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Plan
1. Two tone driven qubit in the adiabatic regime 

• Quantized energy pump 
• Connections to topological invariants  
• Application: Cavity state boosting 
• Experiments with superconducting qubits 

2. New driven phases of matter 
• Steady state energy pumps



Two-tone driven spin

H(t) = −
1
2

⃗B (t) ⋅ ⃗σ



⃗B(t) =
sinω1t
sinω2t

Bz− cosω1t − cosω2t

Martin et al, Phys. Rev. X 7, 041008;     Crowley et al, Phys. Rev. B 99, 064306;     Crowley et al, Phys. Rev. Lett. 125, 100601

Topological classes of quantum dynamics

Rate of change of 

energy in the system

Power of drive 1 Power of drive 2

∂t⟨H⟩ = ⟨∂tH1⟩ + ⟨∂tH2⟩ = P1 + P2

Observables of interest: energy currents
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Rate of change of 

energy in the system

Power of drive 1 Power of drive 2

∂t⟨H⟩ = ⟨∂tH1⟩ + ⟨∂tH2⟩ = P1 + P2 = 0

Topological classes of quantum dynamicsObservables of interest: energy currents



Martin, Refael, Halperin, 2017

Two regimes for dynamics



Quantum dynamics in driven systems

Martin, Refael, Halperin, 2017;     PC, Martin, Chandran, PRB, 2018;     PC, Martin, Chandran, PRL, 2020
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Quantum dynamics in driven systems

Martin, Refael, Halperin, 2017;     Crowley, Martin, AC (2018, 2020)



Quantum dynamics in driven systems

1 2

Why would a single 
qubit exhibit this 

quantised response? 



Synthetic dimensions for a driven qubit

Driven two-level system Two-band lattice system

Apply Band theory!



Synthetic lattice model
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2d lattice with two levels 
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Synthetic lattice model

Photon number n1
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2 ⃗ω = (ω1, ω2)

Uniform 
electric field

H = BmSx + B0(a†S+ + h.c.) + B0(b†S− + h.c.) + …

ω2
ω1

+ω1a†a + ω2b†b



Classical limit: large n1, n2

Photon number n1
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2 ⃗ω

1.  translationally invariant  tight-binding model  
2.  with 2-orbitals per site (m levels, m orbitals per site) 
3. uniform electric field in non-lattice direction



Synthetic band structure
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For a moment, ignore the electric field. Then we have a translationally 
invariant 2d tight-binding model with Bloch bands.



Synthetic bands can have topological invariants
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Momentum k

Bands can have Chern 
numbers!

En
er

gy
ϵ

⃗ω

Chern numbers have physical consequences for wave packet motion in the presence of a weak 
electric field = low frequency driving  



Wave-packet dynamics

⃗r

· ⃗r

Energy

Momentum

⃗k

· ⃗k



Wave-packet dynamics

n

Force due to 
external electric 
field

Lorentz force due to 
the external magnetic 
field

Anomalous velocity due to 

Berry curvature ⃗Ω = ⃗∇ × ⃗A ⃗k

Group velocity due to the 
dispersion of the band



Wave-packet dynamics

⃗A ⃗k = ⟨un ⃗k | i ⃗∇ ⃗k |un ⃗k⟩

n

Force due to 
external electric 
field

Lorentz force due to 
the external magnetic 
field

Anomalous velocity due to 

Berry curvature ⃗Ω = ⃗∇ × ⃗A ⃗k

Group velocity due to the 
dispersion of the band



Wave-packet dynamics for the synthetic model

n

The electric field ⃗E = (ω1, ω2)

ℏ(kx, ky) = (ω1t, ω2t)

Brillouin zone

⃗ω



Wave-packet dynamics for the synthetic model

n

The electric field ⃗E = (ω1, ω2)
Brillouin zone

⃗ω

∫ d2k ⇒ ∫ dt

Later time

ℏ(kx, ky) = (ω1t, ω2t)



Wave-packet dynamics for the synthetic model

n

Lorentz force due to 
the external magnetic 
field

∝ Ω × ⃗E
Motion of the wave packet 
transverse to the electric field

As  changes with , this 
transverse velocity changes in 
time

Ω k



Wave-packet dynamics for the synthetic model

n

Lorentz force due to 
the external magnetic 
field

∝ Ω × ⃗E
Motion of the wave packet 
transverse to the electric field

Chern number =>  is quantized  ∫ d2kΩ

=>  (transverse velocity)          is quantized
1
T ∫

T

0
dt



Energy pump from the synthetic quantum Hall effect

Photon number n1
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·n2 = C/T1
Chern number

TKNN, 1982
Martin, Refael, Halperin (2017)

“Topological frequency 
conversion”

P2 = − ω2
·n2

  Crowley, Martin, AC (2018)



Invariants with a finite electric field

  Crowley, Martin, AC (2018)

By flux threading
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Flux threading of 2  moves the quasi-energy state up or down the Stark ladder 
by C units

π



Quantized energy pump

1 Connection to topological 
invariant

Questions?



