Lecture 1: Neutral brushes. Scaling model of a Lecture 2: Charged brushes. Strong and weak

neutral planar polymer brush (mushroom and brush polyelectrolytes. Scaling model of strong PE planar brush.
regimes). Effect of solvent. Strong stretching Main regimes of PE brush (counterion and salt dominated).
approximation: chain trajectory and parabolic potential. Local electroneutrality approximation. Parabolic potential
Internal structure of a planar brush. Response of and internal structure of planar PE brush. Interactions
polymer brush to compression. Curved polymer between planar PE brushes. Curved PE brushes (scaling
brushes. Scaling model of star-like and comb-like model).

molecular brushes (stars and combs in solution). Corona of neurofilament (NF) as a cylindrical PE brush.
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Lecture 3: Polymer micelles.

Micellization of neutral diblock copolymers in dilute
solution in selective solvent. CMC. Strong
segregation limit and narrow interface
approximation. Starlike and crew-cut spherical
micelles. Cylindrical and lamellar aggregates.
Morphological transitions sphere-cylinder-lamella.
Micelles with charged coronae.

Diblock copolymer aggregates in semi-dilute
solutions and melts. Strong and weak segregation
limits.

Multi-compartment micelles (MCMs).




Micellization of diblock copolymer in selective solvent

Unimer

Micelle

Static light scattering measurements KelRy=1{M +2A5¢+ ...
Dynamic light scattering measurements Stokcs—Einst;in eqﬁﬁtian, D= kaﬁJ"I?jzf?;.m‘:} Nomenclature
X-ray diffraction experiments size distribution of micelles

Star-like micelle: H >>R; R,=H

Sample morphology ‘ H
¥ RCOI’OH&
-

Crew-cut micelle: H << R; Ry=R

Figure 1. AFM height images of PS-h-PI spherical micelles formed
from (a) sample 39—94 (R, = 54 nm), (b) sample 39—15 (R, = 32
nm), and (c) sample 19— 14 (R, = 20 nm). The micelles reduce in size
upon decreasing the length of the soluble polyisoprene {(PI) block (a,
b) as well as the length of the insoluble polystyrene (PS) block (b, ¢).




Critical micelle concentration (CMC)
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Figure 2. Plot of the apparent aggregation number vs concentration 20 30 40 50 60
for PS-b-PI 39-94 (black squares) and 19-99 (gray circles) measured Temperature (C)

at 25 °C in n-heptane.

Figure 3. Plot of the variation of the CMC with temperature for samples
19-26 (diamonds), 19-39 (circles), and 19-99 (squares). Theoretical
calculations for PI blocks with molecular weights of 26, 59, and 99
kDa are shown respectively by the dotted, dashed, and solid lines.



Critical micelle concentration (theory)

7 . . . .
V.N P T\J total number density of the amphiphiles is ¢ = N, /V

¢y is the concentration (number density) of unimer

Cmic = (C—c1)/p  concentration of the monodisperse micelles with aggregation number p

Helmholtz free energy
F/VkpT = peicFp/kpT 4 cpic(Incpic — 1) +¢1F1 /kgT +cy(Incy — 1)
free energy per molecule in micelle with aggregation number p
The minimization (dF /dp =0, dF /dcyic = 0) leads to the following equations:

dF, kpT oF, d(pF,)
r_ N Cons P p
P p | Cmie Fprp dp  dp

=l (cp)

ti(cy) =Fi+kpTlIncy is the chemical potential of unimer,

Often, the critical micelle concentration (CMC) is defined as the total concen-
tration of amphiphiles at which the number of unimers is equal to the number of
amphiphiles incorporated into the micelles, pcpic = ¢; = CMC /2. In this case, the
CMC i1s specified by the equation:

MC 9(pF
kpTIn (—CMC) N ( P P)>
2 8;} P=peq(CMC)

_F‘]

where F}, 1s the free energy per chain in the equilibrium micelle with p = peq(CMC).



Critical micelle concentration (theory cont’d)

A frequently used simplifying approximation is based on neglecting the transla-
tional entropy of micelles

F/VkpT = peuicFp/kpT + )@) +eiFy /kgT +ci(Ineg — 1)

“Practical” equations:

c—cC
Ihp(p) _ c; =exp[(Fy(po) — F1)/kgT] emie = -2
dp l, Po
Aggregation number p, in equilibrium Concentraton c, of unimers Concentraton c,;. of micelles

micelle (does not depend on
concentration of amphiphiles c)

approximate expression for the CMC

CMC
RBTln( 5 ) =Fp(po)—F
approx

in order to find the optimal (equilibrium) aggregation
number and the CMC, a theoretical model has to specify the functional form of

the free energ}{:ﬂa}per amphiphile as a function of p in an aggregate of a given morphology.



