Energy pumps with multi-tone driving

Anushya Chandran

Lecture 2 in “Non-Equilibrium Quantum Dynamics” summer school

Based on work with David Long, Phil Crowley, Martin Ritter + Alicia Kollar




Plan

1. Two tone driven qubit in the adiabatic regime
e Quantized energy pump
e Connections to topological invariants
e Application: Cavity state boosting
e Experiments with superconducting qubits
2. New driven phases of matter
e Steady state energy pumps



Two-tone driven spin
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Observables of interest: energy currents

d(H) = (0H,) + (9;H,) = P, + F,

Rate of change of Power of drive 1
energy in the system
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Observables of interest: energy currents
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Two regimes for dynamics

d0(H) = (0,H,) +(0,H,) =P, + P, =0

Rate of change of Power of drive 1
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Quantum dynamics in driven systems
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Quantum dynamics in driven systems

d0(H) = (0,H,) +(0,H,) =P, + P, =0

Rate of change of Power of drive 1
energy in the system
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Quantum dynamics in driven systems

d0(H) = (0,H,) +(0,H,) =P, + P, =0

Rate of change of Power of drive 1
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Quantum dynamics in driven systems
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Quantum dynamics in driven systems

W1

Why would a single
qubit exhibit this 0<|B,| <2

; P) Constant rate of average energy transfer
quantISEd response: from drive mode 1 into drive mode 2

Wy



Synthetic dimensions for a driven qubit
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Driven two-level system Two-band lattice system



Synthetic lattice model
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2d lattice with two levels
per lattice site



Synthetic lattice model
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Synthetic lattice model
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Synthetic lattice model
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Synthetic lattice model

H=B, + Bya'ST+h.c)+Byb'S™ +hc)+...
+w,a’a + w,b’h
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Classical limit: large n1, n2

1. translationally invariant tight-binding model

2. with 2-orbitals per site (m levels, m orbitals per site)
3. uniform electric field in non-lattice direction
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Synthetic band structure

For a moment, ignore the electric field. Then we have a translationally
invariant 2d tight-binding model with Bloch bands.
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n,, # photons in drive mode 2

n,, # photons in drive mode 1



Synthetic bands can have topological invariants

Chern numbers have physical consequences for wave packet motion in the presence of a weak
electric field = low frequency driving
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Wave-packet dynamics
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Wave-packet dynamics

hk = —eE —er x B

Force due to Lorentz force due to
external electric the external magnetic
field field



Wave-packet dynamics

Group velocity due to the Anomalous velocity due to

dispersion of the band Berry curvature Q = V X X%
. s -
r - X Kk

hok

—ell —er x B

hk

Force due to Lorentz force due to
external electric the external magnetic
field field



Wave-packet dynamics for the synthetic model

hk = —eE

The electric field E = (0, w,)

h(kx, ky) — (a)lt, a)zt)

Brillouin zone




Wave-packet dynamics for the synthetic model

szk = Jdt

hk - GE Later time

Brillouin zone

The electric field E = (0, w,)

h(kx, ky) — (wlt, a)zt)




Wave-packet dynamics for the synthetic model

y 1N .
: x QX E
hk —_— €E - Motion of the wave packet

transverse to the electric field

As € changes with k, this
transverse velocity changes in
time



Wave-packet dynamics for the synthetic model

r = + QO xk .
x QX E

Motion of the wave packet
transverse to the electric field

Chern number => szkQ is quantized

T
=> ?[ dt (transverse velocity) is quantized
0



Energy pump from the synthetic quantum Hall effect
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Invariants with a finite electric field

By flux threading

Flux threading of 27 moves the quasi-energy state up or down the Stark ladder
by C units

A902 =2r A902 =4r

n,, photons in drive mode 2

20, 30,
n,, # photons in drive mode 1 Q-7

Crowley, Martin, AC (2018)



Questions?

Quantized energy pump

@ Connection to topological
invariant
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Interesting application: Cavity quantum state
Boosting

« Method to produce non classical states of light
« Fock states

o Cat states ‘O> — |n>

e Non classical states of light are a quantum resource
Review: Gilchrist et al (J. Opt. B 2004)

e Quantum metrology
« Universal photonic quantum computation



Cavity quantum state Boosting

Classical drive

W1

0<|B,| <2
Constant rate of average energy transfer
from drive mode 2 into drive mode 1 Quantised energy
pumping
Into cavity

Quantise the second drive

Quantum Cavity

Nathan, Martin, Refael, PRB, 2018, Long, Crowley, Kollar, Chandran, PRL, 2022



Cavity gquantum state Boosting

Initial state: Classical drive
a
w(0) =1 =) ) c,ln) %

. n : @1
Special times Tn, (n) e
Quantised.energy 2”

. pumping

WD)~ | =) ) c,ln+(mT,) &= 0,
n

Quantum Cavity
Cavity state is coherently boosted!

