearing on its likelihood of accumulation; and (iii) fixed

drivers should have larger effects on phenotype than pas-
sengers. Cancer genomics data provide an opportunity to test
these predictions. First, we test whether nonsynonymous pas-
sengers found in cancer are damaging or neutral to protein
function using comparative genomics. Second, we test whether
selection acting against passengers is effective at preventing fix-
ation or largely ineffective, as suggested by our simulations.
We analyzed 116,977 cancer mutations curated by the Cata-

logue of Somatic Mutations in Cancer (COSMIC) and The
Cancer Genome Atlas (TCGA). We classified them as driver and
passenger mutation groups and then characterized their effects
using PolyPhen, a tool widely used in population and medical
genetics to predict the damaging effect of missense mutations
(15). Passengers were identified as missense mutations that show
no recurrence and affect genes not listed in a census of possible
cancer-causing genes (SI Appendix, SI Text). The ΔPSIC metric
of PolyPhen measures the degree of evolutionary conservation of
a mutated residue (42) by calculating the negative log-likelihood
of observing a specific mutation, given the evolutionary history
of the protein. Specifically, a mutation with a ΔPSIC of 1 is
e(= 2.71. . .) times less likely to be observed than the wild-type
allele, as computed from a multiple alignment. Thus, a mutation
with high ΔPSIC is more likely to be damaging to molecular
function (43) because this implies the mutation disrupts a well-
conserved residue. PolyPhen has been extensively tested and
benchmarked (15).
Fig. 4 presents this analysis for passengers, drivers, and three

reference datasets: (i) common human missense SNPs; (ii) simu-
lated de novo mutations (randomly generated using a cancer-
specific three-parameter model; SI Appendix, SI Text); and (iii)
damaging, pathogenic missense mutations causing human Men-
delian diseases (from the Human Gene Mutation Database). As
expected, common SNPs are benign and exhibit small ΔPSIC
values, whereas disease-causing mutations, with known damaging
effect, exhibit large ΔPSIC values (Fig. 4A). Driver mutations
exhibit similarly high values of ΔPSIC, significantly greater than
randomly generated mutations, indicating that drivers tend to
occur at well-conserved loci. From a biochemical perspective, this
result shows that, to activate an oncogene or to disable a tumor
suppressor, the driver mutation must change a critical and well-
conserved residue, e.g., the GTP binding site of Ras or DNA
binding domain of p53. From an evolutionary perspective, the
conservation of residues that promote tumorigenesis when mu-
tated suggests strong natural selection against the early de-
velopment of cancer. The ability of ΔPSIC score to identify drivers
as having highly nonneutral phenotypes (i.e., damaging or altering
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Fig. 3. Moderately deleterious passengers alter cancer progression and
mostly evade selection. (A) Passengers of intermediate fitness effect sp
prolong the time to cancer and accumulate in large, highly variable quan-
tities (red solid, mean; dotted, ±1 SD). Moderately deleterious passengers
affect cancer only if they are strong or frequent enough to be comparable
to the effects of drivers, yet weak enough to avoid selection (SI Appendix,
SI Text). Experimentally observed fitness effects of random point muta-
tions in YFP in yeast ranged from 0.007 to 0.028 (green shading) (14). (B)
Population dynamics did not change noticeably when passengers were drawn
from various distributions of fitness distributions (SI Appendix, SI Text).
(C) Passenger fixation probability declined only moderately with increasing
deleteriousness.
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Fig. 4. Characterization of missense mutations in cancer sequencing data.
(A) Mutations were assayed using the ΔPSIC score of PolyPhen, which esti-
mates the damaging effect of a new mutation, given known homologs;
mutations with high ΔPSIC scores are most likely damaging (43). Passengers
have large ΔPSIC, close to random mutations, suggesting that they are
deleterious. (B) Deleterious passenger phenotypes were observed in all
subsets of passengers studied, arguing that these results cannot be
explained by recessive phenotypes, or lack of expression, or database biases.
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lated de novo mutations (randomly generated using a cancer-
specific three-parameter model; SI Appendix, SI Text); and (iii)
damaging, pathogenic missense mutations causing human Men-
delian diseases (from the Human Gene Mutation Database). As
expected, common SNPs are benign and exhibit small ΔPSIC
values, whereas disease-causing mutations, with known damaging
effect, exhibit large ΔPSIC values (Fig. 4A). Driver mutations
exhibit similarly high values of ΔPSIC, significantly greater than
randomly generated mutations, indicating that drivers tend to
occur at well-conserved loci. From a biochemical perspective, this
result shows that, to activate an oncogene or to disable a tumor
suppressor, the driver mutation must change a critical and well-
conserved residue, e.g., the GTP binding site of Ras or DNA
binding domain of p53. From an evolutionary perspective, the
conservation of residues that promote tumorigenesis when mu-
tated suggests strong natural selection against the early de-
velopment of cancer. The ability of ΔPSIC score to identify drivers
as having highly nonneutral phenotypes (i.e., damaging or altering
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prolong the time to cancer and accumulate in large, highly variable quan-
tities (red solid, mean; dotted, ±1 SD). Moderately deleterious passengers
affect cancer only if they are strong or frequent enough to be comparable
to the effects of drivers, yet weak enough to avoid selection (SI Appendix,
SI Text). Experimentally observed fitness effects of random point muta-
tions in YFP in yeast ranged from 0.007 to 0.028 (green shading) (14). (B)
Population dynamics did not change noticeably when passengers were drawn
from various distributions of fitness distributions (SI Appendix, SI Text).
(C) Passenger fixation probability declined only moderately with increasing
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(A) Mutations were assayed using the ΔPSIC score of PolyPhen, which esti-
mates the damaging effect of a new mutation, given known homologs;
mutations with high ΔPSIC scores are most likely damaging (43). Passengers
have large ΔPSIC, close to random mutations, suggesting that they are
deleterious. (B) Deleterious passenger phenotypes were observed in all
subsets of passengers studied, arguing that these results cannot be
explained by recessive phenotypes, or lack of expression, or database biases.
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1. Can deleterious passenger mutations 
accumulate during cancer development?  

2. How deleterious are passenger mutations 
found in genotyped tumors? 

3. How can passenger mutations affect neoplastic 
progression?  
              Model - Experiment 

Questions



Model vs data 



Model agrees with cancer incidence data 

cancer incidence data

increases to a new stationary value. In between these rare driver
events, the population size gradually declines due to passenger
accumulation. The relative rates of these competing processes
determine whether a population grows rapidly or goes extinct.
The value of N* can be identified by considering the average

change in population size over time (〈dN/dt〉), which is the av-
erage population growth due to accumulating drivers (vd) minus
the population decline due to accumulating passengers (vp).
When a new driver fixates, the population size immediately
increases by ΔN = Nsd. These jumps occur randomly at a nearly
constant rate f = μdNsd [a product of the driver occurrence rate
μdN and its probability of fixation sd/(1 + sd) ≈ sd]. Thus, the
velocity due to drivers is vd = fΔN = μdN2s2d. Similarly, pas-
sengers’ velocity vp = μpNsp is a product of their rate of oc-
currence μpN, effect on population size Nsp, and fixation
probability (near-neutral ∼1/N; see SI Appendix for a more
precise estimate). Thus, we obtain

!
dN
dt

"
= μpspN

#
N
Np

− 1
$
; [1]

where Np = Tpsp
Tds2d

is the critical population size. In this equation,
a population’s mean velocity is negative below N* and positive
above N*, explaining why populations above N* grow rapidly and
populations below N* continually decline.
These dynamics suggests that N* constitutes an effective bar-

rier to cancer, which can prevent most cancers from progressing
(Fig. 1C). Simulations support this conclusion because they ex-
hibit a sharp transition in the probability of progression at N*
(Fig. 1D). Indeed, drastically different probability curves col-
lapse onto a single curve when N0 is rescaled by N*.
By considering only the average dynamics, we miss the vari-

ability of outcomes in adapting populations. In SI Appendix, we
formulate and solve a stochastic generalization of Eq. 1 that
explains the variability of outcomes well (Fig. 1E). Outcome
variability depends only upon N* and the strength of drivers sd.
Higher values of sd lead to larger stochastic jumps ΔN, which
increases variability and leads to more gradual changes in the
probability of cancer across N0.
The effects ofN* and sd on cancer progression can be intuitively

understood using a simple random-walk analogy. The population’s
reverse sawtoothed path abides by a one-dimensional randomwalk

in an effective potential Ueff = −
R
ðdN=dtÞdN (Fig. 1C). Akin to

chemical reactions activated by thermal energy, cancer progression
is a rare event that transitions through an unstable state, requiring
a quick succession of driver fixations.
Our analytical formalism indicates that population dynamics

depend entirely on two dimensionless parameters: a deterministic
mean velocity dependent only upon N/N* and a stochastic step
size of ∼sd. By reducing the complexity of our evolutionary system
to two parameters, we were next able to infer their values from
real cancers without overfitting.

Model Validation Using Cancer Incidence and Genomics Data. Our
model of cancer progression predicts several properties of cancer:
the presence of an effective barrier that small lesions seldom
overcome, a broad distribution in the number of accumulated
drivers and passengers in tumors, and a tug-of-war between drivers
and passengers in individual cancers. We looked for evidence of
these phenomena in age–incidence data (25) and recent cancer
genomics data, which also allowed us to estimate sd, sp, and the
probability of cancer progression.
Fig. 2A presents the incidence rate of breast cancer versus age

(25) alongside the predictions from our model and a classic
driver-only model (SI Appendix). The incidence rate was calcu-
lated by assuming that precancerous lesions arise with a constant
rate r beginning at birth. Lesions then progress to cancer in time
τ with probability P(τ), determined from simulations (SI Ap-
pendix, Fig. S1). The age–incidence rate I(t) is then the convo-
lution of P(τ) with the lesion initiation rate r. Because many
lesions never progress and go extinct in our model, the incidence
rate saturates at old age: Imax = r

R∞
0 PðτÞdτ = rP∞, where P∞ is

the probability that a lesion ever progresses to cancer.
Observed age–incidence rates saturate with age, allowing us

to estimate the efficiency of cancer progression. We estimate the
rate of lesion formation in breast cancer r ≥ 10 per year, de-
ducible in two ways: by multiplying the number of human breast
epithelial stem cells by their rate of mutation into a lesion
(SI Appendix) or by considering the number of lesions observed
in normal breasts (21). By comparing this limit (r ∼ 10 y−1) to the
maximum observed breast cancer incidence rate Imax ∼ 10−2
cancers·year−1, we find that P∞ ∼ 10−3, or only ∼0.1% of lesions
ever progress. Likewise, most other cancer subtypes (84%) pla-
teau at old age, indicating that inefficient progression is common
(SI Appendix, Fig. S1). These findings are consistent with medical

Fig. 2. Signatures of balance between drivers and passengers in incidence and genomics data. (A) Predicted and observed breast cancer incidence rates
verses age. Incidence rates in our model and the data both plateau at old age, but a traditional driver-only model (I ∝tk) does not. (B) Histogram (blue) of the
collective number of protein-coding mutations (SNMs) in breast cancer, alongside predicted distributions (lines colors as in A). Our model captures the width
and asymmetry of the distribution when sd = 0.4, whereas a driver-only model predicts a narrower, less-skewed distribution. (C) (Upper) The total number of
aggregate SCNA and SNM drivers verses the total number of passengers in sequenced tumors (points) fitted by linear regression. (Lower Left) Aggregated
cancer genomics data plotted on log axes, with the y intercept from each subtype’s linear fit subtracted [lung cancer (green), colorectal cancer (MIN−, dark
purple; MIN+, light purple)]. (Lower Right) The distribution of slope values obtained by bootstrapping 10,000 samples of each tumor type. All cancers exhibit
positive slopes (P < 0.08 − 10−5 ), suggesting estimates of sp/sd of breast, 0.0060 ± 0.0010; melanoma, 0.016 ± 0.003; lung, 0.0094 ± 0.0093; colorectal, MIN−

0.028 ± 0.007 and MIN+ 0.041 ± 0.006.
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accumulation. The relative rates of these competing processes
determine whether a population grows rapidly or goes extinct.
The value of N* can be identified by considering the average

change in population size over time (〈dN/dt〉), which is the av-
erage population growth due to accumulating drivers (vd) minus
the population decline due to accumulating passengers (vp).
When a new driver fixates, the population size immediately
increases by ΔN = Nsd. These jumps occur randomly at a nearly
constant rate f = μdNsd [a product of the driver occurrence rate
μdN and its probability of fixation sd/(1 + sd) ≈ sd]. Thus, the
velocity due to drivers is vd = fΔN = μdN2s2d. Similarly, pas-
sengers’ velocity vp = μpNsp is a product of their rate of oc-
currence μpN, effect on population size Nsp, and fixation
probability (near-neutral ∼1/N; see SI Appendix for a more
precise estimate). Thus, we obtain
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where Np = Tpsp
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is the critical population size. In this equation,
a population’s mean velocity is negative below N* and positive
above N*, explaining why populations above N* grow rapidly and
populations below N* continually decline.
These dynamics suggests that N* constitutes an effective bar-

rier to cancer, which can prevent most cancers from progressing
(Fig. 1C). Simulations support this conclusion because they ex-
hibit a sharp transition in the probability of progression at N*
(Fig. 1D). Indeed, drastically different probability curves col-
lapse onto a single curve when N0 is rescaled by N*.
By considering only the average dynamics, we miss the vari-

ability of outcomes in adapting populations. In SI Appendix, we
formulate and solve a stochastic generalization of Eq. 1 that
explains the variability of outcomes well (Fig. 1E). Outcome
variability depends only upon N* and the strength of drivers sd.
Higher values of sd lead to larger stochastic jumps ΔN, which
increases variability and leads to more gradual changes in the
probability of cancer across N0.
The effects ofN* and sd on cancer progression can be intuitively

understood using a simple random-walk analogy. The population’s
reverse sawtoothed path abides by a one-dimensional randomwalk

in an effective potential Ueff = −
R
ðdN=dtÞdN (Fig. 1C). Akin to

chemical reactions activated by thermal energy, cancer progression
is a rare event that transitions through an unstable state, requiring
a quick succession of driver fixations.
Our analytical formalism indicates that population dynamics

depend entirely on two dimensionless parameters: a deterministic
mean velocity dependent only upon N/N* and a stochastic step
size of ∼sd. By reducing the complexity of our evolutionary system
to two parameters, we were next able to infer their values from
real cancers without overfitting.

Model Validation Using Cancer Incidence and Genomics Data. Our
model of cancer progression predicts several properties of cancer:
the presence of an effective barrier that small lesions seldom
overcome, a broad distribution in the number of accumulated
drivers and passengers in tumors, and a tug-of-war between drivers
and passengers in individual cancers. We looked for evidence of
these phenomena in age–incidence data (25) and recent cancer
genomics data, which also allowed us to estimate sd, sp, and the
probability of cancer progression.
Fig. 2A presents the incidence rate of breast cancer versus age

(25) alongside the predictions from our model and a classic
driver-only model (SI Appendix). The incidence rate was calcu-
lated by assuming that precancerous lesions arise with a constant
rate r beginning at birth. Lesions then progress to cancer in time
τ with probability P(τ), determined from simulations (SI Ap-
pendix, Fig. S1). The age–incidence rate I(t) is then the convo-
lution of P(τ) with the lesion initiation rate r. Because many
lesions never progress and go extinct in our model, the incidence
rate saturates at old age: Imax = r

R∞
0 PðτÞdτ = rP∞, where P∞ is

the probability that a lesion ever progresses to cancer.
Observed age–incidence rates saturate with age, allowing us

to estimate the efficiency of cancer progression. We estimate the
rate of lesion formation in breast cancer r ≥ 10 per year, de-
ducible in two ways: by multiplying the number of human breast
epithelial stem cells by their rate of mutation into a lesion
(SI Appendix) or by considering the number of lesions observed
in normal breasts (21). By comparing this limit (r ∼ 10 y−1) to the
maximum observed breast cancer incidence rate Imax ∼ 10−2
cancers·year−1, we find that P∞ ∼ 10−3, or only ∼0.1% of lesions
ever progress. Likewise, most other cancer subtypes (84%) pla-
teau at old age, indicating that inefficient progression is common
(SI Appendix, Fig. S1). These findings are consistent with medical

Fig. 2. Signatures of balance between drivers and passengers in incidence and genomics data. (A) Predicted and observed breast cancer incidence rates
verses age. Incidence rates in our model and the data both plateau at old age, but a traditional driver-only model (I ∝tk) does not. (B) Histogram (blue) of the
collective number of protein-coding mutations (SNMs) in breast cancer, alongside predicted distributions (lines colors as in A). Our model captures the width
and asymmetry of the distribution when sd = 0.4, whereas a driver-only model predicts a narrower, less-skewed distribution. (C) (Upper) The total number of
aggregate SCNA and SNM drivers verses the total number of passengers in sequenced tumors (points) fitted by linear regression. (Lower Left) Aggregated
cancer genomics data plotted on log axes, with the y intercept from each subtype’s linear fit subtracted [lung cancer (green), colorectal cancer (MIN−, dark
purple; MIN+, light purple)]. (Lower Right) The distribution of slope values obtained by bootstrapping 10,000 samples of each tumor type. All cancers exhibit
positive slopes (P < 0.08 − 10−5 ), suggesting estimates of sp/sd of breast, 0.0060 ± 0.0010; melanoma, 0.016 ± 0.003; lung, 0.0094 ± 0.0093; colorectal, MIN−

0.028 ± 0.007 and MIN+ 0.041 ± 0.006.
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accumulation. The relative rates of these competing processes
determine whether a population grows rapidly or goes extinct.
The value of N* can be identified by considering the average

change in population size over time (〈dN/dt〉), which is the av-
erage population growth due to accumulating drivers (vd) minus
the population decline due to accumulating passengers (vp).
When a new driver fixates, the population size immediately
increases by ΔN = Nsd. These jumps occur randomly at a nearly
constant rate f = μdNsd [a product of the driver occurrence rate
μdN and its probability of fixation sd/(1 + sd) ≈ sd]. Thus, the
velocity due to drivers is vd = fΔN = μdN2s2d. Similarly, pas-
sengers’ velocity vp = μpNsp is a product of their rate of oc-
currence μpN, effect on population size Nsp, and fixation
probability (near-neutral ∼1/N; see SI Appendix for a more
precise estimate). Thus, we obtain
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is the critical population size. In this equation,
a population’s mean velocity is negative below N* and positive
above N*, explaining why populations above N* grow rapidly and
populations below N* continually decline.
These dynamics suggests that N* constitutes an effective bar-

rier to cancer, which can prevent most cancers from progressing
(Fig. 1C). Simulations support this conclusion because they ex-
hibit a sharp transition in the probability of progression at N*
(Fig. 1D). Indeed, drastically different probability curves col-
lapse onto a single curve when N0 is rescaled by N*.
By considering only the average dynamics, we miss the vari-

ability of outcomes in adapting populations. In SI Appendix, we
formulate and solve a stochastic generalization of Eq. 1 that
explains the variability of outcomes well (Fig. 1E). Outcome
variability depends only upon N* and the strength of drivers sd.
Higher values of sd lead to larger stochastic jumps ΔN, which
increases variability and leads to more gradual changes in the
probability of cancer across N0.
The effects ofN* and sd on cancer progression can be intuitively

understood using a simple random-walk analogy. The population’s
reverse sawtoothed path abides by a one-dimensional randomwalk

in an effective potential Ueff = −
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ðdN=dtÞdN (Fig. 1C). Akin to

chemical reactions activated by thermal energy, cancer progression
is a rare event that transitions through an unstable state, requiring
a quick succession of driver fixations.
Our analytical formalism indicates that population dynamics

depend entirely on two dimensionless parameters: a deterministic
mean velocity dependent only upon N/N* and a stochastic step
size of ∼sd. By reducing the complexity of our evolutionary system
to two parameters, we were next able to infer their values from
real cancers without overfitting.

