; bV TD ?‘:’D@' Lus

\/OP(M‘ > IT7

* Pimw  (BEART B Swmt TPD
- I—\/Fs CSF'U%W/)

— BN (sotrnary whve Podtiamre)
TC'PDLOBQ’ )

~BVPR,  («AuT R 1C,)

— C Fetar
-+ Pow - LIreM,

c b “Doussw- Pecire wmom-) "R e
b & WAt of TPR6 The wmar pv
WAVIT VY & beranNg A Dl
&

e kX Tecresopmt  ABr  POMaigqe Wecfe
Tocs, & - amwetrow  Fervizy
R Mmmcs/ 40

v A WZeun CoklewIT! O SruDers\ PU?D:C()
Aoy UM A VR , Teree) Teveureey



Vrstosipar
, (R (RQ = _[]/L - Z\/ﬂ‘—
ATIO  9F Srple> R —C/-m/

%
A);(u?e? = ¥z sep o 4w

/‘9?15713‘3
DPS  rr amr = e e

R 3
&@’V/‘bﬂ’ : ?‘_Zw N :::(Sm[) el y.-.
~60 oy vIs ,ltooﬂgls (A
~3PW (Jox OIF)

c Leved®  Mawny - Astaririzs > pews Eous
Q- wg —> Veam
CE-*’W — GW V

h = gt = Savow € 2

' étrNUW\LI%MI‘bV) h NoN’P[vij F2uiy
AcTIvY  Abrrere
e o™
New eows.

= Mavr  pons Hooes



Wi TeFee  MoxLs  THAT P b€ oped
oo YDEs

gﬂfb‘[ s Myt A% ib“wﬂ feoesir



Wiy ?

Tor M Tpatw Petorr G083 R~
CLnEll A0 TBuEwem)

?ta— td, 7n =- ‘0/0 ~’ Vet

-

%?* o Fout gwpeumrcc

V— (2‘\) =y A“’&Wﬁn

?t,T - “'VT’— et -3 G ez oY

O our:  Spww  Gerwanmn

Exmpeme  eease
FLERLE LT



(B/\— sgc ek

—

Fo  Cowtrwuok ‘?Rawa«s‘ TA Vfwme

o, +id. Pk = ~Vp Y7 Moz,
S
s 0 Juz > vam
\f.;,g =0 o/
A, by e
So v T 5[6,5{) LEVE ¥ "’

J D NIl A

Lombonsts MW  Defrvt] Mol wau«n‘f/ D AL Sravsmas
Bozt TowrPr T e o & TASED®  orro

A Frwgre - DIvEssorae  |/Ecrok QPACt(/ VL] WOH AN
Crvrx Pl

t, = nAt
2 -2 - - A
G(e%) & uN[en)xLB X.= ¢4x
-
Som¢ SORT oF N -Domgwstwdl
AppraxchATTow .

UDro e Solvimw



_LﬂE&LALGMM ’

T PRDxi.  GwvecToNS
Y b

\L> (3 1) = L) = sieR
<a ,
= <Llas n
sl €4
4

L OLG’\\L> - OZV‘<°1L> /(?H?SJIS CorVEnTIor
celaby = o <P

(d\o\ L> = (Q’L) C YamemhTes” copderTIV
(o, ab) = &*(5,5)



