
Lecture II: The nonlinear analysis of the hydrodynamic model (TT equation)

𝜕�⃗�!
𝜕𝑡

+ 𝜆" �⃗�! ' 𝛻! �⃗�! = −𝛻!𝑃 + 𝐷!∇!# �⃗�! + 𝐷∥∇∥#�⃗�! + 𝜂!

Is this nonlinear term relevant in the hydrodynamic limit?

Scaling transformation: 𝒙! → 𝒔𝒙!, 𝒙∥ → 𝒔𝜻𝒙∥, 𝐭 → 𝒔𝒛𝒕 , 𝒗! → 𝒔𝝌𝒗!

()!
(*
+ 𝒔𝒛+𝝌,𝟏𝜆" �⃗�! ' 𝛻! �⃗�! = ⋯+ 𝒔𝒛,𝟐𝐷!∇!# �⃗�! + 𝒔𝒛,𝟐𝜻𝐷∥∇∥#�⃗�! + 𝒔𝒛,𝝌𝜂!(𝒃𝒙!, 𝒃𝜻𝒙∥, 𝒃𝒛t)

< 𝜼!,𝒊(𝒙, 𝒕) 𝜼!,𝒊(𝒙′, 𝒕′) >=𝚫𝜹𝒊𝒋𝜹(𝒙 − 𝒙%)𝜹(𝒕 − 𝒕%)

Δ ⟶ 𝑠# /,0 ,(2,"),4,/∆= 𝒔𝒛,𝟐𝝌,𝜻,𝒅+𝟏Δ



()!
(*
+ 𝒔𝒛+𝝌,𝟏𝜆" �⃗�! ' 𝛻! �⃗�! = ⋯+ 𝒔𝒛,𝟐𝑫!∇!# �⃗�! + 𝒔𝒛,𝟐𝜻𝐷∥∇∥#�⃗�! + 𝒔𝒛,𝝌𝜂!(𝒃𝒙!, 𝒃𝜻𝒙∥, 𝒃𝒛t)

The linear theory exponents: 𝒛 = 𝟐, 𝜻 = 𝟏, 𝝌 = 𝟏 − 𝒅/𝟐

diffusive isotropic Loss of LRO in 𝑑 ≤ 2

Exponent for the nonlinear term: 𝒛 + 𝝌 − 𝟏 = 𝟐 − 𝒅/𝟐 , which means that the nonlinear convective term is relevant for 𝑑 ≤ 4

Linearized hydrodynamic theory breaks down for 𝒅 ≤ 𝟒

The scaling exponents for the linear theory

Δ ⟶ 𝑠# /,0 ,(2,"),4,/∆= 𝒔𝒛,𝟐𝝌,𝜻,𝒅+𝟏Δ

𝑧 − 2 = 𝑧 − 2𝜁 = 𝑧 − 2𝜒 − 𝜁 − 𝑑 + 1 = 0Linear theory exponents determined by:



The scaling analysis: a simple example

𝑑𝑦
𝑑𝑥

= 𝑥> → 𝑦 = &𝑥>𝑑𝑥 =
1

𝑛 + 1
𝑥>?@

Scaling symmetry (scale invariance): 𝑥 → 𝛼𝑥 𝑦 → 𝛼>?@𝑦

𝑦 𝑥 = 𝛼>?@𝑦(𝛼A@𝑥)

By setting 𝛼 = 𝑥

𝑦 𝑥 = 𝑦(1)𝑥>?@

You get the right answer (up to a constant pre-factor) without doing integration 



The scaling hypothesis for the correlation function 

There is no typical scale for the correlation function, i.e., it has scale invariance

𝑣B,C(𝒙B, 𝒙∥, t)𝑣B,E(𝒙′B, 𝒙F∥, t′) = 𝛿CE 𝒙B − 𝒙′B GH𝑓( IAI!

