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Overview of the course “Polymer brushes” 

Lecture 1: Neutral brushes. Scaling 
model of a neutral planar polymer brush 
(mushroom and brush regimes). Effect of 
solvent. Strong stretching approximation: 
chain trajectory and parabolic potential.  
Internal structure of a planar brush. 
Response of polymer brush to 
compression. Curved polymer brushes. 
Scaling model of star-like and comb-like 
molecular brushes (stars and combs in 
solution).  

Lecture 2: Charged brushes. Strong and 
weak polyelectrolytes. Scaling model of 
strong PE planar brush.  Main regimes of 
PE brush (counterion and salt dominated). 
Local electroneutrality approximation. 
Parabolic  potential and internal structure of 
planar PE brush. Interactions between 
planar PE brushes. Curved PE brushes 
(scaling model).  
Corona of neurofilament as a cylindrical PE 
brush. 

Lecture 3: Polymer micelles.                                            
Micellization of neutral diblock copolymers in dilute solution in 
selective solvent. CMC. Strong segregation limit and narrow 
interface approximation. Star-like and crew-cut spherical 
micelles. Cylindrical and lamellar aggregates. Morphological 
transitions sphere-cylinder-lamella. Micelles with charged 
coronae.  
Diblock copolymer aggregates in semi-dilute solutions and 
melts. Strong and weak segregation limit. 
Multi-compartment micelles (MCMs).   



What is a polymer brush ? 

Substrate: bio surface, 
solid-liquid, air-liquid, 
liquid-liquid interfaces, 
self-assembled surfaces, 

etc. 

Brush:  array of polymer molecules (synthetic, biopolymer,..) end-attached to substrate 

Depending on geometry 
of substrate brushes are 

planar, cylindrical or 
spherical 

Attachment:    chemical 
bond, specific ligand, 

physical adsorption, self- 
assembly, etc. 

Solve
nt 

Brush 
thickness H  

Degree of chain 
polymerization N>>1 

Grafting density  1/s = d-2 
Free ends 

Brush thickness H  

d 

Stabilization of colloids Artificial 
joints, 

transplants 

Drug delivery by 
biodegradable 

micelles 

Diffusion 

Drug 

Diagnostics 
of mutations 

DNA microarrays  

Examples of brush applications 



Brush-like structures in biological systems  

                              

Cell of Pseudomonas putida 
KT2442 

Extracellular 
biopolymers 

Thick planar brush of 
anionic polysaccharides 

Cell of Pseudomonas putida 
KT2442 

Extracellular 
biopolymers 

Thick planar brush of 
anionic polysaccharides 

nanocluster 

Casein micelle in milk 
Calcium 

phosphate 
κ(β)-casein ( 

GMP) 

Loose short planar 
brush of anionic GMP 

nanocluster 

Casein micelle in milk 
Calcium 

phosphate 
κ (β)-casein (GMP) 

Loose short planar 
brush of anionic GMP 

Aggrecan (articulate 
cartilage) 

GS-GAG 
side 

chains 

Core protein 
Cylindrical
/ spherical 

charged 
brush of 
GS-GAG 
side arms 

Aggrecan (articulate 
cartilage) 

GS-GAG 
side 

chains 

Core protein 
Cylindrical
/ spherical 

charged 
brush of 
GS-GAG 
side arms 

Aggrecan (articulate 
cartilage) 

GS-GAG 
side 

chains 

Core protein 
Cylindrical
/ spherical 

charged 
brush of 
GS-GAG 
side arms 

Cylindrical
/ spherical 

charged 
brush of 
GS-GAG 
side arms 

100 nm

Biological 
Brushes 

NF-
M 

NF-
H 
NF-H 

Neurofilament (NF) 

Microtubule (MT+ MAP) 

Parkinson, ALS and  
Alzheimer’s 

diseases are linked 
to disorganization 
of cytoskeleton in 

neurons 

Neuron 

erythrocyte 

erythrocyte 



Scaling theory of semidilute polymer solutions  

Average end-to-end distance 

R0
 = aNv = aN3/5 

R0 

Overlap concentration 
φΝ

* = Na3/R0
3 ~ N−4/5 

Semidilute solution (melt of concentrational blobs) 

R2 ~ ξ2NB 

Blob size ξ/a ~ v1/4φΝ
-3/4 

Average end-to-end distance 

ξ 
φΝ

 >> φΝ
*  

Fint ~ kBT NB 

Interaction free energy 

Flexible chains (ratio of Kuhn segment length A and monomer size a, p=A/a =1. Athermal solvent: second virial 
coefficient of monomer-monomer interactions  v = τa3 = a3 (or, τ = 1). 