"Dbﬁ‘ M L‘L - g

‘——\_/ﬁ

@ Y
HRl = <0 )£> Ag»@g*(,() C@%

-

Ty Oppeshds Yo R ErrecATIR Vhlww B GM

<¥ > %’( e WLt %&M/ TAD o772+
: P PEAM S
/

<Q>§ —A’: g:@(x)gf

LL oM GIVE) U A DeFsmme o A
b~y TRosop

oy, ol € ke “u(w)l) Y u 6[1

R GPSTAMTS K/ o~

oA aup BE A<D -3 PEAM Sole
ol =0 - @) rSTAM
dSo T LM



éEwmmeRL/

¢ Fsv S\g&@ [l 9

a
&-—7 weLgur Fuwoerzorn



Lty erppe Hoar o
T —
?GT—QL()K ] = D

T¢ F WE2l W’bov 9.3 F@W T
; Xk €

2,T *)Lkli—-a - I i_ﬁ(@e,

tekex
Tty = ge f(t/k))k

- ik
’l("(b, “5‘ %;\(ﬂéx) e pr>/
Y

1Tl |l 7&[6,‘1)11 Thesme

S A
- SIZ’” fow)l e
- ( sop }eJhb) )lTla,QD



6 CHAPTER 1. INTRODUCTION

Pseudospectral methods are also a great starting place for thinking about
numerical analysis for physics students, as it allows us to re-use many ideas
familiar to us from quantum mechanics. In quantum mechanics, the space of
possible states is a Hilbert space and Hermitian operators represent observable
quantities. The possible values of a given observable correspond to the eigenvalues
of the corresponding operator; for this reason, quantum mechanics traditionally
focused on Hermitian operators which have real eigenvalues. One of the first
lessons one learns about Hermitian operators in quantum mechanics is that their
eigenvectors form a complete basis for the Hilbert space. This idea of a complete
basis forms a core part of the mathematics of quantum mechanics, and it is also
crucial for our understanding of PDEs. The idea is this: there is a non-unique set
of vectors that can span the space of solutions to a problem.

Of course, there is a key difference in quantum mechanics between discrete and
continuous problems. These come from different physical quantities: the energies of
a harmonic oscillator are discrete, while the position and momentum of a free

particle are contiunous®. This is an inherent physical property of these systems.

However, here we are always going to be interested in continuous functions, but
we will construct discrete approximations to them. When we discretize a PDE (or
its solution), we must first choose a basis. Next, we truncate that basis to a finite
number of elements.

Let’s consider a simple quantum state,

) = Z"‘i |E;) . (1.17)

We say that we've expanded the state |ip) in terms of a set of basis vectors |E, ). We
can find the coefficients by projecting against the basis using the inner product,

a; = (El). (1.18)

The power of this notation is that we have not specified what the inner product
actually is, simply that it exists. As implied here by the notation, the set |E;) is
the energy basis which is itself the solution to the time independent Schrédinger
equation,

H‘En> = En‘En>' (1.19)

2022-07-04 09:51:52-04:00, DRAFT: SEND COMMENTS TO ]OISHI@BATES.EDU

9 you may remember that the dis-
tinction between discrete and con-
tinuous is because one is bound and
the other not.
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H is the Hamiltonian, a Hermitian operator that represents the total energy.’* A
Hermitian operator has two extremely important properties: its eigenvalues are
real and as mentioned above, its eigenvectors form a complete, orthogonal set of
vectors. Orthogonality can be written as

(alb) = b,p, (1.20)

where J, 5, is the Kronecker delta,

5= 1, ifi=j.
ij = ) (1.21)
0, otherwise.

When solving PDEs numerically, we are going to project an approximation to the
solution function f(x) onto a vector space of orthogonal polynomials.

1.5 The Pseudospectral Method

To approximate a function f(x), we write it as an expansion

N-1
f(x) = fn(x) = ZO figi(x) (1.22)

in terms of basis functions ¢;(x). fnx(x) is the polynomial approximation to our
function f(x). We can write this in braket notation as

N-1
flx) = fulx) = ZO fildi(x)) - (1.23)

The most important thing about this formulation is that the set f; are constants
in x! That means that if we want to compute g(x) = 9, f(x), we only need to take
the derivatives of the basis functions ¢;(x).

The basis functions we use satisfy a series of properties that make them useful
to do computations with:

e they are complete, orthogonal bases in the domain of interest.
e They are easy to differentiate

o There is a reasonably efficient transform between the coefficients and the grid
points.

© the Hamiltonian is also the distin-
guished observable that encodes
the time evolution of the states.

2022-07-04 09:51:52-04:00, DRAFT: SEND COMMENTS TO ]OISHI@BATES.EDU
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The simplest basis functions are the Fourier polynomials. The Fourier polyno-
mials are defined by
(Pn — ezZnnx/L, (1.24)

where L is the length of the domain we are considering. Typically, we clean up the
notation by writing k, = 27tn/ L, but equation (1.24) shows the explicit inclusion
of the integer n.

