Lecture Il: The nonlinear analysis of the hydrodynamic model (TT equation)
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Is this nonlinear term relevant in the hydrodynamic limit?
Scaling transformation: X, — sX,,x; — s%x;, t - s%t, v, - s¥vt
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The scaling exponents for the linear theory
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A — SZ(Z—)()—(d—l)—(—ZA: Sz—Z)(—(—d+1A
Linear theory exponents determinedby: z2—2=z—2{(=z—2y—{(—d+1=0

The linear theory exponents: z = 2, (=1, x=1-d/2

diffusive  isotropic Lossof LROind < 2

Exponent for the nonlinearterm: z+ y —1 =2 — d/2 , which means that the nonlinear convective term is relevant for d < 4

Linearized hydrodynamic theory breaks down ford < 4



The scaling analysis: a simple example

d 1
_y=xn_)y=jxndx= —xn+1
dx n+1

Scaling symmetry (scale invariance): X — aXx y - an"'ly

y(x) =a™ty(a”x)
By settinga = x

y(x) = y(Dx"*!

You get the right answer (up to a constant pre-factor) without doing integration



The scaling hypothesis for the correlation function

There is no typical scale for the correlation function, i.e., it has scale invariance

X=X N

E —Y’J_ 127 %, %, |57

(v i(Zy, 2, DV j(& L, 2y, 1)) = 6512, — |2Xf(

x = velocity fluctuation exponent (roughness exponent)

The scaling exponents: :
& exp Z = dynamic exponent

¢ = anisotropy exponent

X > 0 = The system is disordered ¥ < 0 = The ordered state is stable

How do we determine these exponents? -= The Renormalization Group (RG) Theory



The Renormalization Group Theory: the idea

1) Integrating out the short distance degrees of freedom within a < |x| < sa where s > 1 is a scaling factor
equivalently integrating out the large wavelength degrees of freedom within 1/a > |k| > 1/(sa)

a sa ko/s ko

\g/

A\ 7%
=

(real-space) (k-space)
2) Scaling transformations: X, — s%,, |, x; = $°x,, t > s%t,, ¥V, > sXvV, |

3) The equations of motion for the the new variables (v’) and the new coordinate system (x,t’) retain the same form.
But they have different coefficients (parameters): o, = {D’;, D', A", 2’} , which depends on the parameters at the
original scale: o = {Dy, D, A, 1}

#s = R () Rss) = RgRy,

Renormalization transformation Renormalization group: {R.}



The Renormalization Group Theory: the scaling
Correlation function at a given scale [ with parameters :
(Vi@ 2, Qv (F 2y, 1) = Cy(R - %y, xy- 2y, t =t 9)
The same correlation function can be determined at the new coarse-grained scale sl:

— - — — X xr x" x' | t=tr
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l RG fixed point: o, > #*,i.e, Ry (.) = %
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The RG flow and the determination of the scaling exponents

The exponents (¥, z, {) can be determined by the fixed-point of the RG "dynamics”
Rs(.) = #”
The derivation of the RG “dynamics” (flow equation) is done conveniently in the k-space.

The flow equation is obtained perturbatively by using € = d. — d as a small parameter. d.. is the critical dimension,
i.e., the linear hydrodynamic theory (or mean field theory) is valid for d > d_. For TT flocking equation, d.=4.

For infinitesimal scaling change, we write s = e

dD, dD,
=[z—-2+G,(g)]Dy ——=[z— 20+ G (g)]Dy

dl dl

dA dA
5 = Ztx-1+ Gl G lzt1-d=0—2x+Ga(g)]A

AAY/2 , : ely i ;
Nonlinear coupling constant 9=~ G’s can be obtalr\ed perturbat-lve y in orders of g
D" D by using Feyman diagram.
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The fixed points of RG flow

d
= [e+6,@g Go(9) = G1(9)+5Ga(g)- 2 Galg)- =Gy(9)

When e = 4 — d < 0, the trivial fixed point g = 0 is stable, linear hydrohynamics is valid
——— linear exponents are valid

Ot+—et—<e—= > g
g=0
When € = 4 — d > 0, the trivial fixed point g = 0 is unstable, there is a nonlinear fixed g* > 0, which is stable.
——— nontrivial exponents can be found