Model Validation Using Cancer Incidence and Genomics Data. Our
model of cancer progression predicts several properties of cancer:
the presence of an effective barrier that small lesions seldom
overcome, a broad distribution in the number of accumulated
drivers and passengers in tumors, and a tug-of-war between drivers
and passengers in individual cancers. We looked for evidence of
these phenomena in age–incidence data (25) and recent cancer
genomics data, which also allowed us to estimate sd, sp, and the
probability of cancer progression.
Fig. 2A presents the incidence rate of breast cancer versus age

(25) alongside the predictions from our model and a classic
driver-only model (SI Appendix). The incidence rate was calcu-
lated by assuming that precancerous lesions arise with a constant
rate r beginning at birth. Lesions then progress to cancer in time
τ with probability P(τ), determined from simulations (SI Ap-
pendix, Fig. S1). The age–incidence rate I(t) is then the convo-
lution of P(τ) with the lesion initiation rate r. Because many
lesions never progress and go extinct in our model, the incidence
rate saturates at old age: Imax = r

R∞
0 PðτÞdτ = rP∞, where P∞ is

the probability that a lesion ever progresses to cancer.
Observed age–incidence rates saturate with age, allowing us

to estimate the efficiency of cancer progression. We estimate the
rate of lesion formation in breast cancer r ≥ 10 per year, de-
ducible in two ways: by multiplying the number of human breast
epithelial stem cells by their rate of mutation into a lesion
(SI Appendix) or by considering the number of lesions observed
in normal breasts (21). By comparing this limit (r ∼ 10 y−1) to the
maximum observed breast cancer incidence rate Imax ∼ 10−2
cancers·year−1, we find that P∞ ∼ 10−3, or only ∼0.1% of lesions
ever progress. Likewise, most other cancer subtypes (84%) pla-
teau at old age, indicating that inefficient progression is common
(SI Appendix, Fig. S1). These findings are consistent with medical
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verses age. Incidence rates in our model and the data both plateau at old age, but a traditional driver-only model (I ∝tk) does not. (B) Histogram (blue) of the
collective number of protein-coding mutations (SNMs) in breast cancer, alongside predicted distributions (lines colors as in A). Our model captures the width
and asymmetry of the distribution when sd = 0.4, whereas a driver-only model predicts a narrower, less-skewed distribution. (C) (Upper) The total number of
aggregate SCNA and SNM drivers verses the total number of passengers in sequenced tumors (points) fitted by linear regression. (Lower Left) Aggregated
cancer genomics data plotted on log axes, with the y intercept from each subtype’s linear fit subtracted [lung cancer (green), colorectal cancer (MIN−, dark
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events, the population size gradually declines due to passenger
accumulation. The relative rates of these competing processes
determine whether a population grows rapidly or goes extinct.
The value of N* can be identified by considering the average

change in population size over time (〈dN/dt〉), which is the av-
erage population growth due to accumulating drivers (vd) minus
the population decline due to accumulating passengers (vp).
When a new driver fixates, the population size immediately
increases by ΔN = Nsd. These jumps occur randomly at a nearly
constant rate f = μdNsd [a product of the driver occurrence rate
μdN and its probability of fixation sd/(1 + sd) ≈ sd]. Thus, the
velocity due to drivers is vd = fΔN = μdN2s2d. Similarly, pas-
sengers’ velocity vp = μpNsp is a product of their rate of oc-
currence μpN, effect on population size Nsp, and fixation
probability (near-neutral ∼1/N; see SI Appendix for a more
precise estimate). Thus, we obtain
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where Np = Tpsp
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is the critical population size. In this equation,
a population’s mean velocity is negative below N* and positive
above N*, explaining why populations above N* grow rapidly and
populations below N* continually decline.
These dynamics suggests that N* constitutes an effective bar-

rier to cancer, which can prevent most cancers from progressing
(Fig. 1C). Simulations support this conclusion because they ex-
hibit a sharp transition in the probability of progression at N*
(Fig. 1D). Indeed, drastically different probability curves col-
lapse onto a single curve when N0 is rescaled by N*.
By considering only the average dynamics, we miss the vari-

ability of outcomes in adapting populations. In SI Appendix, we
formulate and solve a stochastic generalization of Eq. 1 that
explains the variability of outcomes well (Fig. 1E). Outcome
variability depends only upon N* and the strength of drivers sd.
Higher values of sd lead to larger stochastic jumps ΔN, which
increases variability and leads to more gradual changes in the
probability of cancer across N0.
The effects ofN* and sd on cancer progression can be intuitively

understood using a simple random-walk analogy. The population’s
reverse sawtoothed path abides by a one-dimensional randomwalk

in an effective potential Ueff = −
R
ðdN=dtÞdN (Fig. 1C). Akin to

chemical reactions activated by thermal energy, cancer progression
is a rare event that transitions through an unstable state, requiring
a quick succession of driver fixations.
Our analytical formalism indicates that population dynamics

depend entirely on two dimensionless parameters: a deterministic
mean velocity dependent only upon N/N* and a stochastic step
size of ∼sd. By reducing the complexity of our evolutionary system
to two parameters, we were next able to infer their values from
real cancers without overfitting.

Model Validation Using Cancer Incidence and Genomics Data. Our
model of cancer progression predicts several properties of cancer:
the presence of an effective barrier that small lesions seldom
overcome, a broad distribution in the number of accumulated
drivers and passengers in tumors, and a tug-of-war between drivers
and passengers in individual cancers. We looked for evidence of
these phenomena in age–incidence data (25) and recent cancer
genomics data, which also allowed us to estimate sd, sp, and the
probability of cancer progression.
Fig. 2A presents the incidence rate of breast cancer versus age

(25) alongside the predictions from our model and a classic
driver-only model (SI Appendix). The incidence rate was calcu-
lated by assuming that precancerous lesions arise with a constant
rate r beginning at birth. Lesions then progress to cancer in time
τ with probability P(τ), determined from simulations (SI Ap-
pendix, Fig. S1). The age–incidence rate I(t) is then the convo-
lution of P(τ) with the lesion initiation rate r. Because many
lesions never progress and go extinct in our model, the incidence
rate saturates at old age: Imax = r

R∞
0 PðτÞdτ = rP∞, where P∞ is

the probability that a lesion ever progresses to cancer.
Observed age–incidence rates saturate with age, allowing us

to estimate the efficiency of cancer progression. We estimate the
rate of lesion formation in breast cancer r ≥ 10 per year, de-
ducible in two ways: by multiplying the number of human breast
epithelial stem cells by their rate of mutation into a lesion
(SI Appendix) or by considering the number of lesions observed
in normal breasts (21). By comparing this limit (r ∼ 10 y−1) to the
maximum observed breast cancer incidence rate Imax ∼ 10−2
cancers·year−1, we find that P∞ ∼ 10−3, or only ∼0.1% of lesions
ever progress. Likewise, most other cancer subtypes (84%) pla-
teau at old age, indicating that inefficient progression is common
(SI Appendix, Fig. S1). These findings are consistent with medical

Fig. 2. Signatures of balance between drivers and passengers in incidence and genomics data. (A) Predicted and observed breast cancer incidence rates
verses age. Incidence rates in our model and the data both plateau at old age, but a traditional driver-only model (I ∝tk) does not. (B) Histogram (blue) of the
collective number of protein-coding mutations (SNMs) in breast cancer, alongside predicted distributions (lines colors as in A). Our model captures the width
and asymmetry of the distribution when sd = 0.4, whereas a driver-only model predicts a narrower, less-skewed distribution. (C) (Upper) The total number of
aggregate SCNA and SNM drivers verses the total number of passengers in sequenced tumors (points) fitted by linear regression. (Lower Left) Aggregated
cancer genomics data plotted on log axes, with the y intercept from each subtype’s linear fit subtracted [lung cancer (green), colorectal cancer (MIN−, dark
purple; MIN+, light purple)]. (Lower Right) The distribution of slope values obtained by bootstrapping 10,000 samples of each tumor type. All cancers exhibit
positive slopes (P < 0.08 − 10−5 ), suggesting estimates of sp/sd of breast, 0.0060 ± 0.0010; melanoma, 0.016 ± 0.003; lung, 0.0094 ± 0.0093; colorectal, MIN−

0.028 ± 0.007 and MIN+ 0.041 ± 0.006.
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increases to a new stationary value. In between these rare driver
events, the population size gradually declines due to passenger
accumulation. The relative rates of these competing processes
determine whether a population grows rapidly or goes extinct.
The value of N* can be identified by considering the average

change in population size over time (〈dN/dt〉), which is the av-
erage population growth due to accumulating drivers (vd) minus
the population decline due to accumulating passengers (vp).
When a new driver fixates, the population size immediately
increases by ΔN = Nsd. These jumps occur randomly at a nearly
constant rate f = μdNsd [a product of the driver occurrence rate
μdN and its probability of fixation sd/(1 + sd) ≈ sd]. Thus, the
velocity due to drivers is vd = fΔN = μdN2s2d. Similarly, pas-
sengers’ velocity vp = μpNsp is a product of their rate of oc-
currence μpN, effect on population size Nsp, and fixation
probability (near-neutral ∼1/N; see SI Appendix for a more
precise estimate). Thus, we obtain

!
dN
dt

"
= μpspN

#
N
Np

− 1
$
; [1]

where Np = Tpsp
Tds2d

is the critical population size. In this equation,
a population’s mean velocity is negative below N* and positive
above N*, explaining why populations above N* grow rapidly and
populations below N* continually decline.
These dynamics suggests that N* constitutes an effective bar-

rier to cancer, which can prevent most cancers from progressing
(Fig. 1C). Simulations support this conclusion because they ex-
hibit a sharp transition in the probability of progression at N*
(Fig. 1D). Indeed, drastically different probability curves col-
lapse onto a single curve when N0 is rescaled by N*.
By considering only the average dynamics, we miss the vari-

ability of outcomes in adapting populations. In SI Appendix, we
formulate and solve a stochastic generalization of Eq. 1 that
explains the variability of outcomes well (Fig. 1E). Outcome
variability depends only upon N* and the strength of drivers sd.
Higher values of sd lead to larger stochastic jumps ΔN, which
increases variability and leads to more gradual changes in the
probability of cancer across N0.
The effects ofN* and sd on cancer progression can be intuitively

understood using a simple random-walk analogy. The population’s
reverse sawtoothed path abides by a one-dimensional randomwalk

in an effective potential Ueff = −
R
ðdN=dtÞdN (Fig. 1C). Akin to

chemical reactions activated by thermal energy, cancer progression
is a rare event that transitions through an unstable state, requiring
a quick succession of driver fixations.
Our analytical formalism indicates that population dynamics

depend entirely on two dimensionless parameters: a deterministic
mean velocity dependent only upon N/N* and a stochastic step
size of ∼sd. By reducing the complexity of our evolutionary system
to two parameters, we were next able to infer their values from
real cancers without overfitting.

Model Validation Using Cancer Incidence and Genomics Data. Our
model of cancer progression predicts several properties of cancer:
the presence of an effective barrier that small lesions seldom
overcome, a broad distribution in the number of accumulated
drivers and passengers in tumors, and a tug-of-war between drivers
and passengers in individual cancers. We looked for evidence of
these phenomena in age–incidence data (25) and recent cancer
genomics data, which also allowed us to estimate sd, sp, and the
probability of cancer progression.
Fig. 2A presents the incidence rate of breast cancer versus age

(25) alongside the predictions from our model and a classic
driver-only model (SI Appendix). The incidence rate was calcu-
lated by assuming that precancerous lesions arise with a constant
rate r beginning at birth. Lesions then progress to cancer in time
τ with probability P(τ), determined from simulations (SI Ap-
pendix, Fig. S1). The age–incidence rate I(t) is then the convo-
lution of P(τ) with the lesion initiation rate r. Because many
lesions never progress and go extinct in our model, the incidence
rate saturates at old age: Imax = r

R∞
0 PðτÞdτ = rP∞, where P∞ is

the probability that a lesion ever progresses to cancer.
Observed age–incidence rates saturate with age, allowing us

to estimate the efficiency of cancer progression. We estimate the
rate of lesion formation in breast cancer r ≥ 10 per year, de-
ducible in two ways: by multiplying the number of human breast
epithelial stem cells by their rate of mutation into a lesion
(SI Appendix) or by considering the number of lesions observed
in normal breasts (21). By comparing this limit (r ∼ 10 y−1) to the
maximum observed breast cancer incidence rate Imax ∼ 10−2
cancers·year−1, we find that P∞ ∼ 10−3, or only ∼0.1% of lesions
ever progress. Likewise, most other cancer subtypes (84%) pla-
teau at old age, indicating that inefficient progression is common
(SI Appendix, Fig. S1). These findings are consistent with medical

Fig. 2. Signatures of balance between drivers and passengers in incidence and genomics data. (A) Predicted and observed breast cancer incidence rates
verses age. Incidence rates in our model and the data both plateau at old age, but a traditional driver-only model (I ∝tk) does not. (B) Histogram (blue) of the
collective number of protein-coding mutations (SNMs) in breast cancer, alongside predicted distributions (lines colors as in A). Our model captures the width
and asymmetry of the distribution when sd = 0.4, whereas a driver-only model predicts a narrower, less-skewed distribution. (C) (Upper) The total number of
aggregate SCNA and SNM drivers verses the total number of passengers in sequenced tumors (points) fitted by linear regression. (Lower Left) Aggregated
cancer genomics data plotted on log axes, with the y intercept from each subtype’s linear fit subtracted [lung cancer (green), colorectal cancer (MIN−, dark
purple; MIN+, light purple)]. (Lower Right) The distribution of slope values obtained by bootstrapping 10,000 samples of each tumor type. All cancers exhibit
positive slopes (P < 0.08 − 10−5 ), suggesting estimates of sp/sd of breast, 0.0060 ± 0.0010; melanoma, 0.016 ± 0.003; lung, 0.0094 ± 0.0093; colorectal, MIN−

0.028 ± 0.007 and MIN+ 0.041 ± 0.006.
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increases to a new stationary value. In between these rare driver
events, the population size gradually declines due to passenger
accumulation. The relative rates of these competing processes
determine whether a population grows rapidly or goes extinct.
The value of N* can be identified by considering the average

change in population size over time (〈dN/dt〉), which is the av-
erage population growth due to accumulating drivers (vd) minus
the population decline due to accumulating passengers (vp).
When a new driver fixates, the population size immediately
increases by ΔN = Nsd. These jumps occur randomly at a nearly
constant rate f = μdNsd [a product of the driver occurrence rate
μdN and its probability of fixation sd/(1 + sd) ≈ sd]. Thus, the
velocity due to drivers is vd = fΔN = μdN2s2d. Similarly, pas-
sengers’ velocity vp = μpNsp is a product of their rate of oc-
currence μpN, effect on population size Nsp, and fixation
probability (near-neutral ∼1/N; see SI Appendix for a more
precise estimate). Thus, we obtain

!
dN
dt

"
= μpspN

#
N
Np

− 1
$
; [1]

where Np = Tpsp
Tds2d

is the critical population size. In this equation,
a population’s mean velocity is negative below N* and positive
above N*, explaining why populations above N* grow rapidly and
populations below N* continually decline.
These dynamics suggests that N* constitutes an effective bar-

rier to cancer, which can prevent most cancers from progressing
(Fig. 1C). Simulations support this conclusion because they ex-
hibit a sharp transition in the probability of progression at N*
(Fig. 1D). Indeed, drastically different probability curves col-
lapse onto a single curve when N0 is rescaled by N*.
By considering only the average dynamics, we miss the vari-

ability of outcomes in adapting populations. In SI Appendix, we
formulate and solve a stochastic generalization of Eq. 1 that
explains the variability of outcomes well (Fig. 1E). Outcome
variability depends only upon N* and the strength of drivers sd.
Higher values of sd lead to larger stochastic jumps ΔN, which
increases variability and leads to more gradual changes in the
probability of cancer across N0.
The effects ofN* and sd on cancer progression can be intuitively

understood using a simple random-walk analogy. The population’s
reverse sawtoothed path abides by a one-dimensional randomwalk

in an effective potential Ueff = −
R
ðdN=dtÞdN (Fig. 1C). Akin to

chemical reactions activated by thermal energy, cancer progression
is a rare event that transitions through an unstable state, requiring
a quick succession of driver fixations.
Our analytical formalism indicates that population dynamics

depend entirely on two dimensionless parameters: a deterministic
mean velocity dependent only upon N/N* and a stochastic step
size of ∼sd. By reducing the complexity of our evolutionary system
to two parameters, we were next able to infer their values from
real cancers without overfitting.