𝒙"A𝒙F" # ,
𝒙∥A𝒙F∥
𝒙"A𝒙F" %)

The scaling exponents:

𝜒 ⇒ velocity Sluctuation exponent (roughness exponent)

𝑧 ⇒ dynamic exponent

𝜁 ⇒ anisotropy exponent

𝜒 > 0 ⇒ The system is disordered 𝜒 < 0 ⇒ The ordered state is stable

How do we determine these exponents?  -à The Renormalization Group (RG) Theory



The Renormalization Group Theory: the idea

1) Integrating out the short distance degrees of freedom within 𝑎 < 𝑥 < 𝑠𝑎 where 𝑠 > 1 is a scaling factor
equivalently integrating out the large wavelength degrees of freedom within 1/𝑎 > 𝑘 > 1/(𝑠𝑎)  

𝒙
𝑎 𝑠𝑎

𝒌 (𝑘!= 1/𝑎)
𝑘!/𝑠 𝑘!

(real-space) (k-space)

2) Scaling transformations: 𝒙" → 𝒔𝒙𝒏," , 𝒙∥ → 𝒔𝜻𝒙𝒏,∥, 𝐭 → 𝒔𝒛𝒕𝒏 , 𝒗" → 𝒔𝝌𝒗𝒏,"

3) The equations of motion for the the new variables (v’) and the new coordinate system (x’,t’) retain the same form.
But they have different coefficients (parameters): ℘) = {𝐷′∥, 𝐷′" , Δ′, 𝜆’} , which depends on the parameters at the 
original scale: ℘ = {𝐷∥, 𝐷" , Δ, 𝜆} 

℘) = 𝑅)(℘) 𝑅))* = 𝑅)𝑅)*

Renormalization transformation Renormalization group: {Rs}



The Renormalization Group Theory: the scaling

𝑣",+(𝒙", 𝒙∥, t)𝑣",+(𝒙′", 𝒙*∥, t′) = 𝐶+,(𝒙"- 𝒙′", 𝒙∥- 𝒙′∥, t − t*|℘)

Correlation function at a given scale 𝑙 with parameters ℘:

The same correlation function can be determined at the new coarse-grained scale 𝑠𝑙:

𝐶&'(𝒙!- 𝒙′!, 𝒙∥- 𝒙′∥, t − t% ℘ = 𝑠)*𝐶&'(𝒙𝒏,!- 𝒙′𝒏,!, 𝒙𝒏,∥- 𝒙%𝒏,∥, 𝑡, − 𝑡%, ℘- = 𝑠)*𝐶&'(
𝒙-− 𝒙%-

𝒔 , 𝒙∥- 𝒙
.∥

𝒔𝜻 , 010%-/ ℘-

℘) → ℘∗, i.e., 𝑅)(℘∗) = ℘∗RG fixed point: 

𝐶&'(𝒙!- 𝒙′!, 𝒙∥- 𝒙′∥, t − t%|℘∗) = 𝑠)*𝐶&'(
𝒙-− 𝒙%-

𝒔
, 𝒙∥- 𝒙

.
∥

𝒔𝜻
, 010

.

-/
|℘∗)

𝑠 = |𝒙"- 𝒙′"|

𝐶&'(𝒙!- 𝒙′!, 𝒙∥- 𝒙′∥, t − t%) = 𝛿&' 𝒙! − 𝒙′! )*𝑓( 010.

𝒙-1𝒙%- / ,
𝒙∥1𝒙%∥
𝒙-1𝒙%- 1)

The scaling law of the
correlation function!



The RG flow and the determination of the scaling exponents

The exponents 𝜒, 𝑧, 𝜁 can be determined by the fixed-point of the RG ”dynamics”

𝑅)(℘∗) = ℘∗

The derivation of the RG “dynamics” (flow equation) is done conveniently  in the k-space.

The flow equation is obtained perturbatively by using 𝜖 = 𝑑2 − 𝑑 as a small parameter. 𝑑2 is the critical dimension,
i.e., the linear hydrodynamic theory (or mean field theory) is valid for 𝑑 > 𝑑2 . For TT flocking equation, 𝑑2=4.  