& > > ()< > g

*

g = g

Zz+x—1+G,(g") =0 Z+1—d—0—2y+Ga(g") =0

z—=2(+Gi(g")=0 z—2+G,(g")=0



The nontrivial exponents in 2D flocking model

z+xy—1+G(g") =0 Z+1—d—-—0—=2x+Gx(g") =0

z—20+Gi(g") =0 z—2+4+G,(g")=0

In 2D, there is only one “ 1 ” direction, so the nonlinear convective term can be written as a pure derivative term:
A 2
Av 0,v) = EaJ_(UJ_)
Therefore, in k-space, the corrections due to the nonlinear convective term should all be proportional to k2.

Since neither the D term (diffusion in the parallel direction) and the noise strength A contains k2,
this means that these two terms are not renormalized: G,(g) = G;(g) = 0

A pseudo-Galilean invariance: v, — v, + vy, x, — x;, — Avyt for arbitrary constant v,
—> Ais not renormalized: G,(g) = 0



The nontrivial exponents in 2D flocking model

z+X—1+G/@= Z+1—-d—(—-2y+Gpf") =0
z—2(+G )=0 z—2+4+G,(g")=0
z+xy—-1=0 d=2
1 6 3
z2+41—d—(—2x=0 ‘ x=-zz=gd=¢
z—20=0

Note that y = — % < 0 = longrange order (LRO) is stable in 2D flocking systems!

Tamas Vicsek was very happy when we told him this result!



Now that the ordered state is stable, we can go back and
take a look at the modes of fluctuations around the spatially

homogeneous flocking state.
oV,

Vo

dv e

Let’s do it in 2D
L ] e
V=vp+v,€, +6v¢ Vol = B

-

v
o MB-VT+A,...=ab — B|D|*V—VP +D;V*3 4D, ...

+1

P v (Bp) =0
ot VP =

P(p) = ) oulp = po)"

n=0



The couple slow dynamics of the density and velocity fluctuations

* Thefastmode: d,0v = — 0d0p—2adv|+urelevant terms.
— _ _5
0= =D, 0p, Do =5g

* The two coupled slow modes:
(y = 1v,) [—ilw —vqy) + T(@]v.(q, w) + io1q,6p(q, w) =1,(q, w)
|—i(w = voqy) + T,(@)]6p(G, ®) + ipoq vi(§,w) = 0

>\ NR/>2 2 2
I, (q)=Di(q)qi + Dyqj The renormalized diffusion constant

[,(§)=D,qf DR (G .q: X po.on) = a5 2 f(qn/q%) .



The density and velocity correlation functions in Fourier space

[_l(a) - yq”) + Fv(c_i)]vl(c_ir (1)) + iO'qu_5p(C_[>, a)) = UL(C_I)» (1))

(v = Avy)
|—i(w — voqy) + T,(]6p (G, ®) + ipoqiv,(§,w) =0
- 2\ _ AQ?LP(z)
160G @)F) = GELS.
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(Ivl(q,w)l ) = S(Z],w) ’

S(G, w)=l(w = yqy) (@ = voq))-c*qi]*+[(w — yqIT, (@) + (& — voqT,(§)]

(C2: g1 Po)



The mixed velocity-density “sound wave”

Characteristics of the dynamics can be obtained by looking at the poles of the correlation functions

54, w)=[(w = yq)) (@ — voq))-c*qi1*+[(w — yq T, (@) + (& — voqPT,(]?

J s

w = Cy(8q)q £ i[DF(@)qF + Dygi]

_ ™S

Wave propagation

Damping (dissipation) ?i

0
(0 =vq) (@ = voq)-c?qi =0 !