Model Validation Using Cancer Incidence and Genomics Data. Our
model of cancer progression predicts several properties of cancer:
the presence of an effective barrier that small lesions seldom
overcome, a broad distribution in the number of accumulated
drivers and passengers in tumors, and a tug-of-war between drivers
and passengers in individual cancers. We looked for evidence of
these phenomena in age–incidence data (25) and recent cancer
genomics data, which also allowed us to estimate sd, sp, and the
probability of cancer progression.
Fig. 2A presents the incidence rate of breast cancer versus age

(25) alongside the predictions from our model and a classic
driver-only model (SI Appendix). The incidence rate was calcu-
lated by assuming that precancerous lesions arise with a constant
rate r beginning at birth. Lesions then progress to cancer in time
τ with probability P(τ), determined from simulations (SI Ap-
pendix, Fig. S1). The age–incidence rate I(t) is then the convo-
lution of P(τ) with the lesion initiation rate r. Because many
lesions never progress and go extinct in our model, the incidence
rate saturates at old age: Imax = r

R∞
0 PðτÞdτ = rP∞, where P∞ is

the probability that a lesion ever progresses to cancer.
Observed age–incidence rates saturate with age, allowing us

to estimate the efficiency of cancer progression. We estimate the
rate of lesion formation in breast cancer r ≥ 10 per year, de-
ducible in two ways: by multiplying the number of human breast
epithelial stem cells by their rate of mutation into a lesion
(SI Appendix) or by considering the number of lesions observed
in normal breasts (21). By comparing this limit (r ∼ 10 y−1) to the
maximum observed breast cancer incidence rate Imax ∼ 10−2
cancers·year−1, we find that P∞ ∼ 10−3, or only ∼0.1% of lesions
ever progress. Likewise, most other cancer subtypes (84%) pla-
teau at old age, indicating that inefficient progression is common
(SI Appendix, Fig. S1). These findings are consistent with medical

Fig. 2. Signatures of balance between drivers and passengers in incidence and genomics data. (A) Predicted and observed breast cancer incidence rates
verses age. Incidence rates in our model and the data both plateau at old age, but a traditional driver-only model (I ∝tk) does not. (B) Histogram (blue) of the
collective number of protein-coding mutations (SNMs) in breast cancer, alongside predicted distributions (lines colors as in A). Our model captures the width
and asymmetry of the distribution when sd = 0.4, whereas a driver-only model predicts a narrower, less-skewed distribution. (C) (Upper) The total number of
aggregate SCNA and SNM drivers verses the total number of passengers in sequenced tumors (points) fitted by linear regression. (Lower Left) Aggregated
cancer genomics data plotted on log axes, with the y intercept from each subtype’s linear fit subtracted [lung cancer (green), colorectal cancer (MIN−, dark
purple; MIN+, light purple)]. (Lower Right) The distribution of slope values obtained by bootstrapping 10,000 samples of each tumor type. All cancers exhibit
positive slopes (P < 0.08 − 10−5 ), suggesting estimates of sp/sd of breast, 0.0060 ± 0.0010; melanoma, 0.016 ± 0.003; lung, 0.0094 ± 0.0093; colorectal, MIN−

0.028 ± 0.007 and MIN+ 0.041 ± 0.006.
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observations that very few lesions ever progress to cancer (26,
27). Like our model, these studies also find that most lesions
regress to undetectable size. Conversely, in a driver-only model
(SI Appendix), every lesion eventually progresses to cancer after
sufficient time (i.e., P∞ = 1), and incidence rates plateau only if
the lesion formation rate is unrealistically low (0.01 per year).
Good agreement between age–incidence data and our model is
obtained for sd ≈0.1−0.2.
Recent cancer genomics data offer a new opportunity to validate

our model. Specifically, we looked at somatic nonsynonymous
mutations (SNMs) and somatic copy-number alterations (SCNAs)
from over 700 individual cancer–normal sample pairs (SI Appen-
dix, Table S2). Analyzing SNMs and SCNAs separately and in
aggregation yielded similar results (SI Appendix, Fig. S2 and
Table S3). Fig. 2B shows a wide and asymmetric distribution of the
total number of SNMs in breast cancer. Our model predicts
a similarly wide distribution of total SNMs due to the stochastic
period that cancers linger at the critical population size N* while
accumulating mutations. To compare these data with various
models we normalized the total number of mutations by their
median (27) because several evolutionary parameters and se-
quencing decisions can alter these distributions by a multiplicative
factor (SI Appendix). Our model agrees with the data when the
effect size of drivers is large (sd≈0.4). In contrast, a traditional five-
driver model (SI Appendix) which neglects deleterious passengers
and, thus, a critical barrier yields a narrower, less-skewed distri-
bution than observed.
Overall, our model agrees with the 11 most sequenced cancer

subtypes best when sd ≈ 0.1−0.6 (SI Appendix, Fig. S3 and
Table S4). These estimates agree with sd = 0.16−0.58 experi-
mentally measured as growth rate changes of mouse cells upon
mutations in p53 , APC, or Kras (23). These experimental meas-
urements and our estimates are also considerably larger than
previous theoretical estimates of sd = 0.004 (4), where cancer
progression was modeled as an exponential growth unaffected by
passengers. Such a driver-only model fits SNM distributions
poorly, and fits suggest that just one to two drivers are needed
for cancer (SI Appendix, Table S4), which is inconsistent with
known biology. Taken together, cancer genomics data and recent
experiments (23) strongly support our model and refute the
driver-only model.
We then compared the number of drivers and the number of

passengers observed in individual cancer samples to our model.
Lesions that linger around N* in our model acquire additional
passengers and additional counterbalancing drivers, whereas lesions
that progress quickly acquire fewer of each. This predicts a linear

relationship: nd = sp/sd · np + constant (SI Appendix), where the
slope provides an estimate of sp/sd. We indeed observed a positive
linear relationship between nd and np in all tumors studied (Fig. 2C
and SI Appendix, Table S3; P < 0.08−10−6). Linearity was con-
firmed by regressing the aggregated data in log–log axes (Fig. 2C),
which yielded nd ∼n0:98p , consistent with nd ∼np. Regressing nd on
np and using 104 bootstrapped samples to estimate the confi-
dence, we obtain an sp/sd ∼ 0.005−0.05 (Fig. 2C). Using our
estimate sd ≈0.1−0.6, we obtain a damaging effect of a pas-
senger mutation sp ≈5 · (10−4−10−2). These estimates are consis-
tent with effects of germ-line SNMs in humans where 64% of
mutations decrease fitness by 10−5−10−2 (28). In summary, this
analysis shows that passengers are indeed deleterious and
∼100× weaker than drivers.
We considered and refuted several alternative explanations

for the observed positive linear relationship between drivers
and passengers. First, variation in the tumor stage or the rate/
mechanism of mutagenesis cannot explain the observed re-
lationship (SI Appendix, Table S3). Second, SCNAs and SNMs
are uncorrelated, so the linear relationship could not result
from their differing effect sizes (SI Appendix, Fig. S2 and
Table S3). Because the data disagree with these alternate hy-
potheses, we conclude that cancer indeed proceeds as a tug-of-
war between drivers and passengers.

A Critical Mutation Rate. By simulating cancer progression over
a broad range of evolutionary parameters (SI Appendix, Fig. S4),
we observed another barrier to cancer: a critical mutation rate,
above which the probability of cancer is exceedingly low (Fig. 3A).
Through further analytical treatment (SI Appendix), we found
that this mutational barrier is created and determined by the load
of segregating (unfixed) passengers in the population. The origin
of a critical mutation rate can be understood by considering the
number of segregating passengers per cell, previously shown to be
Poisson distributed with mean μp/sp, during mutation–selection
balance (29). The average fitness reduction of a cell due to this
mutational load is then μp. If this fitness reduction exceeds the
benefit of a new driver (μp > sd), then drivers seldom fixate (17,
30) (Fig. 3C). Hence, cancer is extremely rare above the critical
mutations rate μ* = sd/Tp.
Fig. 3A shows that this simple argument accurately predicts

the location of the critical mutation rate. By incorporating more
details about segregating passengers and selection against them
(SI Appendix), we explain observed simulation dynamics well
across the entire phase space (Fig. 3 A and B and SI Appendix,
Fig. S4).

Fig. 3. Effect of mutation rate on cancer dynamics. (A) The probability of cancer (adaptation) computed by simulations across mutation rates and initial
population sizes. Evolutionary parameters partition adaptation into a regime where cancer is almost certain (green) and a regime where it is exceedingly rare
(brown), accurately predicted by theoretical estimates of N* (magenta) and μ* (blue). A theory incorporating passenger interference with driver sweeps and
selection against passengers explains simulations well (black lines). (B) Cancer probability as a function of μ and sp (N0 = 103). Theory (black lines) accurately
reproduces the complex transition between regimes. (C) Diagram illustrating how the load of segregating (unfixed) passengers influences relative cell fitness
and the probability of a driver fixating. Hitchhiking passengers reduce a driver’s fitness benefit and probability of fixation. (D) Probability of cancer con-
strained to grow within a human lifespan ∼60 years, 104 generations, with N0 = 103 for various mutation rates exhibits an optimum mutation rate.
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observations that very few lesions ever progress to cancer (26,
27). Like our model, these studies also find that most lesions
regress to undetectable size. Conversely, in a driver-only model
(SI Appendix), every lesion eventually progresses to cancer after
sufficient time (i.e., P∞ = 1), and incidence rates plateau only if
the lesion formation rate is unrealistically low (0.01 per year).
Good agreement between age–incidence data and our model is
obtained for sd ≈0.1−0.2.
Recent cancer genomics data offer a new opportunity to validate

our model. Specifically, we looked at somatic nonsynonymous
mutations (SNMs) and somatic copy-number alterations (SCNAs)
from over 700 individual cancer–normal sample pairs (SI Appen-
dix, Table S2). Analyzing SNMs and SCNAs separately and in
aggregation yielded similar results (SI Appendix, Fig. S2 and
Table S3). Fig. 2B shows a wide and asymmetric distribution of the
total number of SNMs in breast cancer. Our model predicts
a similarly wide distribution of total SNMs due to the stochastic
period that cancers linger at the critical population size N* while
accumulating mutations. To compare these data with various
models we normalized the total number of mutations by their
median (27) because several evolutionary parameters and se-
quencing decisions can alter these distributions by a multiplicative
factor (SI Appendix). Our model agrees with the data when the
effect size of drivers is large (sd≈0.4). In contrast, a traditional five-
driver model (SI Appendix) which neglects deleterious passengers
and, thus, a critical barrier yields a narrower, less-skewed distri-
bution than observed.
Overall, our model agrees with the 11 most sequenced cancer

subtypes best when sd ≈ 0.1−0.6 (SI Appendix, Fig. S3 and
Table S4). These estimates agree with sd = 0.16−0.58 experi-
mentally measured as growth rate changes of mouse cells upon
mutations in p53 , APC, or Kras (23). These experimental meas-
urements and our estimates are also considerably larger than
previous theoretical estimates of sd = 0.004 (4), where cancer
progression was modeled as an exponential growth unaffected by
passengers. Such a driver-only model fits SNM distributions
poorly, and fits suggest that just one to two drivers are needed
for cancer (SI Appendix, Table S4), which is inconsistent with
known biology. Taken together, cancer genomics data and recent
experiments (23) strongly support our model and refute the
driver-only model.
We then compared the number of drivers and the number of

passengers observed in individual cancer samples to our model.
Lesions that linger around N* in our model acquire additional
passengers and additional counterbalancing drivers, whereas lesions
that progress quickly acquire fewer of each. This predicts a linear

relationship: nd = sp/sd · np + constant (SI Appendix), where the
slope provides an estimate of sp/sd. We indeed observed a positive
linear relationship between nd and np in all tumors studied (Fig. 2C
and SI Appendix, Table S3; P < 0.08−10−6). Linearity was con-
firmed by regressing the aggregated data in log–log axes (Fig. 2C),
which yielded nd ∼n0:98p , consistent with nd ∼np. Regressing nd on
np and using 104 bootstrapped samples to estimate the confi-
dence, we obtain an sp/sd ∼ 0.005−0.05 (Fig. 2C). Using our
estimate sd ≈0.1−0.6, we obtain a damaging effect of a pas-
senger mutation sp ≈5 · (10−4−10−2). These estimates are consis-
tent with effects of germ-line SNMs in humans where 64% of
mutations decrease fitness by 10−5−10−2 (28). In summary, this
analysis shows that passengers are indeed deleterious and
∼100× weaker than drivers.
We considered and refuted several alternative explanations

for the observed positive linear relationship between drivers
and passengers. First, variation in the tumor stage or the rate/
mechanism of mutagenesis cannot explain the observed re-
lationship (SI Appendix, Table S3). Second, SCNAs and SNMs
are uncorrelated, so the linear relationship could not result
from their differing effect sizes (SI Appendix, Fig. S2 and
Table S3). Because the data disagree with these alternate hy-
potheses, we conclude that cancer indeed proceeds as a tug-of-
war between drivers and passengers.

A Critical Mutation Rate. By simulating cancer progression over
a broad range of evolutionary parameters (SI Appendix, Fig. S4),
we observed another barrier to cancer: a critical mutation rate,
above which the probability of cancer is exceedingly low (Fig. 3A).
Through further analytical treatment (SI Appendix), we found
that this mutational barrier is created and determined by the load
of segregating (unfixed) passengers in the population. The origin
of a critical mutation rate can be understood by considering the
number of segregating passengers per cell, previously shown to be
Poisson distributed with mean μp/sp, during mutation–selection
balance (29). The average fitness reduction of a cell due to this
mutational load is then μp. If this fitness reduction exceeds the
benefit of a new driver (μp > sd), then drivers seldom fixate (17,
30) (Fig. 3C). Hence, cancer is extremely rare above the critical
mutations rate μ* = sd/Tp.
Fig. 3A shows that this simple argument accurately predicts

the location of the critical mutation rate. By incorporating more
details about segregating passengers and selection against them
(SI Appendix), we explain observed simulation dynamics well
across the entire phase space (Fig. 3 A and B and SI Appendix,
Fig. S4).

Fig. 3. Effect of mutation rate on cancer dynamics. (A) The probability of cancer (adaptation) computed by simulations across mutation rates and initial
population sizes. Evolutionary parameters partition adaptation into a regime where cancer is almost certain (green) and a regime where it is exceedingly rare
(brown), accurately predicted by theoretical estimates of N* (magenta) and μ* (blue). A theory incorporating passenger interference with driver sweeps and
selection against passengers explains simulations well (black lines). (B) Cancer probability as a function of μ and sp (N0 = 103). Theory (black lines) accurately
reproduces the complex transition between regimes. (C) Diagram illustrating how the load of segregating (unfixed) passengers influences relative cell fitness
and the probability of a driver fixating. Hitchhiking passengers reduce a driver’s fitness benefit and probability of fixation. (D) Probability of cancer con-
strained to grow within a human lifespan ∼60 years, 104 generations, with N0 = 103 for various mutation rates exhibits an optimum mutation rate.
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increases to a new stationary value. In between these rare driver
events, the population size gradually declines due to passenger
accumulation. The relative rates of these competing processes
determine whether a population grows rapidly or goes extinct.
The value of N* can be identified by considering the average

change in population size over time (〈dN/dt〉), which is the av-
erage population growth due to accumulating drivers (vd) minus
the population decline due to accumulating passengers (vp).
When a new driver fixates, the population size immediately
increases by ΔN = Nsd. These jumps occur randomly at a nearly
constant rate f = μdNsd [a product of the driver occurrence rate
μdN and its probability of fixation sd/(1 + sd) ≈ sd]. Thus, the
velocity due to drivers is vd = fΔN = μdN2s2d. Similarly, pas-
sengers’ velocity vp = μpNsp is a product of their rate of oc-
currence μpN, effect on population size Nsp, and fixation
probability (near-neutral ∼1/N; see SI Appendix for a more
precise estimate). Thus, we obtain
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where Np = Tpsp
Tds2d

is the critical population size. In this equation,
a population’s mean velocity is negative below N* and positive
above N*, explaining why populations above N* grow rapidly and
populations below N* continually decline.
These dynamics suggests that N* constitutes an effective bar-

rier to cancer, which can prevent most cancers from progressing
(Fig. 1C). Simulations support this conclusion because they ex-
hibit a sharp transition in the probability of progression at N*
(Fig. 1D). Indeed, drastically different probability curves col-
lapse onto a single curve when N0 is rescaled by N*.
By considering only the average dynamics, we miss the vari-

ability of outcomes in adapting populations. In SI Appendix, we
formulate and solve a stochastic generalization of Eq. 1 that
explains the variability of outcomes well (Fig. 1E). Outcome
variability depends only upon N* and the strength of drivers sd.
Higher values of sd lead to larger stochastic jumps ΔN, which
increases variability and leads to more gradual changes in the
probability of cancer across N0.
The effects ofN* and sd on cancer progression can be intuitively

understood using a simple random-walk analogy. The population’s
reverse sawtoothed path abides by a one-dimensional randomwalk

in an effective potential Ueff = −
R
ðdN=dtÞdN (Fig. 1C). Akin to

chemical reactions activated by thermal energy, cancer progression
is a rare event that transitions through an unstable state, requiring
a quick succession of driver fixations.
Our analytical formalism indicates that population dynamics

depend entirely on two dimensionless parameters: a deterministic
mean velocity dependent only upon N/N* and a stochastic step
size of ∼sd. By reducing the complexity of our evolutionary system
to two parameters, we were next able to infer their values from
real cancers without overfitting.

