
1 G. Kotliar’s Lecture 1 on LDA+DMFT : Con-

straining Field Formulation

In the celebrated density functional theory (DFT) approach, the total energy
of a solid is expressed as a functional of the charge density of the material. The
physical meaning of that functional is that its extrema, gives the physical density
of the material and the value of the functional at the stationary point gives the
total energy. It turns out that the actual density of the solid can be regarded
also as the density of a fictitious set of non interacting particles (”Kohn Sham
particles” whose role is to reproduce the density of the solid. Therefore, one
can find a potential, called the Kohn Sham potential, such that free particles in
this potential have the same density as our fully interacting solid.

It turns out that not only DFT but many other different mean field theo-
ries (for example, spectral density functionals such as Dynamical Mean Field
Theory (DMFT) DFT+DMFT, GW, GW+DMFT , Baym Kadanoff theory ,
the ”self energy functional ” theory, and other static mean field theories such as
Hartree Fock LSDA and LDA+U, ) can be viewed as special cases of a general
construction of a mean field theory. This construction highlights why all these
approaches are ultimately mean field constructions in complete analogy with
the Weiss mean field theory of spin systems. In this lecture, we will introduce
the general formalism first. This will allow us to highlight the similarities and
differences between different electronic structure approaches, and will give us a
route to construct the Dynamical Mean Field Theory of correlated solids. Fi-
nally the abstract construction is a general recipe for constructing mean field
theories that can be helpful to the students in his or her research.

The presentation closely follows a recent review [G. Kotliar, S.Savrasov, K.
Haule, V.Oudovenko, O. Parcollet, and C.Marianetti, Rev. Mod. Phys. 78,
000865 (2006) ] to which the students are referred for further references to the
original work and numerous applications. I tried to provide all the intermediate
steps, so that this is accessible to everybody.

The general construction consists of the following steps. First a quick
overview indicate the steps schematically, and then proceed to write the corre-
sponding equations explicitly. The goal of the lectures (and of the review!) is
to provide the students with a roadmap to the different approaches for studying
the electronic structure of correlated materials.

1 Select an observable or a set of observables of interest, Ai. Namely, we
will be interested in the expectation value of this observables < Ai >= ai.
For example in DFT the observables are the charge density in space.

2 Writte down the partition function Z[J i] of the system, by adding to
the action describing the quantum mechanical system in question sources
coupled to the observables of interest.
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3 Perform a Legendre transformation from F [J i] = −Log[Z[J i]] to Γ[ai]
therefore eliminating the source J i in favor of the expectation value of the
observables ai .

4 Divide the action of the problem into two parts. A part that we under-
stand, i.e. our ”reference system”, and the rest that we multiply by a
coupling constant ” λ ” which we will treat in a formal in perturbation
theory around the reference system.

The zeroth order terms in this expansion of the source Jo(a) is the con-
straining field. Γ0[a] = Γ[a, λ = 0] = F0[J0(a)] − aJ0(a). The rest of the
functional Gamma is denoted ΔΓ, and it contains a Hartree term and an
exchange and correlation part (usually denoted XC).

5 For the exact functional, of for its exchange and correlation piece ΔΓxc one
has formal expressions as either an infinite sum of diagrams or a formal
coupling constant integration formula.

So far, no approximations have been made. The success of building a suc-
cessful mean field theory consist on chosing a clever separation of reference
system and ”perturbation” so that good approximations can be built to
the exchange and correlation part of the functional. There are two ideas
which have been very successful successful, one is to evaluate DeltaΓ in
low order systematic perturbation theory in λ. The classic example here
is the Weiss mean field theory which is obtained by the lowest order term
in a high temperature expansion, while the next order term yields the
celebrated Onsager correction. The use some local approximation and
to request that the approach becomes exact in some limit. The classic
example is the Local Density Approximation in LDA where the exchange
and correlation functional is assumed to be local and its value is taken so
that it gives the exact energy of the uniform electron gas.

6 The final step consist on the extremization of Γ[A] to obtain the free energy
of the system and the expectation value of A. The stationarity condition
of the functional Γ[a] results in J0(a) = δΔΓ

δa which together with the
definition of J0(a) gives a closed set of mean field equations.

One can also compute (inverse ) correlation functions by further differen-
tiations.

Now a a few details of these steps starting with the functional integral ex-
pression for the partition function.

Z[J ] = exp(−F [J ]) =
∫
D[ψ†ψ]e−(S+JiAi). (1)

The Legendre transformation is defined
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δF

δJ i
= ai (2)

Γ[a] = F [J [a]] − aiJ
i[ai] (3)

Implicit sum over the index i is assumed, and in the future that index will
be dropped alltogether, so a will stand for all the ai’s.

Γ[A] has several useful properties which follow directly from the definitions,
and reflect the stationarity of the functional Γ viewed as a functional of two
independent variables a and J0.

∂Γ
∂ai

= −J i[a] (4)

∂Γ
∂λ

=
∂F

∂λ
(5)

where λ is an arbitrary parameter of the action.
The original problem had no source, hence when we set the source to zero

we obtain the value of the observable a∗ in the state of interest.

δΓ
δa

[a∗i] = 0 (6)

Therefore the value of Γ[a = a∗] = F [J = 0] gives us the free energy of the
system.

So far the construction is exact but not very useful. A key step to make
progress is to separate the action into a part which we understand and serves as
a reference system, S0 and a perturbation. The action is written as S = S0+λS1.