Scaling model of spherical block copolymer micelle

Zhulina & Birshtein 1985; Halperin 1987
The free energy Fp per one block copolymer in a micelle can be presented as

sz Fcumnﬂ + Finterfﬂce + Fcnre-
Core
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Crew-cut, Rcorona<< Rcore

Minimization of F with respect to p gives equilibrium aggregation number p,

Important note: in stable spherical micelles F ;. O  Fierface >> Feore



Star-like spherical block copolymer micelle (R ;002 >> Regre)

(1-v)/2 (v = 3/5and v = 1/2 under good and theta-

Reorona = N:;,rp
solvent conditions, respectively).

Equilibrium aggregation number
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With the accuracy of the logarithmic factors,
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CMC depends most strongly on length of insoluble block B, but also
on temperature T and length of soluble block A



Crew-cut spherical block copolymer micelle (R ;ona << Regre)

: _ _ N iy
Corona is planar-like brush with Heorona = Nas~ (7Y%
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Dominant terms in the free energy per chain are the same for all morphologies of
micelle (lamella, cylinder, sphere), F /KT = vs + N(s/a?)~1/2Y

Minimization with respect to s gives:
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Figure 4. Log—log plots of the variation in the aggregation number
with the degree of polymerization of the PI blocks. Black and blue
symbols are for 39 and 19 kDa PS blocks respectively. The solid,
dashed, and dotted lines are respectively the new crossover scaling
solution, asymptotic star-like, and asymptotic crew-cut dependences.



Polymorphism in non-ionic micelles

In aggregates with R_,0.a>> Reore » SPherical micelle is always most stable: at the same area per
chain s, spherical corona has more space and is less extended due to intra-chain repulsions.

W
b

=3

In crew-cut aggregates, dominant contributions to F, = Fyanar corona) * ¥S are the same for all
morphologies i=1,2,3, but morphology-dependent corrections (AF,and Fg) are different.

F, EKE+AF, H (-1 H

kT~ kT 5 4v  Ry5

Feorona O Fa decreases in the row:lamella, cylinder, sphere

On the contrary, F,. increases in the row lamella, cylinder, sphere

Feore /KgT = ;R e?/@Ng with b, = n/8, b, = 2/16 and b,=372/80  Semenov JTEP 1985

Balancing AF, + F_... in morphologies, i and (i+1) we find binodals for morphological
transitions i to (i+1)
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Micelles with charged corona

Low salt: ac>>c

In experimentally relevant cases ,
coronal charge is compensated
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Dilute solution of neutral star-like micelles, ¢ < ¢*




Semi-dilute solution of star-like micelles with p*< ¢ < @ **

Micelles remain segregated
(quasi-globular regime)

Rcorona = (pNAaS/(P)l/3

Aggregation number increases
logarithmically with solution
concentration

P =P In((@/@*)

cesde
0q0=4e

~ correlation blob



Semi-dilute solution of star-like micelles with ¢ > @ **

Micelles remain segregated
(quasi-globular regime) due to
retained stretching of coronal
block, Rcorona = (pNAaS/(P)US

BUT aggregation number increases
with solution concentration as

p=yNg ¢**




Diagram of states of concentrated solution of neutral block copolymer

Strong segregation limit (narrow interface, well defined domains)

Transitions between morphologies
are characterized by
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Theoretical phase diagram of diblock copolymer melt
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‘igure 1.2 Phase diagram for a conformationally symmetric diblock copolymer, calculated
ising self-consistent mean field theory [49, 51], along with illustrations of the equilibrium
norphologies. In the phase diagram, regions of stability of disordered (dis). lamellar (lam),
yroid (gyr), hexagonal (hex) and body-centred cubic (bee) phases are indicated.

Weak segregation limit

Hexagonal-packed Body-centered Leibler 1980, Semenov 1985, Fredrickson,
Ainders cubie Helfand 1987, Matsen 1996
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Recent advances: multi-compartment micelles (MCM)
with well controlled morphology

Terpolymer ABC in

Seleotivekalient Step I: Dissolution of SBMs in DMAc (N, N-dimethylacetamide, non-solvent for PB,

PS_PB_PMMA Step I1: dialysis against an acetone/isopropanol mixture |

Acetone is a non-solvent for PB, a near-® solvent for PS and a good solvent for PMMA,

A B C Isopropanol is a near-® solvent for PMMA and a non-solvent for both PS and PB

Groschel et al, Nature Communications 2012




Recent advances: scaling model of MCM

PS-PB-PMMA micelle comprises p =1 chains
each B-domain {one patch) comprises

m=p/n chains
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Schematic representation of a spherical MCM for the case ¥, >> I3
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Star-like corona of MCM is split into n coronas around B-patches
and peripheral (laterally uniform) part
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modified surface tension at BS boundary

micelle

(like for diblock AC)
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