In a theta-solvent, τ = 0, size of concentrational blob   ξ/a ~ φΝ
-1 

Inferior solvent strength (τ < 1)  leads to decrease in size of concentrational blob and its eventual de-swelling. 
Chain statistics becomes  Gaussian  when v < φΝ         



Loose chain grafting to a substrate. Mushroom regime: 
tethered chains do not “feel” each other. 

2R0  

“Mushrooms” 

H ~ R  

θ-solvent (τ =0), weakly adsorbing surface 

 R  

“Mushrooms” 

H ~ R0  

H 

Athermal sovent (τ =1), nonadsorbing surface 

d >>R0 

“Mushrooms” 

H ~ R  

Poor solvent (τ <0),  partial surface wetting  

 R  



Increasing  chain grafting density: transition from 
mushroom to brush regime 

d < R0 

 R 

H ~ R0 

H 

d >> Rglobule 

separate globules  

 Rglobule 

d >> Rglobule 

aggregates (pinned, octopus) micelles  

 Rmicelle 

Poor solvent conditions (τ < 0)  

H > aN1/2  
laterally uniform collapsed brush 

d  

H 

Flexible 
chains under 
good and θ-
solvent 
conditions 

d << R0 

 H >>R0 

 H  

Brush with laterally uniform density – semi-dilute solution 
with unknown concentration φΝ because chains can stretch 



Brush in athermal solvent, τ = (T − θ)/T = 1 

Brush thickness in athermal solvent  H  NB ξ  aNs-1/3 

Interaction free energy 
(per chain) 

Finteraction/kBT  NB  NφΝ
 

5/4 

Elastic free energy Felastic /kBT  H2/R2(φΝ)  H2/(ξ2NB)    
 

Minimization with respect to  φΝ  gives  equilibrium value 
of φΝ = s-2/3 and  size of concentrational blob ξ  s1/2 = d  

Free energy (per chain) F = Finteraction+ Felastic 

Brush free energy in athermal solvent  F/kBT  NB  aNs-5/6 

Number of blobs  NB = N/g  NφΝ
 5/4 

Volume fraction of monomers φΝ = Na3/sH  Grafting area per chain s = d2 

 ξ  aφΝ
 -3/4  ag3/5 

number of monomers 
per blob 

ξ 
End-to-end distance   R2  ξ2NB a2NφΝ

 -1/4 

S. Alexander, 1977  

H 

ξ 

d 

Brush in contact with athermal solvent  

ξ = d 



Brush in athermal solvent. MD simulation 
MD simulations,  A.Kumar  High 

grafting 
density 

Crossover 
region 



Alexander−de Gennes (AG) model 

Semidilute solution 
of P chains  

To the left of blue line: 

Brush dominated 
regimes, “mushroom” 
and Alexander brush. 

Here,  ξP > ξN,  P and N 
chains are demixed 

0 

σ∗=N-6/5 

φ∗= P-4/5 1 

σ=d-2 

Volume fraction of mobile polymer φ  

G
ra

fti
ng

 d
en

si
ty

 σ
  

Dilute solution 
of P chains  

H 

ξ 
N ½ < P < N 

N 

P>>1 

d 

De Gennes, 1980  



Mushroom in contact with solution of mobile P chains 

Melt of chains of blobs:  

φ∗ < φ << φ∗∗ φ∗∗ < φ << 1 φ << φ∗ 

NBN = Nφ5/4 NBP = Pφ5/4 

N- chain is swollen 
when  NBP < NBN

1/2  
N- chain is Gaussian chain of 

blobs when NBP > NBN
1/2  

Flory theorem 

R2 = b2N melt 



Solution dominated regimes of the brush 

φ∗ 

Semidilute solution 
of P chains  

Dilute solution 
of P chains  

P-6/5 

1 

N ½ < P < N 

1 

φ∗∗ 

G
ra

fti
ng

 d
en

si
ty

  σ
 =

D
-2

  