Model Validation Using Cancer Incidence and Genomics Data. Our
model of cancer progression predicts several properties of cancer:
the presence of an effective barrier that small lesions seldom
overcome, a broad distribution in the number of accumulated
drivers and passengers in tumors, and a tug-of-war between drivers
and passengers in individual cancers. We looked for evidence of
these phenomena in age–incidence data (25) and recent cancer
genomics data, which also allowed us to estimate sd, sp, and the
probability of cancer progression.
Fig. 2A presents the incidence rate of breast cancer versus age

(25) alongside the predictions from our model and a classic
driver-only model (SI Appendix). The incidence rate was calcu-
lated by assuming that precancerous lesions arise with a constant
rate r beginning at birth. Lesions then progress to cancer in time
τ with probability P(τ), determined from simulations (SI Ap-
pendix, Fig. S1). The age–incidence rate I(t) is then the convo-
lution of P(τ) with the lesion initiation rate r. Because many
lesions never progress and go extinct in our model, the incidence
rate saturates at old age: Imax = r

R∞
0 PðτÞdτ = rP∞, where P∞ is

the probability that a lesion ever progresses to cancer.
Observed age–incidence rates saturate with age, allowing us

to estimate the efficiency of cancer progression. We estimate the
rate of lesion formation in breast cancer r ≥ 10 per year, de-
ducible in two ways: by multiplying the number of human breast
epithelial stem cells by their rate of mutation into a lesion
(SI Appendix) or by considering the number of lesions observed
in normal breasts (21). By comparing this limit (r ∼ 10 y−1) to the
maximum observed breast cancer incidence rate Imax ∼ 10−2
cancers·year−1, we find that P∞ ∼ 10−3, or only ∼0.1% of lesions
ever progress. Likewise, most other cancer subtypes (84%) pla-
teau at old age, indicating that inefficient progression is common
(SI Appendix, Fig. S1). These findings are consistent with medical

Fig. 2. Signatures of balance between drivers and passengers in incidence and genomics data. (A) Predicted and observed breast cancer incidence rates
verses age. Incidence rates in our model and the data both plateau at old age, but a traditional driver-only model (I ∝tk) does not. (B) Histogram (blue) of the
collective number of protein-coding mutations (SNMs) in breast cancer, alongside predicted distributions (lines colors as in A). Our model captures the width
and asymmetry of the distribution when sd = 0.4, whereas a driver-only model predicts a narrower, less-skewed distribution. (C) (Upper) The total number of
aggregate SCNA and SNM drivers verses the total number of passengers in sequenced tumors (points) fitted by linear regression. (Lower Left) Aggregated
cancer genomics data plotted on log axes, with the y intercept from each subtype’s linear fit subtracted [lung cancer (green), colorectal cancer (MIN−, dark
purple; MIN+, light purple)]. (Lower Right) The distribution of slope values obtained by bootstrapping 10,000 samples of each tumor type. All cancers exhibit
positive slopes (P < 0.08 − 10−5 ), suggesting estimates of sp/sd of breast, 0.0060 ± 0.0010; melanoma, 0.016 ± 0.003; lung, 0.0094 ± 0.0093; colorectal, MIN−

0.028 ± 0.007 and MIN+ 0.041 ± 0.006.
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increases to a new stationary value. In between these rare driver
events, the population size gradually declines due to passenger
accumulation. The relative rates of these competing processes
determine whether a population grows rapidly or goes extinct.
The value of N* can be identified by considering the average

change in population size over time (〈dN/dt〉), which is the av-
erage population growth due to accumulating drivers (vd) minus
the population decline due to accumulating passengers (vp).
When a new driver fixates, the population size immediately
increases by ΔN = Nsd. These jumps occur randomly at a nearly
constant rate f = μdNsd [a product of the driver occurrence rate
μdN and its probability of fixation sd/(1 + sd) ≈ sd]. Thus, the
velocity due to drivers is vd = fΔN = μdN2s2d. Similarly, pas-
sengers’ velocity vp = μpNsp is a product of their rate of oc-
currence μpN, effect on population size Nsp, and fixation
probability (near-neutral ∼1/N; see SI Appendix for a more
precise estimate). Thus, we obtain
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where Np = Tpsp
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is the critical population size. In this equation,
a population’s mean velocity is negative below N* and positive
above N*, explaining why populations above N* grow rapidly and
populations below N* continually decline.
These dynamics suggests that N* constitutes an effective bar-

rier to cancer, which can prevent most cancers from progressing
(Fig. 1C). Simulations support this conclusion because they ex-
hibit a sharp transition in the probability of progression at N*
(Fig. 1D). Indeed, drastically different probability curves col-
lapse onto a single curve when N0 is rescaled by N*.
By considering only the average dynamics, we miss the vari-

ability of outcomes in adapting populations. In SI Appendix, we
formulate and solve a stochastic generalization of Eq. 1 that
explains the variability of outcomes well (Fig. 1E). Outcome
variability depends only upon N* and the strength of drivers sd.
Higher values of sd lead to larger stochastic jumps ΔN, which
increases variability and leads to more gradual changes in the
probability of cancer across N0.
The effects ofN* and sd on cancer progression can be intuitively

understood using a simple random-walk analogy. The population’s
reverse sawtoothed path abides by a one-dimensional randomwalk

in an effective potential Ueff = −
R
ðdN=dtÞdN (Fig. 1C). Akin to

chemical reactions activated by thermal energy, cancer progression
is a rare event that transitions through an unstable state, requiring
a quick succession of driver fixations.
Our analytical formalism indicates that population dynamics

depend entirely on two dimensionless parameters: a deterministic
mean velocity dependent only upon N/N* and a stochastic step
size of ∼sd. By reducing the complexity of our evolutionary system
to two parameters, we were next able to infer their values from
real cancers without overfitting.

Model Validation Using Cancer Incidence and Genomics Data. Our
model of cancer progression predicts several properties of cancer:
the presence of an effective barrier that small lesions seldom
overcome, a broad distribution in the number of accumulated
drivers and passengers in tumors, and a tug-of-war between drivers
and passengers in individual cancers. We looked for evidence of
these phenomena in age–incidence data (25) and recent cancer
genomics data, which also allowed us to estimate sd, sp, and the
probability of cancer progression.
Fig. 2A presents the incidence rate of breast cancer versus age

(25) alongside the predictions from our model and a classic
driver-only model (SI Appendix). The incidence rate was calcu-
lated by assuming that precancerous lesions arise with a constant
rate r beginning at birth. Lesions then progress to cancer in time
τ with probability P(τ), determined from simulations (SI Ap-
pendix, Fig. S1). The age–incidence rate I(t) is then the convo-
lution of P(τ) with the lesion initiation rate r. Because many
lesions never progress and go extinct in our model, the incidence
rate saturates at old age: Imax = r

R∞
0 PðτÞdτ = rP∞, where P∞ is

the probability that a lesion ever progresses to cancer.
Observed age–incidence rates saturate with age, allowing us

to estimate the efficiency of cancer progression. We estimate the
rate of lesion formation in breast cancer r ≥ 10 per year, de-
ducible in two ways: by multiplying the number of human breast
epithelial stem cells by their rate of mutation into a lesion
(SI Appendix) or by considering the number of lesions observed
in normal breasts (21). By comparing this limit (r ∼ 10 y−1) to the
maximum observed breast cancer incidence rate Imax ∼ 10−2
cancers·year−1, we find that P∞ ∼ 10−3, or only ∼0.1% of lesions
ever progress. Likewise, most other cancer subtypes (84%) pla-
teau at old age, indicating that inefficient progression is common
(SI Appendix, Fig. S1). These findings are consistent with medical

Fig. 2. Signatures of balance between drivers and passengers in incidence and genomics data. (A) Predicted and observed breast cancer incidence rates
verses age. Incidence rates in our model and the data both plateau at old age, but a traditional driver-only model (I ∝tk) does not. (B) Histogram (blue) of the
collective number of protein-coding mutations (SNMs) in breast cancer, alongside predicted distributions (lines colors as in A). Our model captures the width
and asymmetry of the distribution when sd = 0.4, whereas a driver-only model predicts a narrower, less-skewed distribution. (C) (Upper) The total number of
aggregate SCNA and SNM drivers verses the total number of passengers in sequenced tumors (points) fitted by linear regression. (Lower Left) Aggregated
cancer genomics data plotted on log axes, with the y intercept from each subtype’s linear fit subtracted [lung cancer (green), colorectal cancer (MIN−, dark
purple; MIN+, light purple)]. (Lower Right) The distribution of slope values obtained by bootstrapping 10,000 samples of each tumor type. All cancers exhibit
positive slopes (P < 0.08 − 10−5 ), suggesting estimates of sp/sd of breast, 0.0060 ± 0.0010; melanoma, 0.016 ± 0.003; lung, 0.0094 ± 0.0093; colorectal, MIN−
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Defining Stem Cell Dynamics in
Models of Intestinal Tumor Initiation
Louis Vermeulen,1,2*† Edward Morrissey,1* Maartje van der Heijden,1,2 Anna M. Nicholson,1

Andrea Sottoriva,3 Simon Buczacki,1 Richard Kemp,1 Simon Tavaré,1,4 Douglas J. Winton1

Cancer is a disease in which cells accumulate genetic aberrations that are believed to
confer a clonal advantage over cells in the surrounding tissue. However, the quantitative
benefit of frequently occurring mutations during tumor development remains unknown. We
quantified the competitive advantage of Apc loss, Kras activation, and P53 mutations in the
mouse intestine. Our findings indicate that the fate conferred by these mutations is not
deterministic, and many mutated stem cells are replaced by wild-type stem cells after biased,
but still stochastic events. Furthermore, P53 mutations display a condition-dependent
advantage, and especially in colitis-affected intestines, clones harboring mutations in this
gene are favored. Our work confirms the previously theoretical notion that the tissue
architecture of the intestine suppresses the accumulation of mutated lineages.

Cancer development involves competi-
tion between normal and deviant cell
lineages, ultimately resulting in disrup-

tive tissue overgrowth (1). The cellular effects of
mutations can increase proliferation or impair
response to cell death–inducing signals (2). How-
ever, only very limited quantitative data exist on
the net effects of oncogenic alterations at the cell
population level. In the intestine, cancer arises
from an initial transformation event occurring
primarily, but not exclusively, in the stem cell
compartment (3, 4). Because normal intestinal
crypt homeostasis is characterized by competi-
tion between equipotent stem cells that continu-
ously replace each other in a random fashion
(Fig. 1A) (5, 6), oncogenic mutations may con-
fer an advantage on the clone in which they arise
by acting on these dynamics. We confirmed and
used this assumption to quantify the competitive
benefit of mutations frequently occurring in co-
lorectal cancer (CRC).

To track the fate of wild-type (WT) and mu-
tated cell lineages, we induced low-level intesti-
nal recombination either specifically in the crypt
base using Lgr5-EGFP-CreER mice or more gen-
erally in AhCreER mice, both crossed to the R26-

Lox-STOP-Lox-tdTomato (tdTomfl/fl) reporter
strain. Clones were visualized and quantified at
the bottom of the crypt, allowing robust clone
size quantification around the circumference of
the crypt (fig. S1). We observed that on average,
clones expand, and the number of fixed clones
(i.e., crypts within which the whole epithelium
is tdTom+) increases with time (Fig. 1, B to E).
By quantitative analysis of the clone size distri-
butions using the stochastic master equation and
Bayesian inference, we confirmed earlier studies
that continuous, one-dimensional neutral replace-
ments govern intestinal stem cell dynamics (figs.
S2 and S3) (5, 6). This process is fully defined by
only two parameters: the number of functional
stem cells per crypt (N) and the rate at which
these replace each other (l). Because of the high-
quality clone size distribution data we obtained,
we can directly infer both N and l with consid-
erable precision (fig. S2). For the proximal small
intestine (SI), we find that N = 5 and l = 0.1
replacements per stem cell per day (figs. S2 and
S3). This inferred number of stem cells is con-
siderably lower than the number of Lgr5+ cells
(~16) per crypt (5) but agrees with a functional
marker-free estimate of stem cell numbers (7). In
fact, we directly confirmed a previous suggestion
that a sizable fraction of Lgr5+ cells are actually
more committed progenitor cells and do not func-
tion as stem cells in homeostasis (8) (fig. S4).

Next, we crossed AhCreER/tdTom-/fl mice with
Kras-G12Dfl and Apcfl/fl mice. Recombination
in these mice will result in activation of an on-
cogenic Kras variant or inactivation of one or
both copies of the negative Wnt regulator Apc,
in addition to tdTom expression. We confirmed
that tdTom expression is tightly matched to on-

cogenic recombination events (fig. S5). Further-
more, our analysis was facilitated by the fact that
the low-level clone induction of pre-neoplastic
lineages does not substantially alter tissue mor-
phology, as has been reported before (9, 10)
(Fig. 1B and fig. S6). We found that activated
KRAS confers an evident clonal advantage as
the KrasG12D harboring clones expand and be-
come fixed more rapidly than the WT lineages
(Fig. 1, B to E). In order to express this effect quan-
titatively, we introduced an additional variable
to the one-dimensional drift model to capture
the biased drift properties: PR signifies the chance
that a tdTom+ stem cell replaces its nonlabeled
neighbor; conversely, 1-PR represents the chance
that the nonlabeled stem cell replaces the tdTom+

neighboring stem cell. The neutral version of
the model is described by unbiased stochastic
replacements, and as expected, using the infer-
ence method in combination with the neutral
clone size distribution data we find PR(WT ver-
sus WT) = 0.50 [0.48 to 0.52, 95% confidence
interval (CI)] (Fig. 1F), indicating that two adja-
cent stem cells have equal probability to replace
each other. Applying this inference strategy
to the biased drift data of Krasmutant clones,
we found a well-demarcated posterior probabil-
ity peak: PR(Kras

G12D versus WT) = 0.78 (0.75
to 0.81, 95% CI) (Fig. 1G). This implies that for
replacement events occurring at the interface
of a KrasG12D and aWTclone, the Krasmutant
stem cell replaces the WT stem cell in ~80% of
the cases, and conversely that the WT stem cell
replaces the mutant stem cell in ~20% of the
replacement events. Thus, interpreting the al-
tered size distribution of clones in terms of in-
dividual stem cell fates provides an intuitive
estimate of the potency of oncogenic mutations
in the context of a stochastic model, by integrat-
ing the effects of proliferation rate, cell death
frequencies, and self-renewal properties into a
single parameter (PR).

Because human CRCs arise in the majority
of cases after the inactivation of APC, we deter-
mined the clonal advantage of lineages harboring
either heterozygous or homozygous inactivat-
ing mutations within this gene. Apc+/− lineages
display only a limited, but significant, benefit over
WT clones, whereas Apc−/− lineages have a more
marked clonal benefit already at 4 days, making
it unlikely that secondary effects ofApc loss [such
as chromosomal instability (CIN)] are involved
(Fig. 2, A to C). After applying the inference strat-
egy to this data to determine PR, we found that
PR(Apc

+/− versus WT) = 0.62 (0.58 to 0.66, 95%
CI) andPR(Apc

−/− versusWT)=0.79 (0.75 to 0.82,
95% CI) (Fig. 2, D and E). In reality, Apc−/−
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Sd(p53,APC,Kras)=0.2-0.5



Back to the model 



Critical mutation rate 

observations that very few lesions ever progress to cancer (26,
27). Like our model, these studies also find that most lesions
regress to undetectable size. Conversely, in a driver-only model
(SI Appendix), every lesion eventually progresses to cancer after
sufficient time (i.e., P∞ = 1), and incidence rates plateau only if
the lesion formation rate is unrealistically low (0.01 per year).
Good agreement between age–incidence data and our model is
obtained for sd ≈0.1−0.2.
Recent cancer genomics data offer a new opportunity to validate

our model. Specifically, we looked at somatic nonsynonymous
mutations (SNMs) and somatic copy-number alterations (SCNAs)
from over 700 individual cancer–normal sample pairs (SI Appen-
dix, Table S2). Analyzing SNMs and SCNAs separately and in
aggregation yielded similar results (SI Appendix, Fig. S2 and
Table S3). Fig. 2B shows a wide and asymmetric distribution of the
total number of SNMs in breast cancer. Our model predicts
a similarly wide distribution of total SNMs due to the stochastic
period that cancers linger at the critical population size N* while
accumulating mutations. To compare these data with various
models we normalized the total number of mutations by their
median (27) because several evolutionary parameters and se-
quencing decisions can alter these distributions by a multiplicative
factor (SI Appendix). Our model agrees with the data when the
effect size of drivers is large (sd≈0.4). In contrast, a traditional five-
driver model (SI Appendix) which neglects deleterious passengers
and, thus, a critical barrier yields a narrower, less-skewed distri-
bution than observed.
Overall, our model agrees with the 11 most sequenced cancer

subtypes best when sd ≈ 0.1−0.6 (SI Appendix, Fig. S3 and
Table S4). These estimates agree with sd = 0.16−0.58 experi-
mentally measured as growth rate changes of mouse cells upon
mutations in p53 , APC, or Kras (23). These experimental meas-
urements and our estimates are also considerably larger than
previous theoretical estimates of sd = 0.004 (4), where cancer
progression was modeled as an exponential growth unaffected by
passengers. Such a driver-only model fits SNM distributions
poorly, and fits suggest that just one to two drivers are needed
for cancer (SI Appendix, Table S4), which is inconsistent with
known biology. Taken together, cancer genomics data and recent
experiments (23) strongly support our model and refute the
driver-only model.
We then compared the number of drivers and the number of

passengers observed in individual cancer samples to our model.
Lesions that linger around N* in our model acquire additional
passengers and additional counterbalancing drivers, whereas lesions
that progress quickly acquire fewer of each. This predicts a linear

relationship: nd = sp/sd · np + constant (SI Appendix), where the
slope provides an estimate of sp/sd. We indeed observed a positive
linear relationship between nd and np in all tumors studied (Fig. 2C
and SI Appendix, Table S3; P < 0.08−10−6). Linearity was con-
firmed by regressing the aggregated data in log–log axes (Fig. 2C),
which yielded nd ∼n0:98p , consistent with nd ∼np. Regressing nd on
np and using 104 bootstrapped samples to estimate the confi-
dence, we obtain an sp/sd ∼ 0.005−0.05 (Fig. 2C). Using our
estimate sd ≈0.1−0.6, we obtain a damaging effect of a pas-
senger mutation sp ≈5 · (10−4−10−2). These estimates are consis-
tent with effects of germ-line SNMs in humans where 64% of
mutations decrease fitness by 10−5−10−2 (28). In summary, this
analysis shows that passengers are indeed deleterious and
∼100× weaker than drivers.
We considered and refuted several alternative explanations

for the observed positive linear relationship between drivers
and passengers. First, variation in the tumor stage or the rate/
mechanism of mutagenesis cannot explain the observed re-
lationship (SI Appendix, Table S3). Second, SCNAs and SNMs
are uncorrelated, so the linear relationship could not result
from their differing effect sizes (SI Appendix, Fig. S2 and
Table S3). Because the data disagree with these alternate hy-
potheses, we conclude that cancer indeed proceeds as a tug-of-
war between drivers and passengers.

A Critical Mutation Rate. By simulating cancer progression over
a broad range of evolutionary parameters (SI Appendix, Fig. S4),
we observed another barrier to cancer: a critical mutation rate,
above which the probability of cancer is exceedingly low (Fig. 3A).
Through further analytical treatment (SI Appendix), we found
that this mutational barrier is created and determined by the load
of segregating (unfixed) passengers in the population. The origin
of a critical mutation rate can be understood by considering the
number of segregating passengers per cell, previously shown to be
Poisson distributed with mean μp/sp, during mutation–selection
balance (29). The average fitness reduction of a cell due to this
mutational load is then μp. If this fitness reduction exceeds the
benefit of a new driver (μp > sd), then drivers seldom fixate (17,
30) (Fig. 3C). Hence, cancer is extremely rare above the critical
mutations rate μ* = sd/Tp.
Fig. 3A shows that this simple argument accurately predicts

the location of the critical mutation rate. By incorporating more
details about segregating passengers and selection against them
(SI Appendix), we explain observed simulation dynamics well
across the entire phase space (Fig. 3 A and B and SI Appendix,
Fig. S4).