Ther derivatives of Fourier polynomials are quite simple,

a(j)gix) = iknu(x). (1.25)

There’s two things here to note. First, the derivative is simply multiplication by
ik,. Second, as a (very important!) consequence, the derivative of the nth Fourier
basis function involves only the nth basis function itself. So why do we not use
Fourier bases all the time? In fact, we do use them in nearly every calculation.
However, the main weakness of the Fourier basis is that it only works for periodic
domains. There are very many fluid systems you might want to solve that have
boundaries of some sort or another. Thus, we have to consider other families of
basis functions.

1.6 Chebyshev Classical Orthogonal Polynomials

Dedalus makes use of many of the classical orthogonal polynomials, but we will
only focus on one of them, the Chebyshev polynomials. In fact ““the” Chebyshev
polynomials is a bit of a misnomer. There are four sets of functions in common
use that go by the name of Chebyshev. We will use only two of them,

1. Chebyshev T

2. Chebyshev U

These are our workhorse polynomials in Cartesian domains. When we consider
curvilinear domains, we use other families, most importantly the Jacobi polyno-
mials. For much more information about the classical orthogonal polynomails,
see Chapter 18 of the NIST Digital Library of Mathematical Functions'*.

Let’s consider the first of these*.

2022-07-04 09:51:52-04:00, DRAFT: SEND COMMENTS TO ]OISHI@BATES.EDU

1 T.H. Koornwinder, R.F. Swart-
touw, R. Koekoek, and R. Wong,
Chapter 18: Orthogonal Polynomials,
https://dlmf.nist.gov/18..

> sometimes also called ““Cheyby-
shev polynomials of the first kind"’;
U are the ““second kind”.
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The first seven Chebyshev T polynomials can be written

To(x) =1 (1.26)
Ti(x) = x (127)
Tr(x) =2x* —1 (1.28)
T3(x) = 4x°> — 3x (1.29)
Ty(x) = 8x* —8x% +1 (1.30)
Ts5(x) = 16x° — 20x° + 5x (1.31)
To(x) = 32x% — 48x* +18x2 — 1. (1.32)

There is so much to say about Chebyshev polynomials, but we will limit ourselves
to the most important things for numerical simulation.

Again, let’s consider a truncated series expansion fy(x) of a function f(x) that
we would like to approximate. This time, we'll expand it in T},

N-1 .
x) = Z fuTu(x). (1.33)
n=0

Let’s consider the derivatives of this function, g(x) = df(x). Again, we have
only to compute the derivatives of Ty (x):

E)Tn

Z fu (1.34)
Let’s look at the fisrt few derivatives of T polynomials,

aTgix) =0 (1.35)
8733530 =1 = To(x) (1.36)
T e —an(0) )
aTgix) =12¢* -3 = 6Ty (x) + 3Ty (x) (1.38)
a%ix ) _ 304 _16x — 8T3(x) + 8Ty (x) (1.39)
aTgix ) st 60245 = 10Ty (x) + 10Ty (x) 4 5Tp(x) (1.40)
aTgiix) = 192x — 192%° 4 36x = 12T5(x) + 12T3(x) + 12Ty (x).  (1.41)

2022-07-04 09:51:52-04:00, DRAFT: SEND COMMENTS TO ]OISHI@BATES.EDU



10 CHAPTER 1. INTRODUCTION

The last column of equations (1.36- (1.41)) show the projection of the derivatives
back onto the T;,(x). There are a few interesting things to note here. The derivatives
are not as simple as they are in the Fourier case. If we return to thinking about
our polynomial approximation as a vector of coefficients, f,, — |f), we can think
about how g(x) = 0y f(x) can be represented in the T, basis, §, — |g). Let’s work
this out:

g(x) = dxf(x) (1.42)
Ig) = Zﬁlax | Tu) . (1.43)

Now, we can ask what the coefficients of ¢n(x) are,

$n = (Tulg) = ijz (TuloxT;) . (1.44)