Volume fraction of mobile polymer φ  



G
ra

fti
ng

 d
en

si
ty

  σ
 =

D
-2

  

Volume fraction of mobile polymer φ  

0 

       N-6/5 

φ∗ 

Semidilute solution 
of P chains  

Dilute solution 
of P chains  

P-6/5 

1 φ∗∗ 

1 

Between blue and green 
lines ξP = ξN, but P and N 

chains are demixed 
because grafted chains 
are stretched. Brush is 

compressed by solution 
of P chains 

Below green line P 
chains penetrate the 

brush 

Compression of brush by solution of mobile P chains 

H=Nσ/φ 



Interpenetration of mobile P- chains in brush of N-chains 

Tension blob  

ξt ~ NB ξ2 /H 

(unstretched portion of N-
chain) determines 
penetration length 

H=Nσ/φ 

When size of tension blob ξt = size of P-chain in solution, mobile chains penetrate 
throughout the brush of N-chains. Brush remains (weakly) stretched. 

T 

d 



Diagram of states and summary of A-G model 

       N-6/5 

G
ra

fti
ng

 d
en

si
ty

  σ
 =

d-2
  

Volume fraction of mobile polymer φ  

0 φ∗ 

Semidilute solution 
of P chains  

Dilute solution 
of P chains  

P-6/5 

1 φ∗∗ 

N ½ < P < N 

Mushrooms 

1 Brush 
compressed 
by solution 
of P chains 

                                  
  

φ 

r 

Chain free end is 
within last blob 

Polymer density 
profile is flat except 

for first and last blobs 

Tethered chains are 
stretched normally to 

the surface, H ~ N 

Blobs have same size 

Concept of  brushes 
interpenetration :       
tension blob ξt 



Inferior solvent strength: Brush in a theta solvent, τ = 0, w = a6 

Brush thickness in theta solvent  Hθ  NB ξ  aNs-1/2 

Interaction free 
energy (per chain) 

Finteraction/kBT  NB   NφΝ
 

2 

Elastic free energy Felastic /kBT  H2/R2  H2/(a2N)    
 

Minimization with respect to  φΝ  gives  equilibrium value 
of φΝ = s-1/2 and  size of concentrational blob ξ  s1/2 = d  

Free energy (per chain) F = Finteraction+ Felastic 

Brush free energy in theta solvent  F/kBT  NB   aNs-1 

 ξ  aφΝ
 -1 = ag1/2 

number of monomers 
per blob 

ξ Number of blobs  NB = N/g  NφΝ
 2 

End-to-end distance   R2 = a2N 

T.M. Birshtein & E.B. Zhulina, 1983   

Hθ 

ξ 

d 

Brush in contact with theta solvent  

ξ = d 



Diagram of states of planar brush in contact with pure 
solvent above θ-point  

Brush in 
θ-
solvent 

Increase in area per chain s/Na2 1 

1 

τ = (T− θ)/T > 0 

Mushroom  
in θ-solvent 

Brush in 
good 
solvent 

Mushroom  
in good 
solvent 

0 

τN1/2 

  

Im
pr

ov
in

g 
so

lv
en

t q
ua

lit
y 

                                  
  

φ 

r 
Physical transparency of brush model based on blob concepts  

Free chain end is within last blob, polymer density profile is flat 
everywhere except for first and last blobs 

Tethered chains are noticeably stretched normally to the surface, H ~ N.  

s = R0
2 

chain/blob swelling 



Stretching of a single globule 
Halperin & Zhulina, 1991; Williams 1995   

D 

tadpole 

thermal blob ξ  aτ−
1 

ellipsoidal globule 

f 

D0  
a(N/τ)1/3 

spherical globule 
stretched Gaussian chain 

D 

f 

D0 

kBTξ−1 

theta 

In collapsed brush, chain conformation is 
governed by surface free energy 

Inferior solvent strength below θ-point.  
Lateral decomposition of brush into pinned micelles. 