Fig. 3. Effect of mutation rate on cancer dynamics. (A) The probability of cancer (adaptation) computed by simulations across mutation rates and initial
population sizes. Evolutionary parameters partition adaptation into a regime where cancer is almost certain (green) and a regime where it is exceedingly rare
(brown), accurately predicted by theoretical estimates of N* (magenta) and μ* (blue). A theory incorporating passenger interference with driver sweeps and
selection against passengers explains simulations well (black lines). (B) Cancer probability as a function of μ and sp (N0 = 103). Theory (black lines) accurately
reproduces the complex transition between regimes. (C) Diagram illustrating how the load of segregating (unfixed) passengers influences relative cell fitness
and the probability of a driver fixating. Hitchhiking passengers reduce a driver’s fitness benefit and probability of fixation. (D) Probability of cancer con-
strained to grow within a human lifespan ∼60 years, 104 generations, with N0 = 103 for various mutation rates exhibits an optimum mutation rate.
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observations that very few lesions ever progress to cancer (26,
27). Like our model, these studies also find that most lesions
regress to undetectable size. Conversely, in a driver-only model
(SI Appendix), every lesion eventually progresses to cancer after
sufficient time (i.e., P∞ = 1), and incidence rates plateau only if
the lesion formation rate is unrealistically low (0.01 per year).
Good agreement between age–incidence data and our model is
obtained for sd ≈0.1−0.2.
Recent cancer genomics data offer a new opportunity to validate

our model. Specifically, we looked at somatic nonsynonymous
mutations (SNMs) and somatic copy-number alterations (SCNAs)
from over 700 individual cancer–normal sample pairs (SI Appen-
dix, Table S2). Analyzing SNMs and SCNAs separately and in
aggregation yielded similar results (SI Appendix, Fig. S2 and
Table S3). Fig. 2B shows a wide and asymmetric distribution of the
total number of SNMs in breast cancer. Our model predicts
a similarly wide distribution of total SNMs due to the stochastic
period that cancers linger at the critical population size N* while
accumulating mutations. To compare these data with various
models we normalized the total number of mutations by their
median (27) because several evolutionary parameters and se-
quencing decisions can alter these distributions by a multiplicative
factor (SI Appendix). Our model agrees with the data when the
effect size of drivers is large (sd≈0.4). In contrast, a traditional five-
driver model (SI Appendix) which neglects deleterious passengers
and, thus, a critical barrier yields a narrower, less-skewed distri-
bution than observed.
Overall, our model agrees with the 11 most sequenced cancer

subtypes best when sd ≈ 0.1−0.6 (SI Appendix, Fig. S3 and
Table S4). These estimates agree with sd = 0.16−0.58 experi-
mentally measured as growth rate changes of mouse cells upon
mutations in p53 , APC, or Kras (23). These experimental meas-
urements and our estimates are also considerably larger than
previous theoretical estimates of sd = 0.004 (4), where cancer
progression was modeled as an exponential growth unaffected by
passengers. Such a driver-only model fits SNM distributions
poorly, and fits suggest that just one to two drivers are needed
for cancer (SI Appendix, Table S4), which is inconsistent with
known biology. Taken together, cancer genomics data and recent
experiments (23) strongly support our model and refute the
driver-only model.
We then compared the number of drivers and the number of

passengers observed in individual cancer samples to our model.
Lesions that linger around N* in our model acquire additional
passengers and additional counterbalancing drivers, whereas lesions
that progress quickly acquire fewer of each. This predicts a linear

relationship: nd = sp/sd · np + constant (SI Appendix), where the
slope provides an estimate of sp/sd. We indeed observed a positive
linear relationship between nd and np in all tumors studied (Fig. 2C
and SI Appendix, Table S3; P < 0.08−10−6). Linearity was con-
firmed by regressing the aggregated data in log–log axes (Fig. 2C),
which yielded nd ∼n0:98p , consistent with nd ∼np. Regressing nd on
np and using 104 bootstrapped samples to estimate the confi-
dence, we obtain an sp/sd ∼ 0.005−0.05 (Fig. 2C). Using our
estimate sd ≈0.1−0.6, we obtain a damaging effect of a pas-
senger mutation sp ≈5 · (10−4−10−2). These estimates are consis-
tent with effects of germ-line SNMs in humans where 64% of
mutations decrease fitness by 10−5−10−2 (28). In summary, this
analysis shows that passengers are indeed deleterious and
∼100× weaker than drivers.
We considered and refuted several alternative explanations

for the observed positive linear relationship between drivers
and passengers. First, variation in the tumor stage or the rate/
mechanism of mutagenesis cannot explain the observed re-
lationship (SI Appendix, Table S3). Second, SCNAs and SNMs
are uncorrelated, so the linear relationship could not result
from their differing effect sizes (SI Appendix, Fig. S2 and
Table S3). Because the data disagree with these alternate hy-
potheses, we conclude that cancer indeed proceeds as a tug-of-
war between drivers and passengers.

A Critical Mutation Rate. By simulating cancer progression over
a broad range of evolutionary parameters (SI Appendix, Fig. S4),
we observed another barrier to cancer: a critical mutation rate,
above which the probability of cancer is exceedingly low (Fig. 3A).
Through further analytical treatment (SI Appendix), we found
that this mutational barrier is created and determined by the load
of segregating (unfixed) passengers in the population. The origin
of a critical mutation rate can be understood by considering the
number of segregating passengers per cell, previously shown to be
Poisson distributed with mean μp/sp, during mutation–selection
balance (29). The average fitness reduction of a cell due to this
mutational load is then μp. If this fitness reduction exceeds the
benefit of a new driver (μp > sd), then drivers seldom fixate (17,
30) (Fig. 3C). Hence, cancer is extremely rare above the critical
mutations rate μ* = sd/Tp.
Fig. 3A shows that this simple argument accurately predicts

the location of the critical mutation rate. By incorporating more
details about segregating passengers and selection against them
(SI Appendix), we explain observed simulation dynamics well
across the entire phase space (Fig. 3 A and B and SI Appendix,
Fig. S4).

Fig. 3. Effect of mutation rate on cancer dynamics. (A) The probability of cancer (adaptation) computed by simulations across mutation rates and initial
population sizes. Evolutionary parameters partition adaptation into a regime where cancer is almost certain (green) and a regime where it is exceedingly rare
(brown), accurately predicted by theoretical estimates of N* (magenta) and μ* (blue). A theory incorporating passenger interference with driver sweeps and
selection against passengers explains simulations well (black lines). (B) Cancer probability as a function of μ and sp (N0 = 103). Theory (black lines) accurately
reproduces the complex transition between regimes. (C) Diagram illustrating how the load of segregating (unfixed) passengers influences relative cell fitness
and the probability of a driver fixating. Hitchhiking passengers reduce a driver’s fitness benefit and probability of fixation. (D) Probability of cancer con-
strained to grow within a human lifespan ∼60 years, 104 generations, with N0 = 103 for various mutation rates exhibits an optimum mutation rate.
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Abstract
Chromosomal instability (CIN) is associated with poor prognosis in human cancer. However, in certain animal

tumor models elevated CIN negatively impacts upon organism fitness, and is poorly tolerated by cancer cells. To
better understand this seemingly contradictory relationship between CIN and cancer cell biological fitness and
its relationship with clinical outcome, we applied the CIN70 expression signature, which correlates with DNA-
based measures of structural chromosomal complexity and numerical CIN in vivo , to gene expression profiles of
2,125 breast tumors from 13 published cohorts. Tumors with extreme CIN, defined as the highest quartile CIN70
score, were predominantly of the estrogen receptor negative (ER!), basal-like phenotype and displayed the
highest chromosomal structural complexity and chromosomal numerical instability. We found that the extreme
CIN/ER! tumors were associated with improved prognosis relative to tumors with intermediate CIN70 scores in
the third quartile. We also observed this paradoxical relationship between CIN and prognosis in ovarian, gastric,
and non–small cell lung cancer, with poorest outcome in tumors with intermediate, rather than extreme, CIN70
scores. These results suggest a nonmonotonic relationship between gene signature expression and HR for
survival outcome, which may explain the difficulties encountered in the identification of prognostic expression
signatures in ER! breast cancer. Furthermore, the data are consistent with the intolerance of excessive CIN in
carcinomas and provide a plausible strategy to define distinct prognostic patient cohorts with ER! breast
cancer. Inclusion of a surrogate measurement of CIN may improve cancer risk stratification and future
therapeutic approaches. Cancer Res; 71(10); 3447–52. !2011 AACR.

Introduction

Chromosomal instability (CIN) results in numerical and
structural chromosomal complexity and is associated with
poor prognosis in solid tumors (1, 2), and the acquisition of
phenotypic variation promoting drug resistance in yeast

models (3). In contrast, in mammalian cells and yeast models,
aneuploidy may have a negative impact upon organism fitness
and proliferation (4, 5). Indeed, CIN may confer both a tumor
promoting and tumor suppressive function in animal model
systems (6, 7). Excessive CIN can be introduced in model
systems by inactivation of mitotic spindle checkpoint com-
ponents; this results in gross aneuploidy and cell death (8).
Accordingly, elevation of the frequency of chromosome mis-
segregation has been proposed as a strategy to kill tumor cells
(8, 9).

Such an opposing relationship suggests that there may be
an optimal level of CIN for tumor progression, beyond which
further instability provides no growth advantage that may
even be deleterious for cancer cell survival (10) through an
evolutionary scenario analogous to "mutational meltdown" in
bacteria (11) or "error catastrophe" in viruses (12). However, it
is not known whether CIN, over a certain threshold, may
impact negatively on human tumor growth, or whether very
high levels of CIN in human tumors might be associated with
improved patient prognosis relative to intermediate levels. If
such a relationship exists, it may have important implications
for risk stratification and for future therapeutic approaches
directed against CIN tumors.

The CIN70 expression signature was derived from a surro-
gate measure of CIN and is defined as the average expression
of 70 genes that correlate with "total functional aneuploidy" in
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“We also observed this paradoxical relationship between CIN and prognosis in ovarian, gastric, and 
non–small cell lung cancer, with poorest outcome in tumors with intermediate, rather than extreme, 
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This analysis offers a new mode by which mutational melt-
down operates. Whereas prior models of mutational meltdown
consider deleterious mutations in isolation (16), we find that
mutational meltdown can occur when deleterious mutations in-
hibit the accumulation of advantageous mutations.
When cancer progression is constrained to develop within a

human lifetime, we observe an optimum mutation rate for the
probability of cancer (μopt = 10−9−10−8 nucleotide−1·generation−1;
Fig. 3D), similar to experimentally measured rates in cancer of
10−8 (7). Above μopt, population meltdown is very common,
whereas below μopt, progression is too slow.

The Adaptive Barrier and Critical Mutation Rate Explain Cancer
Treatment Outcomes. Chemotherapy and radiation are valued
for their ability to kill rapidly dividing cells; however, our model
shows that the elevation of mutation rates (including SCNAs and
aneuploidy) by these therapies dramatically affects cancer sur-
vival. We use the phase diagrams from Fig. 3 to rationalize
outcomes of these and other treatments.
In Fig. 4A, we present evolutionary paths of cancers—from

hyperplasia, to cancer, to treatment, and to relapse or remission—
on top of the phase diagrams described above. Treatments suc-
ceed if they push cancer into the nonadaptive regime (where the
probability of growth is low) and fail if they do not. Our model
suggests that chemotherapy succeeds, in part, because it moves
cancers across the mutational threshold μ*. Above this threshold,
drivers seldom overpower the load of segregating passengers,
making readaptation difficult. Driver-targeted therapies (that elim-
inate an oncogene’s benefit) must bring n < N* to succeed.
Cancers with higher loads of mutations/alterations are closer

to the critical mutation rate and should be most susceptible to
mutagenic meltdown. Several recent studies (31–33) found that

patient survival from breast (all subtypes) and ovarian cancer was
greatest when tumors harbored exceptionally high levels of
chromosomal alterations. These findings are paradoxical for all
previous models of cancer (31), where a greater mutation rate
always accelerates cancer, yet fully consistent with our model
(Fig. 4B).
Treatments exploiting cancer’s load of deleterious passengers

remain unexplored. Fig. 4C shows that a relatively mild threefold
to fivefold increase of the deleterious effect of passengers sp
causes complete remission. Increasing sp is doubly effective be-
cause it exacerbates accumulated passengers and slows down
future adaptation. Below we discuss possible treatment strategies
that would increase sp.
Increases in μ work synergistically with increases in sp in our

model (SI Appendix, Fig. S6). Hence, combinations of mutagenic
chemotherapy with treatments elevating the cost of passengers
may be most effective; these therapies should further synergize
with driver-targeted therapies.

Discussion
We present an evolutionary model of rapid adaptation incor-
porating rare, strongly advantageous driver mutations and fre-
quent, mildly deleterious passenger mutations. In this tug-of-war
process, populations either succeed and adapt or fail and go
extinct. Simulations and theory identify two regimes of dynamics:
one where populations almost always adapt and another where
they almost always fail. The complex stochastic dynamics of this
process is accurately described as simple diffusion over a poten-
tial barrier located at a critical population size separating the two
regimes. This general framework for adaptive asexual popula-
tions effectively characterizes the dynamics of cancer progression
and therapeutic responses.

Fig. 4. Mapping and interpreting treatment outcomes. (A, Upper) An adapted population (cancer) can be reverted to extinction by increasing the mutation rate
(mutagenic chemotherapy) or by decreasing the population size (e.g., surgery or cytotoxic chemotherapy). (Lower) Our phase diagrams explain therapeutic
outcomes: therapies that alter evolutionary parameters enough to push it outside of the adaptive regime cause continued population collapse; those that do not
readapt and relapse. (B, Upper) Cancers with intermediate mutational loads are the most aggressive (31, 33), whereas patients with very high level of chro-
mosomal instability are most effectively treated. (Lower) This result is well explained by our phase diagrams, where cancers with high mutation rates are sus-
ceptible to mutational meltdown, yet paradoxical for all previous evolutionary models of cancer. We believe traditional therapies decrease population size and
may increase the mutation rate. (C) Threefold increase in the effect of passenger mutations leads to rapid population meltdown below N*, without relapse.

McFarland et al. PNAS Early Edition | 5 of 6

EV
O
LU

TI
O
N

Priority Report

Paradoxical Relationship between Chromosomal Instability
and Survival Outcome in Cancer

Nicolai J. Birkbak1,2, Aron C. Eklund1, Qiyuan Li1,2, Sarah E. McClelland5, David Endesfelder5, Patrick Tan7,8,
Iain B. Tan9,10, Andrea L. Richardson2,4, Zoltan Szallasi1,3, and Charles Swanton5,6

Abstract
Chromosomal instability (CIN) is associated with poor prognosis in human cancer. However, in certain animal

tumor models elevated CIN negatively impacts upon organism fitness, and is poorly tolerated by cancer cells. To
better understand this seemingly contradictory relationship between CIN and cancer cell biological fitness and
its relationship with clinical outcome, we applied the CIN70 expression signature, which correlates with DNA-
based measures of structural chromosomal complexity and numerical CIN in vivo , to gene expression profiles of
2,125 breast tumors from 13 published cohorts. Tumors with extreme CIN, defined as the highest quartile CIN70
score, were predominantly of the estrogen receptor negative (ER!), basal-like phenotype and displayed the
highest chromosomal structural complexity and chromosomal numerical instability. We found that the extreme
CIN/ER! tumors were associated with improved prognosis relative to tumors with intermediate CIN70 scores in
the third quartile. We also observed this paradoxical relationship between CIN and prognosis in ovarian, gastric,
and non–small cell lung cancer, with poorest outcome in tumors with intermediate, rather than extreme, CIN70
scores. These results suggest a nonmonotonic relationship between gene signature expression and HR for
survival outcome, which may explain the difficulties encountered in the identification of prognostic expression
signatures in ER! breast cancer. Furthermore, the data are consistent with the intolerance of excessive CIN in
carcinomas and provide a plausible strategy to define distinct prognostic patient cohorts with ER! breast
cancer. Inclusion of a surrogate measurement of CIN may improve cancer risk stratification and future
therapeutic approaches. Cancer Res; 71(10); 3447–52. !2011 AACR.

Introduction

Chromosomal instability (CIN) results in numerical and
structural chromosomal complexity and is associated with
poor prognosis in solid tumors (1, 2), and the acquisition of
phenotypic variation promoting drug resistance in yeast

models (3). In contrast, in mammalian cells and yeast models,
aneuploidy may have a negative impact upon organism fitness
and proliferation (4, 5). Indeed, CIN may confer both a tumor
promoting and tumor suppressive function in animal model
systems (6, 7). Excessive CIN can be introduced in model
systems by inactivation of mitotic spindle checkpoint com-
ponents; this results in gross aneuploidy and cell death (8).
Accordingly, elevation of the frequency of chromosome mis-
segregation has been proposed as a strategy to kill tumor cells
(8, 9).

Such an opposing relationship suggests that there may be
an optimal level of CIN for tumor progression, beyond which
further instability provides no growth advantage that may
even be deleterious for cancer cell survival (10) through an
evolutionary scenario analogous to "mutational meltdown" in
bacteria (11) or "error catastrophe" in viruses (12). However, it
is not known whether CIN, over a certain threshold, may
impact negatively on human tumor growth, or whether very
high levels of CIN in human tumors might be associated with
improved patient prognosis relative to intermediate levels. If
such a relationship exists, it may have important implications
for risk stratification and for future therapeutic approaches
directed against CIN tumors.

The CIN70 expression signature was derived from a surro-
gate measure of CIN and is defined as the average expression
of 70 genes that correlate with "total functional aneuploidy" in
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“We also observed this paradoxical relationship between CIN and prognosis in ovarian, gastric, and 
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CIN70 scores.” 

This analysis offers a new mode by which mutational melt-
down operates. Whereas prior models of mutational meltdown
consider deleterious mutations in isolation (16), we find that
mutational meltdown can occur when deleterious mutations in-
hibit the accumulation of advantageous mutations.
When cancer progression is constrained to develop within a

human lifetime, we observe an optimum mutation rate for the
probability of cancer (μopt = 10−9−10−8 nucleotide−1·generation−1;
Fig. 3D), similar to experimentally measured rates in cancer of
10−8 (7). Above μopt, population meltdown is very common,
whereas below μopt, progression is too slow.