A central point is that the system described by S0 + AJ0 serves as a refer-
ence system for the fully interacting problem. It is a simpler system which
by construction, reproduces the correct value of the observable Â. When this
observable is properly chosen, other observables of the system can be obtained
perturbatively from their values in the reference system. Hence S0 + AJ0 is a
simpler system which allows us to think perturbatively about the physics of a
more complex problem. J0[A] is a central quantity in this formalism and we
refer to it as the “constraining field”. It is the source that needs to be added to
a reference action S0 in order to produce a given value of the observable A.

We now set a systematic expansion of the functional Γ[A] to some order in
a parameter or coupling constant λ.

F [J ] = F0[J ] + λF1[J ] + ..., (7)

Γ[A] = Γ0[A] + λΓ1[A] + ... , (8)

J [A] = J0[A] + λJ1[A] + ... . (9)
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The expansion of Γ at fixed value of a is much better behaved than the
expansion of F. For example, in the case of a spin system when a is the magne-
tization, working at fixed magenetization gives a convergent high temperature
expansion for all temperatures, while the naive high temperature expansion of
the free energy diverges at the Curie temperature.

The selection of S0 in the action leads to the separation

Γ[a] = Γ0[a] + ΔΓ[a] (10)

With

Γ0[a] = F0[J0] − aJ0 (11)

In this equation J0 = J0(a) with

δF

δJ i
0

= ai (12)

is understood
Notice however that we can also consider Γ0[aJ0] above as a function of two

variables and demand stationarity in J0 which gives back the definition of the
constraining field. The same applies to the full functional Γ which can also be
regarded as a functional of two variables.

Γ[a, J0] = F0[J0] − aJ0 + ΔΓ[a] (13)

as a functional which is stationary in two variables, the constraining field
J0 and A. The equation δΔΓ

δA = J0[A], together with the definition of J0[A]
determines the exact constraining field for the problem.

ΔΓ can be given a coupling constant integration representation which is very
useful, and has been rediscovered in many different contexts. From eq. 5

ΔΓ[A] =
∫ 1

0

dλ
∂Γ
∂λ

=
∫ 1

0

dλ〈S1〉J(λ),λ (14)

In many cases it is useful to decompose ΔΓ = ΓH + Γxc, by isolating the
Hartree contribution which can usually be evaluated explicitly. The success
of the method relies on obtaining good approximations to the “generalized ex-
change correlation” functional Γxc as discussed in the outline, and as we will
see in the examples.

Differentiating eq. 10 with respect to a, we get the mean field theory equa-
tions

δΔΓ
δa

= J0[a] (15)
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Together with the definition of the constraining field in eq. 12 it is a non
linear set of equations for the observable a.

.

One can also use the stationarity condition of the functional (??) to express
a as a functional of J0 and to formulate the theory in terms of a functional of
the constraining field alone (i.e. Γ[J0] = Γ[a[J0], J0]). In the context of the
Mott transition problem, this functional was first proposed and used to derive
the analytical properties of the free energy underlying the dynamical mean field
theory. In the context of Baym Kadanoff theory, this leads to the self energy
functional theory.

Comments

The central point is that the choice of observable, and the choice of reference
system (i.e. the choice of S0 which determines J0) determine the structure of
the (static or dynamic) mean field theory to be used.

A mean field theory generally (but not always) starts by identifying a local
quantity. In the case of Weiss mean field it is the magnetization, in the case
of the density functional theory the local density in the case of DMFT it is the
local spectral function. In the case of LDA+DMFT the density and the local
spectral function.

The original system with infinite number of degrees of freedom is replaced
by an effective system, which yields the same precise exact information for the
local quantity selected. The simpler system, contains a ”constraining field”. It
is the field that needs to be added to the simpler system so as to reproduce a
given value of the selected local variable. The simpler system is a system of non
interacting electrons, for the DFT problem, or a single spin for the ising system
or an anderson impurity model for the local problem.

The constraining field depends on the local variable chosen, and there is a
non linear equation determining it. These are the mean field equations. Finally
even though mean field theories aim at determining a local quantity (density ,
magnetization etc.) in the process they also gives approximations to the corre-
lation functions, which can be obtained from the functionals via differentiation.

Also other quantities can be obtained from the approach for example the k
dependent ARPES spectra in solids or the optical conductivity can be calculated
within DMFT.

If we take as our observable the full Greens function of the theory, we will
see in the next lecture that we arrive at the Baym Kadanoff theory. In this case
the constraining field is the self energy.

There is a representability isssue, namely under which circumstances we can
obtain the exact value of the observable A, as an expectation function of a
simpler system in the presence of a source, which has been swept under the
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rug. In the present formalism it is the problem of invertibility of the Legendre
transformations which have been assumed in the approach followed here, but
can be proved more rigorously in some special cases.

Finally, notice that the Legendre transformation gives us a functional for
which is an extremum for the physical value of a. However in general the
extrema is usually a saddle point. In static mean field theories, it is possible
to prove that the extrema is actually a minimum, but this is not the case for
Dynamical Mean Field Theories. It should be noted that one is free to add
terms containing powers higher than one in the source in order to modify the
stability conditions of the functional without changing the properties of the
saddle points. This freedom has been used to obtain functionals with better
stability properties.

In the next lecture we will use this method to map the zoo of electronic
structure methods by chosing different a’s different Γo’s and different exchange
and correlation functionals Γxc. All the material of the second lecture and a lot
more (in particular what you need to do to solve the key mean field theories of
electronic structure!!!! as well as some success stories of the DMFT ) can be
found in:G. Kotliar, S.Savrasov, K. Haule, V.Oudovenko, O. Parcollet,
and C.Marianetti, Rev. Mod. Phys. 78, 000865 (2006)
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