Dimensions of pinned micelles  

D 

N R R – radius of the micellar core ;   R(Np/τ)1/3 

D – radius of the micellar corona;  D  (ps)1/2  
p – aggregation number 
s – grafting area per chain 

Williams 1993, Klushin 1995    

 

Free energy (per chain) F = Fleg+ Fsurface 

Free energy of leg (string of thermal blobs)        
Fleg/kBT  D/ξ  (ps)1/2 τ/a  

Surface free energy  Fsurface/kBT   [R2/ξ2]/p 
        N2/3 τ4/3/p1/3  

Minimization with respect to p gives  equilibrium  
aggregation number  p  N4/5 τ2/5/s3/5  

Boundaries for this regime  are given by p =1 (or  shigh  a2N4/3τ2/3 >> 
R2

globule) and D  R (or slow  a2N1/2τ-1 and  D  R  aN1/2 ) 

leg 

core 

D 

ξ = a/τ 

Wide regime of pinned (octopus) micelles      a2N1/2τ-1   slow < s  < shigh  a2N4/3τ2/3 

Single globules  s >  shigh
 

Laterally homogeneous stretched brush    slow <  s 

s 



Brush diagram of states below Θ-point  

s/a2N 

−τN 1/2 

τ = (T – θ )/T  < 0 

increase in area per chain 

Inferior 
solvent 
strength 

Mushroom  
in θ-solvent 

Collapsed 
globule 

Brush in 
θ-
solvent 

Collapsed 
brush 

Pinned 
micelles 

s = Rglobule
2 

s = Rθ
2 



Novel model of polymer dry brush.  

x n 

Concept of polymer 
trajectory: x(n) 

Semenov 1985 

y 

Dry brushes (no solvent): chains are exposed to self-consistent 
parabolic molecular field and are stretched unequally and 
nonuniformly. Free ends are distributed throughout  the brush. Free 
energy is by ~10% lower than in box-like model with fixed free ends. 

Elastic free energy of chain with end 
position  y 

Felastic(y)/kBT = (3/2a2) dx2/dn 

Elastic free energy per chain  

In terms of  trajectory x(n):  

Felastic = Felastic(y)g(y)dy  

distribution function of  free ends  

Minimization of  Felastic  with  additonal  constraint (dn = N for any y) 
gives:   chain extensibility dx/dn = E(y,x) = (π/2N)(y2− x2)1/2   
 

y 

0 

Alexander – de Gennes (AG) 
model, 1977-1980 

                                  
  

φ 

x 

Free chain  end are 
within last blobs 

Polymer density 
profile is flat except 

for first and last blobs 

Chains are stretched  
equally 

 



Generalization to brush swollen with solvent.  

finteraction [φ] = (1-φ)ln(1-φ ) + χφ(1−φ) 

virial expansion at φ <<1 

finteraction [φ] = (1/2-χ)φ2 +  1/6φ3 + ..= v φ2 +  wφ3+…  

δfinteraction [φ]/δφ = Const −3π2x2/8a2N2 

Basic equation for polymer density profile: 
Extensibility  E(y,x) = dx/dn = (π/2N)(y2− x2)1/2   

Result of minimization free energy F: 

In swollen brushes with Gaussian chain elasticity,  molecular 
potential is the same as in a dry brush (parabolic). The 
polymer density profile is not flat. Shape of profile and 
distribution of free ends depend on solvent quality.      
Inferior solvent strength leads to gradual brush collapse.  

x/H 

φ/φmax 

0 1 

Increase in solvent strength 

R
ed

uc
ed

 th
ic

kn
es

s H
 

Collapsed state 

Swollen state 

Milner, Witten, Cates 1988 
Zhulina, Pryamitsyn, Borisov 1989 

Felastic = Felastic(y)g(y)dy  

Free energy per chain:          F = Felastic  + Finteractions  

Finteraction = sfinteraction(x)dx  



Novel features with respect to A-G model.  

Weaker response to compression at small deformations ∆q = ∆H/H<<1. 
In A-G model restoring force   G ~ ∆q. 
In SCF model G ~ (∆q)2 in good solvent and G ~ (∆q)3/2  in theta-solvent.   
  