The Adaptive Barrier and Critical Mutation Rate Explain Cancer
Treatment Outcomes. Chemotherapy and radiation are valued
for their ability to kill rapidly dividing cells; however, our model
shows that the elevation of mutation rates (including SCNAs and
aneuploidy) by these therapies dramatically affects cancer sur-
vival. We use the phase diagrams from Fig. 3 to rationalize
outcomes of these and other treatments.
In Fig. 4A, we present evolutionary paths of cancers—from

hyperplasia, to cancer, to treatment, and to relapse or remission—
on top of the phase diagrams described above. Treatments suc-
ceed if they push cancer into the nonadaptive regime (where the
probability of growth is low) and fail if they do not. Our model
suggests that chemotherapy succeeds, in part, because it moves
cancers across the mutational threshold μ*. Above this threshold,
drivers seldom overpower the load of segregating passengers,
making readaptation difficult. Driver-targeted therapies (that elim-
inate an oncogene’s benefit) must bring n < N* to succeed.
Cancers with higher loads of mutations/alterations are closer

to the critical mutation rate and should be most susceptible to
mutagenic meltdown. Several recent studies (31–33) found that

patient survival from breast (all subtypes) and ovarian cancer was
greatest when tumors harbored exceptionally high levels of
chromosomal alterations. These findings are paradoxical for all
previous models of cancer (31), where a greater mutation rate
always accelerates cancer, yet fully consistent with our model
(Fig. 4B).
Treatments exploiting cancer’s load of deleterious passengers

remain unexplored. Fig. 4C shows that a relatively mild threefold
to fivefold increase of the deleterious effect of passengers sp
causes complete remission. Increasing sp is doubly effective be-
cause it exacerbates accumulated passengers and slows down
future adaptation. Below we discuss possible treatment strategies
that would increase sp.
Increases in μ work synergistically with increases in sp in our

model (SI Appendix, Fig. S6). Hence, combinations of mutagenic
chemotherapy with treatments elevating the cost of passengers
may be most effective; these therapies should further synergize
with driver-targeted therapies.

Discussion
We present an evolutionary model of rapid adaptation incor-
porating rare, strongly advantageous driver mutations and fre-
quent, mildly deleterious passenger mutations. In this tug-of-war
process, populations either succeed and adapt or fail and go
extinct. Simulations and theory identify two regimes of dynamics:
one where populations almost always adapt and another where
they almost always fail. The complex stochastic dynamics of this
process is accurately described as simple diffusion over a poten-
tial barrier located at a critical population size separating the two
regimes. This general framework for adaptive asexual popula-
tions effectively characterizes the dynamics of cancer progression
and therapeutic responses.

Fig. 4. Mapping and interpreting treatment outcomes. (A, Upper) An adapted population (cancer) can be reverted to extinction by increasing the mutation rate
(mutagenic chemotherapy) or by decreasing the population size (e.g., surgery or cytotoxic chemotherapy). (Lower) Our phase diagrams explain therapeutic
outcomes: therapies that alter evolutionary parameters enough to push it outside of the adaptive regime cause continued population collapse; those that do not
readapt and relapse. (B, Upper) Cancers with intermediate mutational loads are the most aggressive (31, 33), whereas patients with very high level of chro-
mosomal instability are most effectively treated. (Lower) This result is well explained by our phase diagrams, where cancers with high mutation rates are sus-
ceptible to mutational meltdown, yet paradoxical for all previous evolutionary models of cancer. We believe traditional therapies decrease population size and
may increase the mutation rate. (C) Threefold increase in the effect of passenger mutations leads to rapid population meltdown below N*, without relapse.
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This analysis offers a new mode by which mutational melt-
down operates. Whereas prior models of mutational meltdown
consider deleterious mutations in isolation (16), we find that
mutational meltdown can occur when deleterious mutations in-
hibit the accumulation of advantageous mutations.
When cancer progression is constrained to develop within a

human lifetime, we observe an optimum mutation rate for the
probability of cancer (μopt = 10−9−10−8 nucleotide−1·generation−1;
Fig. 3D), similar to experimentally measured rates in cancer of
10−8 (7). Above μopt, population meltdown is very common,
whereas below μopt, progression is too slow.

The Adaptive Barrier and Critical Mutation Rate Explain Cancer
Treatment Outcomes. Chemotherapy and radiation are valued
for their ability to kill rapidly dividing cells; however, our model
shows that the elevation of mutation rates (including SCNAs and
aneuploidy) by these therapies dramatically affects cancer sur-
vival. We use the phase diagrams from Fig. 3 to rationalize
outcomes of these and other treatments.
In Fig. 4A, we present evolutionary paths of cancers—from

hyperplasia, to cancer, to treatment, and to relapse or remission—
on top of the phase diagrams described above. Treatments suc-
ceed if they push cancer into the nonadaptive regime (where the
probability of growth is low) and fail if they do not. Our model
suggests that chemotherapy succeeds, in part, because it moves
cancers across the mutational threshold μ*. Above this threshold,
drivers seldom overpower the load of segregating passengers,
making readaptation difficult. Driver-targeted therapies (that elim-
inate an oncogene’s benefit) must bring n < N* to succeed.
Cancers with higher loads of mutations/alterations are closer

to the critical mutation rate and should be most susceptible to
mutagenic meltdown. Several recent studies (31–33) found that

patient survival from breast (all subtypes) and ovarian cancer was
greatest when tumors harbored exceptionally high levels of
chromosomal alterations. These findings are paradoxical for all
previous models of cancer (31), where a greater mutation rate
always accelerates cancer, yet fully consistent with our model
(Fig. 4B).
Treatments exploiting cancer’s load of deleterious passengers

remain unexplored. Fig. 4C shows that a relatively mild threefold
to fivefold increase of the deleterious effect of passengers sp
causes complete remission. Increasing sp is doubly effective be-
cause it exacerbates accumulated passengers and slows down
future adaptation. Below we discuss possible treatment strategies
that would increase sp.
Increases in μ work synergistically with increases in sp in our

model (SI Appendix, Fig. S6). Hence, combinations of mutagenic
chemotherapy with treatments elevating the cost of passengers
may be most effective; these therapies should further synergize
with driver-targeted therapies.

Discussion
We present an evolutionary model of rapid adaptation incor-
porating rare, strongly advantageous driver mutations and fre-
quent, mildly deleterious passenger mutations. In this tug-of-war
process, populations either succeed and adapt or fail and go
extinct. Simulations and theory identify two regimes of dynamics:
one where populations almost always adapt and another where
they almost always fail. The complex stochastic dynamics of this
process is accurately described as simple diffusion over a poten-
tial barrier located at a critical population size separating the two
regimes. This general framework for adaptive asexual popula-
tions effectively characterizes the dynamics of cancer progression
and therapeutic responses.

Fig. 4. Mapping and interpreting treatment outcomes. (A, Upper) An adapted population (cancer) can be reverted to extinction by increasing the mutation rate
(mutagenic chemotherapy) or by decreasing the population size (e.g., surgery or cytotoxic chemotherapy). (Lower) Our phase diagrams explain therapeutic
outcomes: therapies that alter evolutionary parameters enough to push it outside of the adaptive regime cause continued population collapse; those that do not
readapt and relapse. (B, Upper) Cancers with intermediate mutational loads are the most aggressive (31, 33), whereas patients with very high level of chro-
mosomal instability are most effectively treated. (Lower) This result is well explained by our phase diagrams, where cancers with high mutation rates are sus-
ceptible to mutational meltdown, yet paradoxical for all previous evolutionary models of cancer. We believe traditional therapies decrease population size and
may increase the mutation rate. (C) Threefold increase in the effect of passenger mutations leads to rapid population meltdown below N*, without relapse.
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carcinoma tumors from patients with extreme responses to 
neoadjuvant cisplatin-based combination chemotherapy.   

 RESULTS  
 Somatic Genetic Alterations in Muscle-Invasive 
Urothelial Carcinoma 

 We sequenced pretreatment tumor and germline DNA 
from 50 patients treated with neoadjuvant cisplatin-based 
chemotherapy for muscle-invasive urothelial carcinoma; 25 
“responders” had no residual invasive disease (pT0/pTis) 
on pathologic examination following cystectomy, and 25 
“nonresponders” had residual muscle-invasive (≥pT2) disease 
( Fig. 1A ; Methods). Although multiple chemotherapeutic reg-
imens were used, the only common agent among all patients 

was cisplatin ( Table 1  and Supplementary Table S1). No sig-
nifi cant differences in clinical characteristics were identifi ed 
between responders and nonresponders at baseline ( P  > 0.05; 
Mann–Whitney test).   

 The mean target coverage from WES was 121× for tumors 
and 130× for paired germline samples (Supplementary 
Table S1). The median mutation rate was 9.7 mutations per 
megabase (mutations/Mb) for responders and 4.4 mutations/
Mb for nonresponders ( P  = 0.0003; Mann–Whitney test;  Fig. 1B ; 
Supplementary Fig. S1A and S1B; Supplementary Table S1), 
raising the possibility of reduced DNA repair fi delity among 
cisplatin responders. All observed somatic mutations and short 
insertion/deletions are reported in Supplementary Table S2. 

 A statistical assessment ( 23 ) of the base mutations and 
short insertion/deletions across both responders and 

 Figure 1.      Study design, mutation rates, and aggregate signifi cant somatic mutations. A, patients with muscle-invasive urothelial carcinoma cancer 
were split into cases and controls based on their pathologic response to cisplatin-based neoadjuvant chemotherapy. TURBT, transurethral resection of 
bladder tumor. Nine cases could not complete sequencing due to technical reasons (failed sequencing or elevated contamination). B, data are arranged 
so that each column represents a tumor and each row represents a gene. The center panel is divided into responders (left and black) and nonresponders 
(right and yellow). The mutation rates of responders are elevated compared with nonresponders (top). The alteration landscape (center) of the aggregate 
cohort ( n  = 50 patients) demonstrates a set of statistically signifi cant genes that are altered in urothelial carcinoma ( TP53 ,  RB1 ,  KDM6A , and A RID1A ). 
The negative log of the  q  values for the signifi cance level of mutated genes is shown (for all genes with  q  < 0.1) on the right.  ERCC2  mutation status is 
also shown below the other genes, although  ERCC2  was not signifi cantly mutated across the combined cohort. Additional data about allelic fraction 
ranges for each case (bottom), mutation rates (top), and mutational frequency (left) are also summarized.    
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A Phase I Pharmacologic Study of 
Necitumumab (IMC-11F8), a Fully Human  
IgG1 Monoclonal Antibody
Andreas G. Bader1, David Brown1, and Matthew Winkler1,2

ABSTRACT The Mammary Prevention 3 (MAP.3) placebo-controlled randomized trial in 4,560 
high-risk postmenopausal women showed a 65% reduction in invasive breast can-

cer with the use of exemestane at 35 months of median follow-up. Few differences in adverse events 
were observed between the arms, suggesting a promising risk:benefi t balance with exemestane for 
use in chemoprevention. Yet, the MAP.3 design and implementation raise concerns about limited data 
maturity and not prospectively including key bone-related and other toxicities as study endpoints. 
Exemestane for prevention is juxtaposed against selective estrogen receptor modulators and the other 
aromatase inhibitors. Additional issues for prevention, including the infl uence of obesity, alternative 
dosing, and biomarker use in phase III trials, are addressed. 

SIGNIFICANCE: The recently completed MAP.3 trial of exemestane for breast cancer prevention offers 
a potential new standard for pharmaceutical risk reduction in high-risk postmenopausal women. In 
addition to describing key fi ndings from the publication of MAP.3 and related trials, our review under-
takes a detailed analysis of the strengths and weaknesses of MAP.3 as well as the implications for 
future prevention research. Cancer Discov; 2(X); XXX–XXX. ©2012 AACR.

 ABSTRACT     Cisplatin-based chemotherapy is the standard of care for patients with muscle-inva-
sive urothelial carcinoma. Pathologic downstaging to pT0/pTis after neoadjuvant 

cisplatin-based chemotherapy is associated with improved survival, although molecular determinants 
of cisplatin response are incompletely understood. We performed whole-exome sequencing on pre-
treatment tumor and germline DNA from 50 patients with muscle-invasive urothelial carcinoma who 
received neoadjuvant cisplatin-based chemotherapy followed by cystectomy (25 pT0/pTis “respond-
ers,” 25 pT2+ “nonresponders”) to identify somatic mutations that occurred preferentially in respond-
ers.  ERCC2 , a nucleotide excision repair gene, was the only signifi cantly mutated gene enriched in the 
cisplatin responders compared with nonresponders ( q  < 0.01). Expression of representative  ERCC2  
mutants in an  ERCC2 -defi cient cell line failed to rescue cisplatin and UV sensitivity compared with 
wild-type ERCC2. The lack of normal ERCC2 function may contribute to cisplatin sensitivity in urothe-
lial cancer, and somatic  ERCC2  mutation status may inform cisplatin-containing regimen usage in 
muscle-invasive urothelial carcinoma. 

  SIGNIFICANCE:  Somatic  ERCC2  mutations correlate with complete response to cisplatin-based chemo-
sensitivity in muscle-invasive urothelial carcinoma, and clinically identifi ed mutations lead to cisplatin 
sensitivity  in vitro . Nucleotide excision repair pathway defects may drive exceptional response to 
conventional chemotherapy.  Cancer Discov; 4(10); 1140–53. ©2014 AACR.  

  See related commentary by Turchi et al., p. 1118.                   
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1. Can deleterious passenger mutations 
accumulate during cancer development?  

2. How deleterious are passenger mutations 
found in genotyped tumors? 

3. How can passenger mutations affect neoplastic 
progression?  

Questions



Experiment
1. Develop cell lines with the same drivers and a 

different number of passengers 
2. Measure effect of passengers on fitness
3. Measure genetic load of passengers by genotyping

Effect of passenger mutations
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%
Figure(2.%Passenger(alterations(reduce(proliferative(fitness(of(cancer(cells.%%
A( Experimental% design% to% produce% cell% lines% with% identical% drivers% and% increasing% loads% of%
passengers.%Passenger%alterations%were%introduced%into%Her2@transformed%MCF@10A%breast%cells%
by% low@does% of% mutagenic% Doxorubicin.% After% recovering% for% 2@weeks,% clones% were% isolated,%
genotyped% for% Copy@Number% Alterations% (CNAs),% and% assayed% for% cell% fitness% and% metastatic%
potential% (Fig%4).%B(Three%measures%of%passenger% load%were% tested% for% their%predictive%ability.%
Capped%Volume%proved%superior%in%predicting%Experimental%Controls%(SI%Methods)%and%was%used%
hereafter.% All% metrics% correlated% negatively% with% cell% line% growth% rate% (Figure% S2)% and% the%
number%of%drivers%in%sequenced%human%TCGA%cancers—a%prediction%of%evolutionary%modeling1.%
C% Increasing% dosages% of% mutagen% decreases% proliferative% potential% and% increases% passenger%
load.%D%The%fitness%cost%of%passengers% in%transformed%cells%was%0.028%MB@1% (r2%=%84%,%95%%CI:%
64—99%).% Untransformed% cells% neither% acquired% passengers% nor% decreased% in% proliferative%
potential,% suggesting% that% passengers—not% doxorubicin% toxicity—reduces% fitness.% E% (Left)%
Passenger%alterations%dominated%the%genomes%of%our%mutagenized%cell%lines,%as%intended%(Low%
Dox%=%0/10%nM%Doxorubicin;%High%Dox%=%20/30%nM%Doxorubicin).%(Right)%Frequency%of%passenger%
alterations,%in%our%cell%lines%and%TCGA%cancers,%spanning%housekeeping%genes%and%Open%Reading%
Frames%(ORFs)!relative%to%random%chance%(determined%by%permuting%gene%locations).%Deviations%
from%a% ratio%of%1% suggest% that%natural% selection% is% selecting% for%or% against% certain%passengers.%
Error% bars% (95%% CI)% and% p@values% throughout% this% study%were% calculated% using% bias@corrected%
bootstrapping2.%%% %

Proliferative and metastatic fitness
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Passenger load reduces proliferative fitness
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Error% bars% (95%% CI)% and% p@values% throughout% this% study%were% calculated% using% bias@corrected%
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• Transformed = same driver mutations

• Dox = different load of passenger mutations

Metastatic potential
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Figure( 4.( Higher( passenger( load( reduces( metastatic( potential( of( cancer( cells.((
A(Growth(of%lung%metastases%created%by%injecting%Her2@transformed%MCF@10A%breast%cells%with%

differential%passenger%loads%(described%above).%In%this%experiment%cell%were%transfected%with%a%

Luciferase%reporter%before%mutagenesis%to%enable%in%situ%thoratic%bioluminescence%monitoring,%

and% then% injected% into% the% tail@vein%of% SCID%mice% (10%per% line)%without% cloning.%B(At%7@weeks,%
total% metastatic% burden% was% measured% and% lung% metastases% were% counted% by% dissection.% C.(
Representative%ex@vivo%bioluminescent%lung%images.%

(%

Passenger load reduces metastatic potential
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New Experiment: Her2+ breast cancer mouse model: 
     mildly elevated mutation rate (H2AX+/-)  
     normal mutation rate (control)
When do cancers develop? How fast do cancers grow? 

Effect of passenger mutations 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1. Can deleterious passenger mutations 
accumulate during cancer development?  

2. How deleterious are passenger mutations 
found in genotyped tumors? 

3. How can passenger mutations affect neoplastic 
progression?  

4. Can passenger load be used therapeutically?

Questions



Back to the model 



Understanding treatment
Mutagenic chemo
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Understanding treatment
Increasing effects of passengers 
- small effects are sufficient 
- reduction of cancer size 
- kills most mutated cells, i.e. 
cells with biggest potential 
for resistance 
- makes cancer less evolvable 

Potential approaches 
- HSP90/HSP70 inhibitors 
- higher temperature 
- immunotherapy 

synergistic treatment



Can passenger mutations 
trigger an immune response?
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Background
Immune checkpoint inhibitors are effective cancer treatments, but molecular deter-
minants of clinical benefit are unknown. Ipilimumab and tremelimumab are anti-
bodies against cytotoxic T-lymphocyte antigen 4 (CTLA-4). Anti–CTLA-4 treatment 
prolongs overall survival in patients with melanoma. CTLA-4 blockade activates 
T cells and enables them to destroy tumor cells.

Methods
We obtained tumor tissue from patients with melanoma who were treated with 
ipilimumab or tremelimumab. Whole-exome sequencing was performed on tumors 
and matched blood samples. Somatic mutations and candidate neoantigens gener-
ated from these mutations were characterized. Neoantigen peptides were tested for 
the ability to activate lymphocytes from ipilimumab-treated patients.