1 1 1
C4(6,) = 5 (1 + Mvo cos(6,) + [Z(l — D)?vcos?(6,) + c2sin?(6,)]2

<l



Characteristics of the correlation function in Fourier space

w =~ C+(6,)q £ iTR(G)

FR(ci) ~qf, whenq < qZ
R R A 1 I 1
r'R(§)=DY(§)q% + Dyqf (@) ) g

DR(§) = qi7%f (—)

Damping
r*(q)

®

>

c(0)
¢.(99)4 194 Sound wave



The equal time correlation function

> — ¢
oy 5 dow _ 2Ap¢ Cp (q) ~ CIJ_Z , when q; < q,
Cp(CI)‘f Cp(q; w) 2w c2TR(G) ‘ —2/¢ b
~q" ) en q" > qJ_
6 3
|nd—2,Z—E,(—g / /
1.0 . T v T v T v 12 v v
L 0 o l @
08 F -
[ ° ® Nz\1 ]
0.6 | ° 1 =
0" | | =4 .
04 F o - ;8’_ (y =ll,x =1)
02 | o ‘Z’ ° |
0.0 L L 1 .

00 0.1 02 03 04 6

Av In(q,), In(q,) YT, JT, Ulm, PRL, 1998



The giant number fluctuation (GNF)

SN g o 2A
< 6p? >:pr(q)dq | ZFllf‘,f)((’)dq ~L1%71=¢

< 6N? >=[?% < §p? > ~L317~¢
< N >= poLz

(d=2)



Anomalous diffusion in the perpendicular direction

The dispersion in the perpendicular direction
w2(t) = i) — v OP) ~ [o [olvl(t")vi(e"))dt' dr”

(v;(())v;(t)) ~ (vy(} + ¢xt,1)vy(x,0))

expli(w — ¢q)t]A (0w — vsq||)2d2q dw

- / (7. o)

w2(t) ~ 314 = 473 (¢ =§ in 2D)

Super-diffusion

YT, JT, Ulm, PRL, 1998
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The anisotropic sound speed

1 1 1
C+(6,) = 5(1 + v, cos(6,) + [Z(l — D)?vcos?(6,) + c?sin?(6,)]2

(D

YT, TT, Ulm, PRL, 1998
JT & YT, PRE, 1998




In the flocking direction (6,=0)

1
C(0) = 7(1 + Dyvp + (1~ Dy

Velocity and density fluctuations decoupled!

They travel at different (advection) speeds:
v, -- density wave (green dot)
Av, -- velocity wave (red dot)
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In the perpendicular direction (0,=m/2)

Ci(m/2)=*c (¢?= 01 po)

Pure symmetric sound wave
(cis the sound speed) 10" —— 1
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In the other directions (0 < 6, < 1/2)

1 1 1
C+(6,) = E(1 + g cos(6,) + [Z(l — D)2v§cos?(8,) + c?sin?(6,)]2

The pure sound mode and
the advection mode are mixed
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The dream of two theorists
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Flocks, herds, and schools: A quantitative theory of flocking
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VII. TESTING THE THEORY IN SIMULATIONS
AND EXPERIMENTS

/S

LS

FIG. 10. More practical “‘track’” geometry for experiments on
real flocks. Data should only be taken from the cross-hatched region
centered on the middle of the *‘straightaway.””




Comes true (only after 20 years)

(Geyer et al, Nat. Material, 2018)
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Flocking order and the fluctuations around the ordered state

6, (rad)
02
01 (Geyer et al, Nat. Material, 2018)
0
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Fig. 1] Colloidal rollers self-assemble into a spontaneously-flowing liquid. a, Close up on a microfluidic channel including - 3 x 10 colloidal rollers forming
a homogeneous polar liquid. The colour of the particles indicates the value of the angle, 6, between their instantaneous velocity and the direction of the
mean flow. Five trajectories illustrate the typical motion of the rollers. p,=0.11. Scale bar: 100 pm. b, Probability density function of the roller velocities,

v(t) (ensemble and time integration). All the rollers propel along the same average direction. p,=0.24, as in all following panels. ¢, The colour indicates

the value of the density pair correlation function g(x, y) evaluated at positions (x, y). Structural correlations are short ranged and display only weak
anisotropy. d, Cuts along the flow direction of the pair distribution functions, g(x, 0) (ref. **), and of the longitudinal velocity correlationscl(x, 0),

whereC.(r)E (v'll(t)v'll(t)) e '/ { (,,'ll )2(0) o Both structural and longitudinal-velocity correlations decay over few particle radii. e, Correlations of the
T =-r :

transverse velocity fluctuations (ensemble and time average): C,(r)= (v,i(t)v;‘(t))
(e,