Different  interpenetration length: size of last tension blob ξt 
  

In A-G model:  ξt  = R2/h =  ξ2NB/ h = N3/4s1/4/h3/4  

d 

h = H-∆H  

G 

ξt 
ξ 

In SCF model:  ξt = (R2/h)1/3 =  a4/3N2/3/ h1/3 

d 

h ξt 

(ξt/a)2= dn = 

dx/E(h,x)   

h 

h-ξt 

Internal brush structure: polymer density profile φ(x) and distribution of free ends 
g(y) in planar and curved (convex) polymer brushes.  



Curved polymer brushes 

H ~ Nβ β <1 

Blob size ξ increases with distance r 

r 

R 

H 

Bending bilayers 

Stabilization of 
colloids 

Molecular brushes: 
stars, combs, … 

Scaling models of 
self-assembly 

(micelles) 



Scaling model of spherical polymer brush 

In contrast to  a planar brush, polymer density in 
a spherical brush changes  
  
from  φ* = φ(r = H)  p2/5N−4/5 
 

to φ** = φ(r = R)  (s/a2)−2/3 

 

Blob size ξ increases with distance r   
(dense packing of concentrational blobs):  

ξ(r) = d(r/R) = r/p1/2 

Free energy per chain F/kBT   dr/ξ(r)  p1/2 ln(H/R)  

Polymer density  profile φ(r)  [ξ(r)/a]-4/3  p2/3(a/r)4/3 

Normalization  of  polymer density profile 
gives brush thickness  H  ap1/5N3/5  

r2drφ(r) = pΝ  

r 

R 

H 

Daoud & Cotton 1982 

ξ(r)  
d 

H 

Number of chains 
p  R2/s   R2/d2 

φ*  

φ**  

matrix 



Scaling model of cylindrical polymer brush 

Dense packing of concentrational blobs 
2πrL = (2πRL/s)ξ(r)2 

ξ(r) = d(r/R)1/2 

Free energy per chain F/kBT    (ap2)5/8 N3/8   

Polymer density  profile φ(r)  [ξ(r)/a]-4/3  
p2

2/3(a/r)2/3 where p2 = R/d2 is number of chains per unit 
length of cylindrical matrix 

Normalization  of  polymer density profile 
gives brush thickness  H/a  a(ap2)1/4N3/4  

rdrφ(r) = p2Ν  

r 

d R 

ξ(r ) 

L 
matrix 

Birshtein & Zhulina 1987 



Comb-like polymer (molecular brush)  

Iθ 

I+ 
τ=(T−θ)/T 

m 

1 

-1 
n 

m 

n 

Diagram of states of comb-like macromolecule 

 Fn /kBT  (a/h)5/8 n3/8   
Free energy per graft F = Fm + Fn 

 Fm /kBT  h5/2 /(a5/2m3/2)   Pincus elasticity for stretched swollen 
segment of backbone 

Free energy of cylindrical bush of side chains 

Balancing Fn   Fm  gives h  
am3/5(n/m)3/25    Cylindrical brush thickness  H  an3/5(n/m)3/25    
  For densely grafted molecular brushes h  am and transition 
to cylindrical brush with p2 = 1/(am)    

Local structure of molecular brush Birshtein et al 1987 

n 

m 

H 

h 

“Superblob” of size H 

Large scale features of molecular brush 

End-to-end distance        R~ H(Lp/H)1/5NH
3/5 

H 

Number of superblobs 

Persistence length 

R 

Lp/H −?  



Semi-dilute solution of star-like polymers 

ρ 

r0 

H = (pNa3/φ)1/3 

Birshtein & Zhulina 1984 

ξ(φ) = aφ−3/4 

Quasi-globular regime 
with star segregation 

Non-uniformly 
stretched  chain 
segment  

ρ = p1/2ξ(φ) 

At  φ > φ * * = p8/5/N4/5 

peripheral segment  becomes unstretched, and in semi-dilute 
solution of branches stars penetrate each other. 

r 

r0 

H 

Daoud & Cotton 1982 

ξ(r)  

H = ap1/5N3/5  

Overlap concentration φ* = p2/5/N4/5 

is on the order of magnitude of 
concentration in the last blob    

φ(r) = p2/3/r4/3  

r0 = ap1/2 
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