For infinitesimal scaling change, we write 𝑠 = 𝑒34

𝑑𝐷"
𝑑𝑙

= [𝑧 − 2 + 𝐺" 𝑔 ]𝐷"

𝑑𝜆
𝑑𝑙

= [𝑧 + 𝜒 − 1 + 𝐺5 𝑔 ]𝜆

𝑑𝐷∥
𝑑𝑙

= [𝑧 − 2𝜁 + 𝐺∥ 𝑔 ]𝐷∥

𝑑Δ
𝑑𝑙

= [𝑧 + 1 − 𝑑 − 𝜁 − 2𝜒 + 𝐺6 𝑔 ]Δ

𝑔 =
𝜆Δ ⁄8 9

𝐷"
:/<𝐷∥

8/<Nonlinear coupling constant G’s can be obtained perturbatively in orders of g
by using Feyman diagram. 



The fixed points of RG flow 

𝑧 − 2 + 𝐺" 𝑔∗ = 0

𝑧 + 𝜒 − 1 + 𝐺5(𝑔∗) = 0

𝑑𝑔
𝑑𝑙

= 𝜖 + 𝐺= 𝑔 𝑔 𝐺= 𝑔 = 𝐺5 𝑔 + 8
9
𝐺6 𝑔 - :

<
𝐺6 𝑔 - 8

<
𝐺∥ 𝑔

When 𝜖 = 4 − 𝑑 ≤ 0, the trivial vixed point 𝑔 = 0 is stable , linear hydrohynamics is valid
−−→ linear exponents are valid

When 𝜖 = 4 − 𝑑 > 0, the trivial vixed point 𝑔 = 0 is unstable, there is a nonlinear vixed 𝑔∗ > 0, which is stable.
−−→ nontrivial exponents can be found

𝑧 − 2𝜁 + 𝐺∥(𝑔∗) = 0

𝑧 + 1 − 𝑑 − 𝜁 − 2𝜒 + 𝐺6(𝑔∗) = 0

𝒈

𝒈

𝑔 = 0

𝑔 = 0 𝑔∗



The nontrivial exponents in 2D flocking model

𝑧 − 2 + 𝐺" 𝑔∗ = 0

𝑧 + 𝜒 − 1 + 𝐺5(𝑔∗) = 0

𝑧 − 2𝜁 + 𝐺∥(𝑔∗) = 0

𝑧 + 1 − 𝑑 − 𝜁 − 2𝜒 + 𝐺6(𝑔∗) = 0

In 2D, there is only one “ ⊥ ” direction, so the nonlinear convective term can be written as a pure derivative term: 

𝜆𝑣"𝜕"𝑣" =
5
9
𝜕"(𝑣"9)

Therefore, in k-space, the corrections due to the nonlinear convective term should all be proportional to 𝑘"9 .

Since neither the 𝐷∥ term (diffusion in the parallel direction) and the noise strength ∆ contains 𝑘"9 ,
this means that these two terms are not renormalized:   𝑮𝜟 𝒈 = 𝑮∥ 𝒈 = 𝟎

A pseudo-Galilean invariance: 𝑣" ⟶ 𝑣"+ 𝑣!, 𝑥" ⟶ 𝑥" − λ𝑣!𝑡 for arbitrary constant 𝑣!
à λ is not renormalized: 𝑮𝝀 𝒈 = 𝟎



The nontrivial exponents in 2D flocking model

𝑧 − 2 + 𝐺" 𝑔∗ = 0

𝑧 + 𝜒 − 1 + 𝐺5(𝑔∗) = 0

𝑧 − 2𝜁 + 𝐺∥(𝑔∗) = 0

𝑧 + 1 − 𝑑 − 𝜁 − 2𝜒 + 𝐺6(𝑔∗) = 0

𝑧 + 𝜒 − 1 = 0

𝑧 + 1 − 𝑑 − 𝜁 − 2𝜒 = 0

𝑧 − 2𝜁 = 0

𝑑 = 2
𝜒 = −

1
5
, 𝑧 =

6
5
, 𝜁 =

3
5

Note that 𝝌 = − 𝟏
𝟓
< 𝟎 ⇒ long range order (LRO) is stable in 2D vlocking systems!

Tamas Vicsek was very happy when we told him this result!



Now that the ordered state is stable, we can go back and 
take a look at the modes of fluctuations around the spatially 
homogeneous flocking state. 