Interesting application: Cavity quantum state 
Boosting

• Method to produce non classical states of light 
• Fock states 
• Cat states 
• … 

• Non classical states of light are a quantum resource  

• Quantum metrology 
• Universal photonic quantum computation

Review: Gilchrist et al (J. Opt. B 2004) 



Cavity quantum state Boosting

Nathan, Martin, Refael, PRB, 2018,    Long, Crowley, Kollar, Chandran, PRL, 2022

Classical drive

Quantum Cavity
Quantise the second drive



Cavity quantum state Boosting

Long, Crowley, Kollar, AC, PRL, 2022

Classical drive

Quantum Cavity

Initial state:

Special times Tm

|ψ(0)⟩ = | → ⟩∑
n

cn |n⟩

|ψ(Tm)⟩ ≈ | → ⟩∑
n

cn |n + ⟨ ·n⟩Tm⟩

Cavity state is coherently boosted!



Hamiltonian

H = Ω2b̂†b̂ + B0(b̂S+ + h . c.) − ⃗B c(t) ⋅ ⃗S
J-C interaction Slow classical 

driveCavity energy

⃗B c(t) = (Bm + Bd cos Ω1t) ̂x + Bd sin(Ω1t) ̂z

Ω1Ω2

Adiabatic limit: Ω1,2 ≪ B0 n, Bm, Bd

Incommensurate: Ω1/Ω2 ∉ ℚ
Long, Crowley, Kollar, AC (2021)
See also: Nathan et al (2021)



A numerical simulation showing boosting
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|ψ(t = 0)⟩ = | → ⟩ |10⟩Initialize



Energy pump in the cavity limit
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t /T1

Nathan et al (2021)



Cavity state boosting
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t /T1

Nathan et al (2021)

Blue arrows: theoretically 
predicted rephasing times



Why cavity state boosting

• Because of Bloch oscillations of the wave packet along the electric field

n

Causes oscillatory motion along the direction of the electric field in a tight-binding model 



Reminder: Bloch oscillations in d=1

X
Ωn



Reminder: Bloch oscillations in d=1

X
Ω

Time

1) Wavepacket oscillates
2) Wavepacket breathes

2π /ω1



Bloch oscillations in 2d

Photon number n1
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Wavepacket rephases

Almost periods Tn
ω1TN ≈ 2π, ω2TN ≈ 2π



Bloch oscillations in 2d

Photon number n1
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⃗Ω

Anomalous velocity ⇒ wave packet 
is boosted!

Wavepacket rephases

Almost periods Tn
ω1TN ≈ 2π, ω2TN ≈ 2π



Cavity quantum state Boosting
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Breathing + Bloch oscillations



An aside: entanglement between qubit and 
cavity



Observing cavity state boosting

Superconducting circuit-QED architecture
Ongoing: Martin Ritter + Kollar group, D. Long



Basics of the architecture

Solid state deviceT ≈ 10mK



Basics of the architecture

Modes of Transmission Lines Resonators

Fig. 2.6 Schematic illustration of a typical coplanar waveguide (CPW) resonator used in

circuit QED together with its discretized lumped-element equivalent circuit. The qubit lies

between the center pin and the adjacent ground plane and is located at an antinode of the
electric field, shown in this case for the full-wave resonance of the CPW. From Blais et

al.(2004).

Each segment of the line of length dx has inductance ! dx and the voltage drop along
it is −dx ∂x∂tΦ(x, t). The flux through this inductance is thus −dx ∂xΦ(x, t) and the
local value of the current is given by the constitutive equation

I(x, t) = −
1

!
∂xΦ(x, t). (2.121)

The Lagrangian for a system of length L (L is not to be confused with some discrete
inductance)

Lg ≡
∫ L

0
dxL(x, t) =

∫ L

0
dx

[
c

2
(∂tΦ)

2 −
1

2!
(∂xΦ)

2

]
, (2.122)

The Euler-Lagrange equation for this Lagrangian is simply the wave equation

v2p∂
2
xΦ− ∂2tΦ = 0. (2.123)