If we look back at equations (1.36)- (1.41), we note that the the derivatives of
Ty (x) are not orthogonal to T, (x) themselves, so we cannot simply diagonalize
the braket in this equation. If we return to the idea that dy is a linear operator,
when we discretize it in a particular basis, we expect to get a matrix, just like
in quantum mechanics. However, just like in quantum, we must be careful to
distinguish the operator from the matrix: the latter depends on a the choice of
basis! Equation (1.44) shows us that because the coefficients fu are independent
of x, the derivative of our function depends only on the matrix given by

Dj; = (Ti|0xT;) . (1.45)
Exercise 1.2. Show that one can generalize equations (1.36)- (1.41) to arrive at

o 2j((j —i)mod2) .. .
D;; = B I o [i <jl, (1.46)

where [i < j] evaluates to 1 if the argument is true and zero otherwise.

Figure 1.1 shows the D;; matrix and some simple python code to generate
it. With this matrix in hand, we can numerically calculate derivatives for func-
tions approximated using Chebyshev T polynomials simply by doing matrix
multiplication on the vector of coefficients | f) describing the discretized function!

2022-07-04 09:51:52-04:00, DRAFT: SEND COMMENTS TO ]OISHI@BATES.EDU
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However, Dedalus does not do this. And you shouldn’t either. Why? Look at
figure 1.1 again. Note that it is an upper triangular matrix. We call such a matrix
“dense”, because 25% of its entries are non-zero. Remember, our goal here is not
to calculate derivatives, in which case we’d only need to do matrix multiplication.
Our goal here is to solve differential equations, meaning we know the derivative
and we want the function. Written in math,

(1.47)

and here we're considering £ = d,. Under discretization in Ty (x), dx — D;; . We
have g and want f, so our discretized equation is

f=1g)
) =D g).

Said another way, we need to solve for | f), and that means we really want to avoid

Dl,]

(1.48)
(1.49)

dense matrices.

If you were waiting for the U, (x) polynomials to appear, wait no longer. One
of the amazing facts about Chebyshev polynomials is that if we project the deriva-
tives of the T;,(x) onto Uy, (x), we get

BTS)(CX) = nl,_1(x).

(1.50)

This is a sparse matrix with non-zero entries only on the first superdiagonal.’3 A
key idea of Dedalus is that we use different basis functions at different stages of
the calculations. There are conversion matrices that can convert from T to U and
back. The details of these matrices are beyond the scope of these notes, but you
can read more about them in our 2020 methods paper *4'5.

The final very nice property of the Cheybyshev polynomials, and the reason
we use them so much is because they can also be written

Ty (cos @) = cos(nb), (1.51)

which in turn means we can express them using a discrete cosine series. This
allows us to use the fast Fourier transform (FFT) to compute the coefficients
hat f, from a set of grid point values f(x;), where x; is a set of grid points.

Now, we're in a position to understand how d3solves PDEs.

'3 This idea of projecting the deriva-
tives of functions discretized on T
onto U is also sometimes called the
ultraspherical method, because
u, = C7(11), where C7(1)l> are the
ultraspherical polynomials. Con-
fusingly, ultrasphericals are also
called Gegenbauer polynomials.

4 K.J. Burns, G. M. Vasil, J.S. Oishi,
D. Lecoanet, and B.P. Brown,
“Dedalus: A Flexible Framework
for Numerical Simulations with
Spectral Methods,” Physical Re-
view Research 2, 023068, por: 10
.1103/PhysRevResearch.2.02306
8 (2020)..

5 this covers the older version 2
of the code; there are some differ-
ences in d3, but for pedagogical
purposes these are not important.
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def

Dtt
plt.
plt.
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7 # first seven T
Dmatrix(n):

D = np.ones((n, n))
index = np.arange(n)

j,1 = np.meshgrid(index, index)

D[:,:] = 2735 ((j-1)%2)
D[i == 0] /= 2

D[i >= j] =0

return D

= Dmatrix(N)

imshow(Dtt, cmap='Greys')

savefig('fig/D-T-to-T.pdf")

Figure 1.1. The derivative matrix
D;; for Chebyshev T polynomi-
als projected back onto themselves.
Note that it is an upper triangular
matrix—a dense matrix.