𝜹𝒗!
𝒗𝟎

𝜹𝒗∥ �𝒆∥

Let’s do it in 2D

𝒗 = 𝒗𝟎+ 𝒗!F𝒆! + 𝛅𝒗∥F𝒆∥ |𝒗𝟎| =
𝜶
𝜷

𝜕�⃗�
𝜕𝑡
+ 𝜆" �⃗� ' 𝛻 �⃗� + 𝜆#… = 𝛼�⃗� − 𝛽 �⃗� #�⃗� − ∇𝑃 + 𝐷�𝛻#�⃗� + 𝐷#…+ 𝜂

𝜕𝜌
𝜕𝑡
+ 𝛻 ' �⃗�𝜌 = 0

𝑃(𝜌) = M
���

𝜎�(𝜌 − 𝜌�)�



The couple slow dynamics of the density and velocity fluctuations

𝐷4 =
𝜎5
2𝛼

• The fast mode:

• The two coupled slow modes:

−𝑖 𝜔 − 𝛾𝑞∥ + Γ) �⃗� 𝑣! �⃗�, 𝜔 + 𝑖𝜎"𝑞!𝛿𝜌 �⃗�, 𝜔 = 𝜂! �⃗�, 𝜔

−𝑖 𝜔 − 𝑣�𝑞∥ + Γ� �⃗� 𝛿𝜌 �⃗�, 𝜔 + 𝑖𝜌�𝑞!𝑣! �⃗�, 𝜔 = 0
(𝛾 = 𝜆𝑣�)

Γ) �⃗� =𝐷!� �⃗� 𝑞!# + 𝐷∥𝑞∥#

Γ� �⃗� =𝐷�𝑞∥#
The renormalized diffusion constant 



The density and velocity correlation functions in Fourier space

−𝑖 𝜔 − 𝛾𝑞∥ + Γ) �⃗� 𝑣! �⃗�, 𝜔 + 𝑖𝜎"𝑞!𝛿𝜌 �⃗�, 𝜔 = 𝜂! �⃗�, 𝜔

−𝑖 𝜔 − 𝑣�𝑞∥ + Γ� �⃗� 𝛿𝜌 �⃗�, 𝜔 + 𝑖𝜌�𝑞!𝑣! �⃗�, 𝜔 = 0
(𝛾 = 𝜆𝑣�)

𝑆 �⃗�, 𝜔 =[ 𝜔 − 𝛾𝑞∥ 𝜔 − 𝑣�𝑞∥ -𝑐#𝑞!#]#+[ 𝜔 − 𝛾𝑞∥ Γ� �⃗� + 𝜔 − 𝑣�𝑞∥ Γ) �⃗� ]#

(𝑐#= 𝜎" 𝜌�)



The mixed velocity-density ”sound wave” 

𝑆 �⃗�, 𝜔 =[ 𝜔 − 𝛾𝑞∥ 𝜔 − 𝑣�𝑞∥ -𝑐#𝑞!#]#+[ 𝜔 − 𝛾𝑞∥ Γ� �⃗� + 𝜔 − 𝑣�𝑞∥ Γ) �⃗� ]#

Characteristics of the dynamics can be obtained by looking at the poles of the correlation functions

𝜔 ≈ 𝐶± 𝜃� 𝑞 ± 𝑖[𝐷!� �⃗� 𝑞!# + 𝐷∥𝑞∥#]

𝑆 �⃗�, 𝜔 =0

Wave propagation Damping (dissipation)

𝒗𝟎
𝒒

𝜃�𝜔 − 𝛾𝑞∥ 𝜔 − 𝑣�𝑞∥ −𝑐#𝑞!# = 0

𝐶± 𝜃� =
1
2
(1 + 𝜆)𝑣� cos 𝜃� ± [

1
4
1 − 𝜆 #𝑣�#cos# 𝜃� + 𝑐#sin# 𝜃� ]