Results
Malignant melanoma exomes from 64 patients treated with CTLA-4 blockade were 
characterized with the use of massively parallel sequencing. A discovery set con-
sisted of 11 patients who derived a long-term clinical benefit and 14 patients who 
derived a minimal benefit or no benefit. Mutational load was associated with the 
degree of clinical benefit (P = 0.01) but alone was not sufficient to predict benefit. 
Using genomewide somatic neoepitope analysis and patient-specific HLA typing, 
we identified candidate tumor neoantigens for each patient. We elucidated a neo-
antigen landscape that is specifically present in tumors with a strong response to 
CTLA-4 blockade. We validated this signature in a second set of 39 patients with 
melanoma who were treated with anti–CTLA-4 antibodies. Predicted neoantigens 
activated T cells from the patients treated with ipilimumab. 

Conclusions
These findings define a genetic basis for benefit from CTLA-4 blockade in melanoma 
and provide a rationale for examining exomes of patients for whom anti–CTLA-4 
agents are being considered. (Funded by the Frederick Adler Fund and others.)
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esized that the presence of specific tumor neoan-
tigens might explain the varied therapeutic ben-
efit. To identify these neoepitopes, we developed 
a bioinformatic pipeline incorporating predic-
tion of MHC class I binding, modeling of T-cell 
receptor binding, patient-specific HLA type, and 
epitope-homology analysis (see the Methods sec-
tion and Fig. S4 in the Supplementary Appendix).

We created a computational algorithm, called 
NAseek, to translate all nonsynonymous mis-
sense mutations into mutant and nonmutant 
peptides (see the Methods section and Fig. S4 in 
the Supplementary Appendix). We examined 
whether a subgroup of somatic neoepitopes 
would alter the strength of peptide–MHC bind-
ing, using patient-specific HLA types (Table S3 
in the Supplementary Appendix). We first com-
pared the overall antigenicity trend of all mutant 
versus nonmutant peptides. In aggregate, the 
mutant peptides were predicted to bind MHC 
class I molecules with higher affinity than the 
corresponding nonmutant peptides (Fig. S5 in 
the Supplementary Appendix).

Using only peptides predicted to bind to MHC 
class I molecules (binding affinity, ≤500 nM), we 
searched for conserved stretches of amino acids 
shared by multiple tumors. We used standard 
methods of machine learning, hierarchical clus-
tering, and signature derivation to identify con-
sensus sequences (see the Methods section in 
the Supplementary Appendix).20 We identified a 
number of tetrapeptide sequences that were 
shared by patients with a long-term clinical ben-
efit but completely absent in patients with a 
minimal benefit or no benefit (Fig. 3A and 3B, 
and Table S6 in the Supplementary Appendix). It 
has been shown that short amino acid substrings 
comprise conserved regions across antigens rec-
ognized by a T-cell receptor.21 In these experi-
ments, recognition of epitopes was driven by 
consensus tetrapeptides within the immuno-
genic peptides, and tetrapeptides within cross-
reacting T-cell receptor epitopes were necessary 
and sufficient to drive T-cell proliferation, find-
ings that are consistent with evidence that this 
polypeptide length can drive recognition by T-cell 
receptors.22 Tetrapeptides are used to model ge-
nome phylogeny because they occur relatively 
infrequently in proteins and typically reflect 
function.23

We used the discovery set to generate a pre-
dictive signature from the candidate neoepitopes 

(see the Methods section in the Supplementary 
Appendix). We found that the tetrapeptides com-
mon to each group (candidate neoepitopes) in-
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Figure 2. Mutational Landscape of Tumors According to Clinical Benefit 
from Ipilimumab Treatment.

Panel A shows the mutational load (number of nonsynonymous mutations 
per exome) in the discovery and validation sets, according to status with re-
spect to a clinical benefit from therapy. Panel B depicts the Kaplan–Meier 
curves for overall survival in the discovery set for patients with more than 
100 nonsynonymous coding mutations per exome and patients with 100 or 
fewer mutations.
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Monoclonal antibodies directed against cytotoxic T lymphocyte–associated antigen-4
(CTLA-4), such as ipilimumab, yield considerable clinical benefit for patients with
metastatic melanoma by inhibiting immune checkpoint activity, but clinical predictors of
response to these therapies remain incompletely characterized. To investigate the roles
of tumor-specific neoantigens and alterations in the tumor microenvironment in the
response to ipilimumab, we analyzed whole exomes from pretreatment melanoma tumor
biopsies and matching germline tissue samples from 110 patients. For 40 of these
patients, we also obtained and analyzed transcriptome data from the pretreatment tumor
samples. Overall mutational load, neoantigen load, and expression of cytolytic markers in
the immune microenvironment were significantly associated with clinical benefit.
However, no recurrent neoantigen peptide sequences predicted responder patient
populations. Thus, detailed integrated molecular characterization of large patient cohorts
may be needed to identify robust determinants of response and resistance to immune
checkpoint inhibitors.

B
lockade of cytotoxic T lymphocyte anti-
gen-4 (CTLA-4), an inhibitor of T cell
activation, with the monoclonal antibody
ipilimumab yields improvements in over-
all survival in patients with metastatic

melanoma as a monotherapy (1, 2) or in combi-
nation with other T cell immune checkpoint in-
hibitors (3, 4). Although overall single-agent
response rates are low, a long-term clinical ben-
efit is consistently observed for ~20% of treated
patients (5, 6). Preclinical and clinical studies
have suggested that tumor-specificmissensemuta-
tions may generate individual neoantigens that
mediate response to ipilimumab and other im-
mune checkpoint inhibitors (7–10). Clinical stud-
ies of exceptional responders (11) and of small
cohorts of melanoma patients have highlighted
NRAS mutation status, total neoantigen load,
and a neoantigen-derived tetrapeptide signature
as possible correlates of response to ipilimumab in

metastatic melanoma (12, 13). RNA-based studies
have also identified gene expression signatures
linked to immune infiltration within the tumor
microenvironment that correlate with overall sur-
vival, neoantigen load (14, 15), and resistance to
immunotherapy (16). To date, however, compre-
hensive genomic studies of tumor- and immune-
related factors in larger (i.e., >100 patients) clinical
cohorts have not been reported.
We hypothesized that both tumor-specific

neoantigens and the tumor immune micro-
environmentmight influence clinical benefit from
ipilimumab. To test this, we performed whole-
exome sequencing (WES) on a cohort of 110 pa-
tients with metastatic melanoma from whom
pretreatment tumor biopsies were available for
study (Fig. 1A). Tumor whole-transcriptome se-
quencing was performed in 42 of these patients,
of whom 40 had matched WES. This cohort in-
cluded 92 cutaneous, 4 mucosal, and 14 occult

melanomas. After WES of matched tumor and
germline samples (17), quality-controlmetricswere
applied to ensure sensitive mutation detection
(18). Average exome-wide target coverage was
183.7-fold for tumor samples and 157.2-fold for
germline samples.We performed somaticmuta-
tion identification (table S1) and germline human
lymphocyte antigen (HLA) typing (table S2) using
established methods (14, 19). The median non-
synonymousmutational load was 197 per sample
(range: 7 to 5854), which is consistent with the
known high mutational loads in cutaneous mel-
anoma (13, 20).
To stratify our cohort, “clinical benefit”was de-

fined using a composite end point of complete
response or partial response to ipilimumab by
RECIST criteria (21) or stable disease by RECIST
criteria with overall survival greater than 1 year
(n = 27). “No clinical benefit” was defined as
progressive disease by RECIST criteria or stable
disease with overall survival less than 1 year (n =
73). The basis for these designations stems from
clinical trials demonstrating that ipilimumab sig-
nificantly improves median overall survival, with
a subset of patients surviving beyond 2 years
(~20%), butdoesnot affect progression-free survival

SCIENCE sciencemag.org 9 OCTOBER 2015 • VOL 350 ISSUE 6257 207

1Department of Medical Oncology, Dana-Farber Cancer
Institute, Boston, MA 02215, USA. 2Broad Institute of MIT
and Harvard, Cambridge, MA 02142, USA. 3Center for Cancer
Precision Medicine, Dana-Farber Cancer Institute, Boston,
MA 02215, USA. 4Department of Dermatology, University
Hospital, University Duisburg—Essen, 45147 Essen, Germany.
5German Cancer Consortium (DKTK), 69121 Heidelberg,
Germany. 6Department of Medical Oncology, Netherlands
Cancer Institute, 1066 CX Amsterdam, Netherlands.
7Department of Dermatology, University Hospital Zurich,
8091 Zurich, Switzerland. 8Skin Cancer Unit, German Cancer
Research Center (DKFZ), 69121 Heidelberg, Germany.
9Department of Dermatology, Venerology, and Allergology,
University Medical Center, Ruprecht-Karls University of
Heidelberg, 68167 Mannheim, Germany. 10Department of
Dermatology, University Hospital, Ruprecht-Karls University
of Heidelberg, 69120 Heidelberg, Germany. 11Department of
Dermatology, University Hospital Tübingen, 72076 Tübingen,
Germany. 12Department of Dermatology, University Hospital
Kiel, 24105 Kiel, Germany. 13Department of Dermatology,
University Medical Center Mainz, 55131 Mainz, Germany.
14Department of Dermatology, Elbe-Kliniken, 21614
Buxtehude, Germany. 15Department of Dermatology and
Allergy, Skin Cancer Center Hannover, Hannover Medical
School, 30625 Hannover, Germany.
*These authors contributed equally to this work. †Corresponding
author. E-mail: levi_garraway@dfci.harvard.edu (L.A.G.);
dirk.schadendorf@uk-essen.de (D.S.)

RESEARCH | REPORTS
Corrected 11 November 2015; see Erratum.

 o
n 

N
ov

em
be

r 8
, 2

01
6

ht
tp

://
sc

ie
nc

e.
sc

ie
nc

em
ag

.o
rg

/
D

ow
nl

oa
de

d 
fr

om
 

4. G. Ejeta, in Integrating New Technologies for Striga Control,
G. Ejeta, J. Gressel, Eds. (World Scientific Publishing,
Singapore, 2007), pp. 3–16.

5. T. Arite et al., Plant Cell Physiol. 50, 1416–1424
(2009).

6. L. Jiang et al., Nature 504, 401–405 (2013).
7. F. Zhou et al., Nature 504, 406–410 (2013).
8. M. T. Waters et al., Development 139, 1285–1295

(2012).
9. Y. Guo, Z. Zheng, J. J. La Clair, J. Chory, J. P. Noel, Proc. Natl.

Acad. Sci. U.S.A. 110, 8284–8289 (2013).
10. A. A. Awad et al., Plant Growth Regul. 3, 221 (2006).
11. S. Toh et al., Plant Cell Physiol. 53, 107–117

(2012).
12. C. E. Conn et al., Science 349, 540–543 (2015).
13. Y. Tsuchiya et al., Science 349, 864–868 (2015).

14. S. Toh, D. Holbrook-Smith, M. E. Stokes, Y. Tsuchiya,
P. McCourt, Chem. Biol. 21, 988–998 (2014).

15. N. H. Fischer, J. D. Weidenhamer, J. L. Riopel, L. Quijano,
M. A. Menelaou, Phytochemistry 29, 2479–2483 (1990).

16. M. Jamil, J. Rodenburg, T. Charnikhova, H. J. Bouwmeester,
New Phytol. 192, 964–975 (2011).

17. A. A. Neyfakh, Mol. Microbiol. 44, 1123–1130 (2002).

ACKNOWLEDGMENTS

We thank A. Babikier for providing the Striga seeds and T. Nakagawa
for the pGWB611 binary vector. Rice lineswere provided by theNational
Genetic Resources Program at the U.S. Department of Agriculture.
This work was supported by a grant from the National Science
and Engineering Research Council of Canada to P.M.We thank R. Di Leo
for technical assistance. Nucleotide and amino acid sequences
corresponding to ShD14 and ShHTLs have been deposited with

GenBank under accession KR013120 to KR013131. S.T., D.H.-S., P.M.,
and the University of Toronto have filed a U.S. provisional patent
application (US62/151,701) that relates to the specific topic
“Strigolactone biosensors.” We declare no financial conflicts
of interest in relation to the work. The supplementary
materials contain additional data.

SUPPLEMENTARY MATERIALS

www.sciencemag.org/content/350/6257/203/suppl/DC1
Materials and Methods
Figs. S1 to S6
Table S1
References (18–30)

2 July 2015; accepted 9 September 2015
10.1126/science.aac9476

ONCOLOGY

Genomic correlates of response to CTLA-4
blockade inmetastatic melanoma
Eliezer M. Van Allen,1,2,3* Diana Miao,1,2* Bastian Schilling,4,5* Sachet A. Shukla,1,2

Christian Blank,6 Lisa Zimmer,4,5 Antje Sucker,4,5 Uwe Hillen,4,5

Marnix H. Geukes Foppen,6 Simone M. Goldinger,7 Jochen Utikal,5,8,9

Jessica C. Hassel,10 Benjamin Weide,11 Katharina C. Kaehler,12 Carmen Loquai,13

Peter Mohr,14 Ralf Gutzmer,15 Reinhard Dummer,7 Stacey Gabriel,2 Catherine J. Wu,1,2

Dirk Schadendorf,4,5† Levi A. Garraway1,2,3†

Monoclonal antibodies directed against cytotoxic T lymphocyte–associated antigen-4
(CTLA-4), such as ipilimumab, yield considerable clinical benefit for patients with
metastatic melanoma by inhibiting immune checkpoint activity, but clinical predictors of
response to these therapies remain incompletely characterized. To investigate the roles
of tumor-specific neoantigens and alterations in the tumor microenvironment in the
response to ipilimumab, we analyzed whole exomes from pretreatment melanoma tumor
biopsies and matching germline tissue samples from 110 patients. For 40 of these
patients, we also obtained and analyzed transcriptome data from the pretreatment tumor
samples. Overall mutational load, neoantigen load, and expression of cytolytic markers in
the immune microenvironment were significantly associated with clinical benefit.
However, no recurrent neoantigen peptide sequences predicted responder patient
populations. Thus, detailed integrated molecular characterization of large patient cohorts
may be needed to identify robust determinants of response and resistance to immune
checkpoint inhibitors.

B
lockade of cytotoxic T lymphocyte anti-
gen-4 (CTLA-4), an inhibitor of T cell
activation, with the monoclonal antibody
ipilimumab yields improvements in over-
all survival in patients with metastatic

melanoma as a monotherapy (1, 2) or in combi-
nation with other T cell immune checkpoint in-
hibitors (3, 4). Although overall single-agent
response rates are low, a long-term clinical ben-
efit is consistently observed for ~20% of treated
patients (5, 6). Preclinical and clinical studies
have suggested that tumor-specificmissensemuta-
tions may generate individual neoantigens that
mediate response to ipilimumab and other im-
mune checkpoint inhibitors (7–10). Clinical stud-
ies of exceptional responders (11) and of small
cohorts of melanoma patients have highlighted
NRAS mutation status, total neoantigen load,
and a neoantigen-derived tetrapeptide signature
as possible correlates of response to ipilimumab in

metastatic melanoma (12, 13). RNA-based studies
have also identified gene expression signatures
linked to immune infiltration within the tumor
microenvironment that correlate with overall sur-
vival, neoantigen load (14, 15), and resistance to
immunotherapy (16). To date, however, compre-
hensive genomic studies of tumor- and immune-
related factors in larger (i.e., >100 patients) clinical
cohorts have not been reported.
We hypothesized that both tumor-specific

neoantigens and the tumor immune micro-
environmentmight influence clinical benefit from
ipilimumab. To test this, we performed whole-
exome sequencing (WES) on a cohort of 110 pa-
tients with metastatic melanoma from whom
pretreatment tumor biopsies were available for
study (Fig. 1A). Tumor whole-transcriptome se-
quencing was performed in 42 of these patients,
of whom 40 had matched WES. This cohort in-
cluded 92 cutaneous, 4 mucosal, and 14 occult

melanomas. After WES of matched tumor and
germline samples (17), quality-controlmetricswere
applied to ensure sensitive mutation detection
(18). Average exome-wide target coverage was
183.7-fold for tumor samples and 157.2-fold for
germline samples.We performed somaticmuta-
tion identification (table S1) and germline human
lymphocyte antigen (HLA) typing (table S2) using
established methods (14, 19). The median non-
synonymousmutational load was 197 per sample
(range: 7 to 5854), which is consistent with the
known high mutational loads in cutaneous mel-
anoma (13, 20).
To stratify our cohort, “clinical benefit”was de-

fined using a composite end point of complete
response or partial response to ipilimumab by
RECIST criteria (21) or stable disease by RECIST
criteria with overall survival greater than 1 year
(n = 27). “No clinical benefit” was defined as
progressive disease by RECIST criteria or stable
disease with overall survival less than 1 year (n =
73). The basis for these designations stems from
clinical trials demonstrating that ipilimumab sig-
nificantly improves median overall survival, with
a subset of patients surviving beyond 2 years
(~20%), butdoesnot affect progression-free survival
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Monoclonal antibodies directed against cytotoxic T lymphocyte–associated antigen-4
(CTLA-4), such as ipilimumab, yield considerable clinical benefit for patients with
metastatic melanoma by inhibiting immune checkpoint activity, but clinical predictors of
response to these therapies remain incompletely characterized. To investigate the roles
of tumor-specific neoantigens and alterations in the tumor microenvironment in the
response to ipilimumab, we analyzed whole exomes from pretreatment melanoma tumor
biopsies and matching germline tissue samples from 110 patients. For 40 of these
patients, we also obtained and analyzed transcriptome data from the pretreatment tumor
samples. Overall mutational load, neoantigen load, and expression of cytolytic markers in
the immune microenvironment were significantly associated with clinical benefit.
However, no recurrent neoantigen peptide sequences predicted responder patient
populations. Thus, detailed integrated molecular characterization of large patient cohorts
may be needed to identify robust determinants of response and resistance to immune
checkpoint inhibitors.