Long, Crowley, Kollar, AC, PRL, 2022



Hamiltonian

H=Qb'b+ BybSt+h.c)— B0 S
Slow classical

Cavity energy J-C interaction drive

B (1) = (B, + B,cos Q)% + B, sin(Q,1)?

Adiabatic limit; 91,2 < BO\/% B, ,B,
Incommensurate: QI/Q2 ¢ @

Long, Crowley, Kollar, AC (2021)
See also: Nathan et al (2021)



A numerical simulation showing boosting
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Photon number

Energy pump in the cavity limit
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Photon number

Cavity state boosting

P(n)
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Blue arrows: theoretically
predicted rephasing times

Nathan et al (2021)



Why cavity state boosting

« Because of Bloch oscillations of the wave packet along the electric field

Causes oscillatory motion along the direction of the electric field in a tight-binding model
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Reminder: Bloch oscillations in d=1
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1) Wavepacket oscillates
2) Wavepacket breathes



Photon number no

Bloch oscillations in 2d

Almost periods Tn

...... Q_w. .
f/ Ty = 2r, 0,1y = 21

Wavepacket rephases

Photon number n4



Photon number no

Bloch oscillations in 2d

Photon number n4

Almost periods Tn
Ty = 2r, 0,1y = 21

Wavepacket rephases

Anomalous velocity = wave packet

is boosted!



Cavity gquantum state Boosting

Breathing + Bloch oscillations

n,, # photons in drive mode 2

n,, # photons in drive mode 1



An aside: entanglement between qubit and
cavity
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Observing cavity state boosting

Ongoing: Martin Ritter + Kollar group, D. Long
Superconducting circuit-QED architecture



Basics of the architecture
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T ~ 10mK




Basics of the architecture

Microwave cavity

T ~ 10mK
> Josephson junction

Defines the qubit

Si substrate

Blais et al., PRA 69, 062320 (2004)



Chip for cavity state boosting

e Boost cavity: 4.8 GHz
e Quality factor ~ 100,000
« Readout cavity: 7.4 GHz
e Qubit: max frequency 6.5 GHz
e Rabi coupling: ~50 MHz

H=Qb'b+ BybSt+h.c)-

Realize in a rotating frame
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The Kollar group



Observing cavity state boosting

M High Q boost-cavity (~100,000)
4 Low direct cross-talk between cavities

[ Slow drives on qubit




Questions?

Theory: quantised
energy pumping &

@ Applications: Cavity
synthetic dimensione,

state boosting
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New driven phases of matter

Robust '
Topological Spatially extended OPUSL PUMPING

away from the low

i ffect t
pUmMPpIng errec Systems frequency limit




Quasi-energy states

In order that there be energy pumping between the drives, the quasi-energy states have to be
delocalized and chiral on the synthetic lattice.

n,, photons in drive mode 2

n,, # photons in drive mode 1



Quasi-energy states

But this situation is unstable because any perturbation would couple the two states.

n,, photons in drive mode 2

n,, # photons in drive mode 1



Localized quasi-energy states generically

Localization => Energy pumping cannot proceed indefinitely

B/w

Pumping is pre-thermal

n,, photons in drive mode 2

n,, # photons in drive mode 1



Quanta pumped

Giant energy oscillations
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Can we create a steady state energy pump?



Yes! Separate the delocalized states
on the frequency lattice
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Localized bulk states
Chern number
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[Long, Crowley, AC, PRL 126, 106805 (2071)]

CO u p | ed | aye ' MO d e I [Nathan, et al., PRL 127, 166804 (2021)]

[Long, Crowley, AC, PRB 106, 144203 (2022)]

Start with a chain of decoupled spinful fermionic sites. Fine-tune
the on-site Hamiltonian to have pumping modes.

\ cJ7L+(z‘) — “up” pumping mode



[Long, Crowley, AC, PRL 126, 106805 (2021)]

CO u p | ed I aye F MO d e I [Nathan, et al., PRL 127, 166804 (2021)]

[Long, Crowley, AC, PRB 106, 144203 (2022)]

Now couple the down modes on site j to the up modes on the site j+1

Hy, (1) =

W et et +€ Ciy14+(D)]

cJ7L+(t) — “up” pumping mode



[Long, Crowley, AC, PRL 126, 106805 (2021)]
[Nathan, et al., PRL 127, 166804 (2021)]

CO u p I ed Laye r M Od e I [Long, Crowley, AC, PRB 106, 144203 (2022)]

H,,,,(1) =

+€ Cir1 +(D]

Bulk energy
circulation



A non-adiabatic energy pump in (1+2)
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Questions?

Theory: quantised
energy pumping &

@ Applications: Cavity Beyond: new
synthetic dimensione,

state boosting @ phases of driven
quantum matte;
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Last lecture

1.Localization/delocalization on the frequency lattice
1.Connections to chaos
2.Floquet’s theorem
2. Topological classification of multi-tone driven hopping models
e Non-trivial classification: quantized non-adiabatic pumps
3.MBL with two tone driving
1.Interacting, disordered topological pumps