The momentum conjugate to Φ(x) is simply the charge density

q(x, t) ≡
δLg

δ∂tΦ
= c∂tΦ = cV (x, t) (2.124)

and so the Hamiltonian is given by

H =

∫ L

0
dx

{
1

2c
q2 +

1

2!
(∂xΦ)

2

}
. (2.125)

Blais et al., PRA 69, 062320 (2004)

Si substrate

Al superconducting islands

Microwave cavity

Josephson junction

Defines the qubit

T ≈ 10mK



Chip for cavity state boosting

The Kollar group

•Boost cavity: 4.8 GHz 
•Quality factor ~ 100,000 

•Readout cavity: 7.4 GHz 
•Qubit: max frequency 6.5 GHz 
•Rabi coupling: ~50 MHz

Transmon qubit

Boost cavity

Drive/read-out 
cavity

H = Ω2b̂†b̂ + B0(b̂S+ + h . c.) − ⃗B c(t) ⋅ ⃗S

Realize in a rotating frame



High Q boost-cavity (~100,000)

Low direct cross-talk between cavities

Slow drives on qubit

Observing cavity state boosting



Theory: quantised 
energy pumping & 
synthetic dimensions

1
Applications: Cavity 
state boosting2

Questions?



New driven phases of matter

Topological 
pumping effect

Spatially extended 
systems+ Robust pumping 

away from the low 
frequency limit

=



Quasi-energy states
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In order that there be energy pumping between the drives, the quasi-energy states have to be 
delocalized and chiral on the synthetic lattice.+ high-order processes in E-field ω  ⇒ non-chiral 

localized states



Quasi-energy states

n1 , # photons in drive mode 1

n 2 
, p

ho
to

ns
 in

 d
riv

e 
m

od
e 

2

But this situation is unstable because any perturbation would couple the two states. 



Localized quasi-energy states generically
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n1 , # photons in drive mode 1

Pumping is pre-thermal

Localization => Energy pumping cannot proceed indefinitely



Giant energy oscillations
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t /T1
Vuina, Long, Crowley, AC (2023)



Can we create a steady state energy pump?



Yes! Separate the delocalized states 
on the frequency lattice



Coupled layer model

 – “up” pumping mode𝑐†
𝑗,+(𝑡)

 – “down” pumping mode𝑐†
𝑗,−(𝑡)

58[Long, Crowley, AC, PRL 126, 106805 (2021)] 

[Nathan, et al., PRL 127, 166804 (2021)] 

[Long, Crowley, AC, PRB 106, 144203 (2022)]

Start with a chain of decoupled spinful fermionic sites. Fine-tune 
the on-site Hamiltonian to have pumping modes. 



Coupled layer model

 – “up” pumping mode𝑐†
𝑗,+(𝑡)

 – “down” pumping mode𝑐†
𝑗,−(𝑡)

59[Long, Crowley, AC, PRL 126, 106805 (2021)] 

[Nathan, et al., PRL 127, 166804 (2021)] 

[Long, Crowley, AC, PRB 106, 144203 (2022)]

Now couple the down modes on site j to the up modes on the site j+1

 ] +𝜖𝑐†
𝑗, −(𝑡) 𝑐𝑗+1,+(𝑡)

Hhop(t) =



 𝐻hop(𝑡) = 𝐽(𝑡)[(1 − 𝜖)𝑐†
𝑗,+(𝑡) 𝑐𝑗,−(𝑡)

 ] +𝜖𝑐†
𝑗, −(𝑡) 𝑐𝑗+1,+(𝑡)

Topological
Bulk energy 
circulation

𝜖 = 1
 – “up” pumping mode𝑐†

𝑗,+(𝑡)

 – “down” pumping mode𝑐†
𝑗,−(𝑡)

Coupled Layer Model
60[Long, Crowley, AC, PRL 126, 106805 (2021)] 

[Nathan, et al., PRL 127, 166804 (2021)] 

[Long, Crowley, AC, PRB 106, 144203 (2022)]



A non-adiabatic energy pump in (1+2)

  Long, Crowley, AC, 2021, 2022,     Nathan et al, 2021 

(  are the drive frequencies)Ω1,2



Theory: quantised 
energy pumping & 
synthetic dimensions

1
Beyond: new 
phases of driven 
quantum matter

3
Applications: Cavity 
state boosting2

Questions?



Last lecture

1.Localization/delocalization on the frequency lattice 
1.Connections to chaos 
2.Floquet’s theorem  

2.Topological classification of multi-tone driven hopping models 
•  Non-trivial classification: quantized non-adiabatic pumps 

3.MBL with two tone driving 
1.Interacting, disordered topological pumps