B
lockade of cytotoxic T lymphocyte anti-
gen-4 (CTLA-4), an inhibitor of T cell
activation, with the monoclonal antibody
ipilimumab yields improvements in over-
all survival in patients with metastatic

melanoma as a monotherapy (1, 2) or in combi-
nation with other T cell immune checkpoint in-
hibitors (3, 4). Although overall single-agent
response rates are low, a long-term clinical ben-
efit is consistently observed for ~20% of treated
patients (5, 6). Preclinical and clinical studies
have suggested that tumor-specificmissensemuta-
tions may generate individual neoantigens that
mediate response to ipilimumab and other im-
mune checkpoint inhibitors (7–10). Clinical stud-
ies of exceptional responders (11) and of small
cohorts of melanoma patients have highlighted
NRAS mutation status, total neoantigen load,
and a neoantigen-derived tetrapeptide signature
as possible correlates of response to ipilimumab in

metastatic melanoma (12, 13). RNA-based studies
have also identified gene expression signatures
linked to immune infiltration within the tumor
microenvironment that correlate with overall sur-
vival, neoantigen load (14, 15), and resistance to
immunotherapy (16). To date, however, compre-
hensive genomic studies of tumor- and immune-
related factors in larger (i.e., >100 patients) clinical
cohorts have not been reported.
We hypothesized that both tumor-specific

neoantigens and the tumor immune micro-
environmentmight influence clinical benefit from
ipilimumab. To test this, we performed whole-
exome sequencing (WES) on a cohort of 110 pa-
tients with metastatic melanoma from whom
pretreatment tumor biopsies were available for
study (Fig. 1A). Tumor whole-transcriptome se-
quencing was performed in 42 of these patients,
of whom 40 had matched WES. This cohort in-
cluded 92 cutaneous, 4 mucosal, and 14 occult

melanomas. After WES of matched tumor and
germline samples (17), quality-controlmetricswere
applied to ensure sensitive mutation detection
(18). Average exome-wide target coverage was
183.7-fold for tumor samples and 157.2-fold for
germline samples.We performed somaticmuta-
tion identification (table S1) and germline human
lymphocyte antigen (HLA) typing (table S2) using
established methods (14, 19). The median non-
synonymousmutational load was 197 per sample
(range: 7 to 5854), which is consistent with the
known high mutational loads in cutaneous mel-
anoma (13, 20).
To stratify our cohort, “clinical benefit”was de-

fined using a composite end point of complete
response or partial response to ipilimumab by
RECIST criteria (21) or stable disease by RECIST
criteria with overall survival greater than 1 year
(n = 27). “No clinical benefit” was defined as
progressive disease by RECIST criteria or stable
disease with overall survival less than 1 year (n =
73). The basis for these designations stems from
clinical trials demonstrating that ipilimumab sig-
nificantly improves median overall survival, with
a subset of patients surviving beyond 2 years
(~20%), butdoesnot affect progression-free survival
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Summary

1. Deleterious passengers can accumulate during  
    cancer progression 

2. Accumulated passengers show signatures of  
   non-neutral mutations 

3. Load of passengers reduces fitness  
   (proliferative and metastatic) of cancer cells  

    immunological effect is questionable….
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Cancer progression is an example of a rapid adaptive process
where evolving new traits is essential for survival and requires a
high mutation rate. Precancerous cells acquire a few key mutations
that drive rapid population growth and carcinogenesis. Cancer
genomics demonstrates that these few driver mutations occur
alongside thousands of random passenger mutations—a natural
consequence of cancer’s elevated mutation rate. Some passengers
are deleterious to cancer cells, yet have been largely ignored in can-
cer research. In population genetics, however, the accumulation of
mildly deleterious mutations has been shown to cause population
meltdown. Here we develop a stochastic population model where
beneficial drivers engage in a tug-of-war with frequent mildly dele-
terious passengers. These passengers present a barrier to cancer
progression describable by a critical population size, below which
most lesions fail to progress, and a critical mutation rate, above
which cancers melt down. We find support for this model in cancer
age–incidence and cancer genomics data that also allow us to esti-
mate the fitness advantage of drivers and fitness costs of passen-
gers. We identify two regimes of adaptive evolutionary dynamics
and use these regimes to understand successes and failures of dif-
ferent treatment strategies. A tumor’s load of deleterious passen-
gers can explain previously paradoxical treatment outcomes and
suggest that it could potentially serve as a biomarker of response
to mutagenic therapies. The collective deleterious effect of passen-
gers is currently an unexploited therapeutic target. We discuss how
their effects might be exacerbated by current and future therapies.

evolution | mathematical modeling | simulations | cancer genomics |
chemotherapy

Although many populations evolve new traits via a gradual
accumulation of changes, some adapt very rapidly. Exam-

ples include viral adaptation during infection (1), the emergence of
antibiotic resistance (2), artificial selection in biotechnology (3),
and cancer (4). Rapid adaptation is characterized by three key
features: (i) the availability of strongly advantageous traits acces-
sible by rare mutations, (ii) an elevated mutation rate (1), and (iii)
a dynamic population size (5). Because traditional theories of
gradual adaptation are not applicable under these conditions, new
approaches are needed.
Cancer progression is an example of a rapidly adapting pop-

ulation: cancers develop as many as 10 new traits (6), exhibit a
high mutation rate (6–8), and rapidly change in population size
(9). Progression is driven by a handful of mutations (10) and
chromosomal abnormalities (11) in cancer-related genes (onco-
genes and tumor suppressors), collectively called “drivers.” Driv-
ers are beneficial to cancer cells as they facilitate uncontrolled
proliferation and other hallmarks of cancer (6). Drivers, however,
arise alongside thousands of other mutations/alterations, called
“passengers,” that are randomly dispersed throughout the ge-
nome, are nonrecurrent in patients, and have no immediate ben-
eficial effect (10).
Passengers have previously been assumed to be neutral and

largely ignored in cancer research, yet growing evidence suggests
that they can be deleterious to cancer cells and play an important

role in both cancer progression and clinical outcomes. Previously, we
showed that deleterious passengers readily accumulate during tu-
mor progression and exhibit signatures of damaging mutations (12).
Passenger mutations and chromosomal abnormalities, including
aneuploidy, can be deleterious via a variety of mechanisms such as
direct loss-of-function (13), cytotoxicity from protein disbalance
and aggregation (14), or by eliciting an immune response (15).
Although the role of deleterious mutations in cancer is largely

unknown, their effects on natural populations have been exten-
sively studied in genetics (16–18). The accumulation of deleterious
mutations can cause population extinction by Muller’s ratchet and
mutationalmeltdown (16, 19). How this applies to rapidly adapting
populations with a varying size and advantageous mutations, and
specifically to cancer, remains unknown.
A rapidly adapting population faces a double bind: it must

quickly acquire often exceedingly rare, adaptivemutations, yet also
avoid mutational meltdown. As a result, adaptive processes fre-
quently fail. Indeed, less than 0.1% of species on Earth have
adapted fast enough to avoid extinction (20), and similarly, only
∼0.1% of precancerous lesions ever advance to cancer (21). Evo-
lutionary properties of extinction may be exploitable in evolving
tumors (22).
Here we investigate how asexual populations such as cancer

rapidly evolve new traits while avoiding mutational meltdown. We
observed a tug-of-war between beneficial drivers and deleterious
passengers that creates twomajor regimes of population dynamics:
an adaptive regime, where the probability of adaptation (cancer)
is high, and a nonadaptive regime, where adaptation (cancer) is
exceedingly rare. These regimes are separated by an effective
barrier, which makes cancer progression an unlikely event. Our
model is consistent with cancer genomic and age–incidence data,

Significance

During rapid adaptation, populations start in hostile conditions
and must evolve new traits to survive. Development of cancer
from a population of precancerous cells within a body is an ex-
ample of such rapid adaptation. New traits required for cancer
progression are acquired by drivermutations in a fewkey genes.
Most mutations, however, are unimportant for progression and
can be damaging to cancer cells, termed “passengers.” The role
these damaging passengers play in cancer and other adaptive
processes is unknown. Here we show that driver mutations en-
gage in a tug-of-warwith damaging passengers. This tug-of-war
explains many phenomena in oncology, suggesting how to de-
velop new therapies and target existing therapies to exploit
damaging passengers.
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Weighted down by passengers?

!68

Studies of cancer biology and genom-
ics have mainly focused on recurrent 
driver mutations in key oncogenes 
and tumour suppressor genes, as 
these are known to have major 
roles in tumorigenesis and cancer 
progression. However, these driver 
mutations are vastly outnumbered by 
passenger mutations, which are often 
assumed to be biologically neutral. 
A new computational study suggests 
that passenger mutations may have 
detrimental effects on tumour fitness, 
with therapeutic implications.

Random unselected mutations 
are expected to be, on average, mildly 
deleterious (that is, they confer a 
small selective disadvantage). So, 
Leonid Mirny and colleagues incor-
porated deleterious passenger muta-
tions into their computer simulations 
of tumour evolution. In their model, 
each cancer cell can stochastically 
die or divide, and the cell divisions 
can be accompanied by the frequent 
acquisition of a deleterious passenger 
mutation or the rare acquisition of a 
growth-promoting driver mutation. 

The simulations resulted in 
population dynamics in which 
tumours grew in a sawtooth manner: 
each acquisition of a driver event 
resulted in the rapid expansion of the 
tumour cell population, which was 
followed by a gradual decline in cell 
number owing to passenger mutation 
accumulation until the next driver 
mutation occurred. Importantly, 
accounting for deleterious passenger 
mutations recapitulated some known 
features of tumour biology, such as 
dormancy and regression, that are 
not seen in simpler simulations.

Interestingly, despite the delet-
erious nature of the simulated 
passenger mutations, large numbers 
of passenger mutations accumulated 
and spread throughout the tumour 

cell population. This partly occurred 
by mechanisms that are known from 
population genetics studies. For 
example, the positive selection of 
cells containing driver mutations can 
increase the frequency of passenger 
mutations co-occurring in these cells 
(an effect that is known as genetic 
hitch-hiking). Overall, this indicates 
that even mutations that are found 
throughout a large proportion of cells 
in a particular tumour might actually 
exert a negative fitness effect.

So, is there evidence that passenger 
mutations found in clinical tumours 
can be genuinely deleterious or might 
real tumours retain only selectively 
neutral passenger mutations? The 
authors assessed the deleteriousness of 
passenger mutations in the Catalogue 
of Somatic Mutations in Cancer 
(COSMIC) database. They used the 
PolyPhen program, which scores delet-
eriousness according to the extent to 
which the mutation has been avoided 
(selected against) during organismal 
evolutionary history. On average, these 
passenger mutations were indeed 
moderately deleterious, and substan-
tially more so than single-nucleotide 

polymorphisms underlying normal 
human population variation. However, 
it is worth noting that deleteriousness 
of a mutation during normal organis-
mal evolution might not fully reflect 
the fitness effects on cancer cells, 
which typically have altered cell death 
and checkpoint mechanisms.

Finally, the authors ran simula-
tions and found that enhancing the 
detrimental effects of passenger 
mutations — such as by reducing the 
ability of cancer cells to buffer delet-
erious mutations — resulted in sus-
tained tumour regression. In practice, 
such buffering mechanisms include 
the proteasome and chaperone sys-
tems. As pharmacological inhibitors 
of these systems have been developed 
that show antitumour activity in some 
settings, it will be interesting to deter-
mine the extent to which sensitivity 
to these agents is conferred by many 
accumulated passenger events versus 
a few key oncogenic mutations.

Darren J. Burgess

!"#$%#& !'(%)#" *%+

!"#$%"&'&()*'+,'-.//"*$"0/1

%&*,*+-)!&'.'-&/0!1-1'&��	�����
��������
����2'34-.56'(7'&"8"6"0#(9/'-.//"*$"0'496.6#(*/'
(*'5.*5"0'-0($0"//#(*2'���	�������	�
���	������''
:';"+'<=>?'@&(#A>=2>=B?C-*./2><>?D:E>>=F

these 
passenger 
mutations 
were indeed 
moderately 
deleterious

G%"'H6(5I'H(896#(*

!"#"$!%& '& ()&* ()&+#

NATURE REVIEWS | !"#!$%&  VOLUME 13 | APRIL 2013

Nature Reviews Cancer | AOP, published online 7 March 2013; doi:10.1038/nrc3488

© 2013 Macmillan Publishers Limited. All rights reserved
Studies of cancer biology and genom-
ics have mainly focused on recurrent 
driver mutations in key oncogenes 
and tumour suppressor genes, as 
these are known to have major 
roles in tumorigenesis and cancer 
progression. However, these driver 
mutations are vastly outnumbered by 
passenger mutations, which are often 
assumed to be biologically neutral. 
A new computational study suggests 
that passenger mutations may have 
detrimental effects on tumour fitness, 
with therapeutic implications.

Random unselected mutations 
are expected to be, on average, mildly 
deleterious (that is, they confer a 
small selective disadvantage). So, 
Leonid Mirny and colleagues incor-
porated deleterious passenger muta-
tions into their computer simulations 
of tumour evolution. In their model, 
each cancer cell can stochastically 
die or divide, and the cell divisions 
can be accompanied by the frequent 
acquisition of a deleterious passenger 
mutation or the rare acquisition of a 
growth-promoting driver mutation. 

The simulations resulted in 
population dynamics in which 
tumours grew in a sawtooth manner: 
each acquisition of a driver event 
resulted in the rapid expansion of the 
tumour cell population, which was 
followed by a gradual decline in cell 
number owing to passenger mutation 
accumulation until the next driver 
mutation occurred. Importantly, 
accounting for deleterious passenger 
mutations recapitulated some known 
features of tumour biology, such as 
dormancy and regression, that are 
not seen in simpler simulations.

Interestingly, despite the delet-
erious nature of the simulated 
passenger mutations, large numbers 
of passenger mutations accumulated 
and spread throughout the tumour 

cell population. This partly occurred 
by mechanisms that are known from 
population genetics studies. For 
example, the positive selection of 
cells containing driver mutations can 
increase the frequency of passenger 
mutations co-occurring in these cells 
(an effect that is known as genetic 
hitch-hiking). Overall, this indicates 
that even mutations that are found 
throughout a large proportion of cells 
in a particular tumour might actually 
exert a negative fitness effect.

So, is there evidence that passenger 
mutations found in clinical tumours 
can be genuinely deleterious or might 
real tumours retain only selectively 
neutral passenger mutations? The 
authors assessed the deleteriousness of 
passenger mutations in the Catalogue 
of Somatic Mutations in Cancer 
(COSMIC) database. They used the 
PolyPhen program, which scores delet-
eriousness according to the extent to 
which the mutation has been avoided 
(selected against) during organismal 
evolutionary history. On average, these 
passenger mutations were indeed 
moderately deleterious, and substan-
tially more so than single-nucleotide 

polymorphisms underlying normal 
human population variation. However, 
it is worth noting that deleteriousness 
of a mutation during normal organis-
mal evolution might not fully reflect 
the fitness effects on cancer cells, 
which typically have altered cell death 
and checkpoint mechanisms.

Finally, the authors ran simula-
tions and found that enhancing the 
detrimental effects of passenger 
mutations — such as by reducing the 
ability of cancer cells to buffer delet-
erious mutations — resulted in sus-
tained tumour regression. In practice, 
such buffering mechanisms include 
the proteasome and chaperone sys-
tems. As pharmacological inhibitors 
of these systems have been developed 
that show antitumour activity in some 
settings, it will be interesting to deter-
mine the extent to which sensitivity 
to these agents is conferred by many 
accumulated passenger events versus 
a few key oncogenic mutations.

Darren J. Burgess

!"#$%#& !'(%)#" *%+

!"#$%"&'&()*'+,'-.//"*$"0/1

%&*,*+-)!&'.'-&/0!1-1'&��	�����
��������
����2'34-.56'(7'&"8"6"0#(9/'-.//"*$"0'496.6#(*/'
(*'5.*5"0'-0($0"//#(*2'���	�������	�
���	������''
:';"+'<=>?'@&(#A>=2>=B?C-*./2><>?D:E>>=F

these 
passenger 
mutations 
were indeed 
moderately 
deleterious

G%"'H6(5I'H(896#(*

!"#"$!%& '& ()&* ()&+#

NATURE REVIEWS | !"#!$%&  VOLUME 13 | APRIL 2013

Nature Reviews Cancer | AOP, published online 7 March 2013; doi:10.1038/nrc3488

© 2013 Macmillan Publishers Limited. All rights reserved

Studies of cancer biology and genom-
ics have mainly focused on recurrent 
driver mutations in key oncogenes 
and tumour suppressor genes, as 
these are known to have major 
roles in tumorigenesis and cancer 
progression. However, these driver 
mutations are vastly outnumbered by 
passenger mutations, which are often 
assumed to be biologically neutral. 
A new computational study suggests 
that passenger mutations may have 
detrimental effects on tumour fitness, 
with therapeutic implications.

Random unselected mutations 
are expected to be, on average, mildly 
deleterious (that is, they confer a 
small selective disadvantage). So, 
Leonid Mirny and colleagues incor-
porated deleterious passenger muta-
tions into their computer simulations 
of tumour evolution. In their model, 
each cancer cell can stochastically 
die or divide, and the cell divisions 
can be accompanied by the frequent 
acquisition of a deleterious passenger 
mutation or the rare acquisition of a 
growth-promoting driver mutation. 

The simulations resulted in 
population dynamics in which 
tumours grew in a sawtooth manner: 
each acquisition of a driver event 
resulted in the rapid expansion of the 
tumour cell population, which was 
followed by a gradual decline in cell 
number owing to passenger mutation 
accumulation until the next driver 
mutation occurred. Importantly, 
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cells containing driver mutations can 
increase the frequency of passenger 
mutations co-occurring in these cells 
(an effect that is known as genetic 
hitch-hiking). Overall, this indicates 
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So, is there evidence that passenger 
mutations found in clinical tumours 
can be genuinely deleterious or might 
real tumours retain only selectively 
neutral passenger mutations? The 
authors assessed the deleteriousness of 
passenger mutations in the Catalogue 
of Somatic Mutations in Cancer 
(COSMIC) database. They used the 
PolyPhen program, which scores delet-
eriousness according to the extent to 
which the mutation has been avoided 
(selected against) during organismal 
evolutionary history. On average, these 
passenger mutations were indeed 
moderately deleterious, and substan-
tially more so than single-nucleotide 

polymorphisms underlying normal 
human population variation. However, 
it is worth noting that deleteriousness 
of a mutation during normal organis-
mal evolution might not fully reflect 
the fitness effects on cancer cells, 
which typically have altered cell death 
and checkpoint mechanisms.

Finally, the authors ran simula-
tions and found that enhancing the 
detrimental effects of passenger 
mutations — such as by reducing the 
ability of cancer cells to buffer delet-
erious mutations — resulted in sus-
tained tumour regression. In practice, 
such buffering mechanisms include 
the proteasome and chaperone sys-
tems. As pharmacological inhibitors 
of these systems have been developed 
that show antitumour activity in some 
settings, it will be interesting to deter-
mine the extent to which sensitivity 
to these agents is conferred by many 
accumulated passenger events versus 
a few key oncogenic mutations.

Darren J. Burgess
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Estimating model parameters
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New Experiment: Her2+ breast cancer mouse model: 
     mildly elevated mutation rate (H2AX+/-)  
     normal mutation rate (control)
When do cancers develop? How fast do cancers grow? 

Effect of passenger mutations 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estimating parameters
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nd = m*np + b, where m = sp/sd and b = log(D( N_final )/sd

m ~ 1/62 
b = 1.82