P

strongly anisotropic. f, The correlations of the transverse velocity fluctuations, C,(r), decay algebraically in both directions. The solid lines correspond

to best algebraic fits: C,(x, 0) - x84 3nd C,(0,y)- y'o'”’. g, Giant number fluctuations. Variance, ANZ(t), of the number of particles measured in square
regions of size €. ANz(t) is plotted as a function of the average number of particles N(&) for five different polar active liquids of average area fractions
p,=012, 018,018, 0.24, 0.30, 0.39, labelled by colours of increasing darkness. Solid lines: scaling ANXe) - N(e), corresponding to normal density
fluctuations as in equilibrium fluids, and ANZ(C) - Nz(t), the scaling law predicted from linear hydrodynamic theory, see, for example, ref. *. Details about
number fluctuation measurements and power-law fit values are provided in Supplementary Note 1.

'/ ((v,J‘)Z(t)) o The transverse fluctuations are long ranged and
=t o

10*



Flocking order and the fluctuations around the ordered state
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Active-fluid spectroscopy: Key parameters can be determined quantitatively
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Fig. 3 | Active-fluid spectroscopy. a—h, The hydronamic description of the active fluid is inferred from the plots. In all panels, red dots represent
experimental data, blue lines the best linear fit, and dashed lines the theoretical prediction with no free fitting parameter deduced from kinetic theory

(see Supplementary Note 3). a, Variations of the mean-flow speed with the mean area fraction. Error bar: 100 pms-', 1 standard deviation. Denser fluids
flow faster. b, Parametric plot of the longitudinal velocity fluctuations Jugl 2 varying linearly with (q, lp |2) for three propagation angles. The slope gives
ameasure of D'=4x10-*mm?s". The offset at g,= 0 comes from the noise acting on the u mode (see Supplementary Note 3). ¢,d, The compressibility
coefficient, o, and advection coefficient, 2, are plotted versus the mean area fraction p,. Both quantities are measured from the best fit of the speed of
sound (Fig. 2g—i). The error bars are defined by applying the uncertainty-propagation formula on o= c,(%/2)*/p, and 4,=c, (0)/c_(0). The uncertainties
on cand p, are respectively 100pms~' and 0.02. e, Spectral width Aw_(x/2) of the modes propagating at 6=x/2 plotted versus g (log-log plot). A (%/2)
grows quadratically with q. Error bars: 10 Hz, estimated by comparing several Lorentzian fits. Solid line: best quadratic fit. The bare prediction from the
simplified kinetic theory overestimates A, (x/2) by a factor of three. The possible origins of this overestimate are discussed in Supplementary Note

3.1, Polar plot of the spectral width normalized by g* and averaged over all wavevectors A, = (Aw,(6Y qz) . Red (resp. blue) dots: experimental data
corresponding to A, (resp.4_). Solid lines: best fits using the relation A, =(V4)[-(D" + D, + Dy) — (D’ + Dy—D; ) cos(26) + D,ug po/osin(20)] (see
Supplementary Note 3). g, Variations of the elastic constant D, with p,. D, is measured from the quadratic fit shown in e (see main text). Error bars
defined as the 0.95 confidence interval of the quadratic fit in e. The elastic constant increases linearly with the particle density. h, Variations of the average
elastic constant D+ D, with p;. D, + D, is measured from the quadratic fit of Aw, (7/4) + Aw_ (x/4) (see main text). Error bars defined asin g.



Concluding Remarks

In conclusion, two decades after the seminal predictions of Toner
and Tu, we have experimentally demonstrated that the interplay
between motility and soft orientational modes results in sound-
wave propagation in colloidal active liquids. We have exploited this
counterintuitive phenomenon to lay out a generic spectroscopic
method which could give access to the material constants of all
active materials undergoing spontaneous flows. Active-sound spec-
troscopy applies beyond synthetic active materials"~", and could
be used to quantitatively describe large-scale flocks, schools, and
swarms as continuous media'**.

--- Geyer et al

Hydrodynamic Theory works (Yeah!) and it provides a general framework to understand
collective behaviors of active matter