"
#



Characteristics of the correlation function in Fourier space 

𝜔 ≈ 𝐶± 𝜃� 𝑞 ± 𝑖Γ� �⃗�

Γ� �⃗� = 𝐷!� �⃗� 𝑞!# + 𝐷∥𝑞∥#

Γ� �⃗�Γ� �⃗�

Γ� �⃗� ~ 𝑞!/ , 𝑤ℎ𝑒𝑛 𝑞∥≪ 𝑞!
4

~ 𝑞∥# , 𝑤ℎ𝑒𝑛 𝑞∥≫ 𝑞!
4

𝐷!� �⃗� = 𝑞!/,#𝑓
𝑞∥
𝑞!
4

Damping

Sound wave



The equal time correlation function

𝐶� �⃗� ~ 𝑞!,/ , 𝑤ℎ𝑒𝑛 𝑞∥≪ 𝑞!
4

~ 𝑞∥
,//4 , 𝑤ℎ𝑒𝑛 𝑞∥≫ 𝑞!

4

(𝑦 =∥, 𝑥 =⊥)

𝐶� �⃗� =∫𝐶� �⃗�, 𝜔 2�
#�
= #��"#

�#�$ �

In d=2, 𝑧 =  
¡
, 𝜁 = ¢

¡

YT, JT, Ulm, PRL, 1998



The giant number fluctuation (GNF)

< 𝛿𝜌# >= ∫𝐶� �⃗� 𝑑�⃗�=∫ #��"#

�#�$ �
𝑑�⃗�~𝐿/,",4

< 𝛿𝑁# >= 𝐿#2 < 𝛿𝜌# > ~𝐿¢+/,4

< 𝑁 >= 𝜌�𝐿#

< 𝛿𝑁# > ~𝐿¢+/,4 ~𝑁(¢+/,4)/# = 𝑁£/¡ ≫ 𝑁

(d=2)



Anomalous diffusion in the perpendicular direction 

YT, JT, Ulm, PRL, 1998

The dispersion in the perpendicular direction

(𝜁 = B
:

in 2D)

Super-diffusion



The anisotropic sound speed 

𝒗𝟎

𝐶± 𝜃� =
1
2
(1 + 𝜆)𝑣� cos 𝜃� ± [

1
4
1 − 𝜆 #𝑣�#cos# 𝜃� + 𝑐#sin# 𝜃� ]

"
#

YT, TT, Ulm, PRL, 1998
JT & YT, PRE, 1998



In the flocking direction (𝜽𝒒=0)

𝐶± 0 =
1
2
1 + 𝜆 𝑣7 ±

1
2
1 − 𝜆 𝑣7

YT, TT, Ulm, PRL, 1998

Velocity and density fluctuations decoupled!

They travel at different (advection) speeds:
𝑣! -- density wave (green dot)
𝜆𝑣! -- velocity wave (red dot)



In the perpendicular direction (𝜽𝒒=𝝅/𝟐)

𝐶±(𝜋/2 )= ±𝑐

Pure symmetric sound wave
(c is the sound speed)

(𝑐)= 𝜎5 𝜌7)

𝒏!

𝒏! = 𝟓

𝟏𝟎
𝟐𝟎

𝑐

YT, TT, Ulm, PRL, 1998



In the other directions (𝟎 < 𝜽𝒒 < 𝝅/𝟐)

The pure sound mode and 
the advection mode are mixed 

𝐶± 𝜃8 =
1
2 (1 + 𝜆)𝑣7 cos 𝜃8 ± [

1
4 1 − 𝜆 )𝑣7)cos) 𝜃8 + 𝑐)sin) 𝜃8 ]

5
)

YT, TT, Ulm, PRL, 1998



The dream of two theorists 



Comes true (only after 20 years)

(Geyer et al, Nat. Material, 2018)

D=4.8 μm

100 μm



2018



Both velocity and density fluctuations are studied



Flocking order and the fluctuations around the ordered state

(Geyer et al, Nat. Material, 2018)



Flocking order and the fluctuations around the ordered state



Active-fluid spectroscopy: Key parameters can be determined quantitatively



Concluding Remarks

Hydrodynamic Theory works (Yeah!) and it provides a general framework to understand 
collective behaviors of active matter

--- Geyer et al


