Neutron and x-ray scattering studies of superconductors

lecture 3: x-ray scattering from cuprates

- resonant inelastic x-ray scattering from magnons and paramagnons
- resonant elastic x-ray scattering from charge density waves
- CDW in cuprate superlattices
- electron-phonon interaction

Eliashberg theory

ARPES dispersion

high-temperature superconductivity

- ... but what about optimal doping?
- → use x-rays to detect high-energy excitations

X-rays

für Festkörperforschung

Resonant inelastic x-ray scattering (RIXS)

triple-axis spectrometry with soft x-rays

order-of-magnitude increase in in energy resolution L. Braicovich, G. Ghiringhelli (Univ. Milano)

SAXES Spectrometer @ Swiss Light Source

Resonant inelastic x-ray scattering (RIXS)

für Festkörperforschung

ERIXS Spectrometer @ ESRF

RIXS from La₂CuO₄

RIXS from La₂CuO₄

Braicovich et al., PRL 2009, 2010

RIXS from Sr₂CuO₃

CuO spin chains

orbitally non-degenerate similar to 2D cuprates

cuprates: spin-orbital separation, low-energy excitations are spin-only

orbitally degenerate systems

e.g. iron pnicides: mixing of spin and orbital excitations at low energies

reminder: neutrons

magnetic scattering cross section completely understood

theorists can focus on calculating $S(Q,\omega) \sim \chi^{(*)}(Q,\omega)$

polarization factor

$$\frac{d^2\sigma}{d\Omega \, dE} = (\gamma r_0)^2 \frac{k_f}{k_i} N \left| F(\mathbf{Q}) \right|^2 e^{-2W} \sum_{\alpha\beta} (\delta_{\alpha\beta} - \hat{Q}_{\alpha} \hat{Q}_{\beta}) S^{\alpha\beta}(\mathbf{Q}, \omega)$$

$$S^{\alpha\beta}(\mathbf{Q},\omega) = \frac{1}{2\pi\hbar} \int \sum_{l} e^{i\mathbf{Q}\mathbf{r}_{l}} \left\langle S^{\alpha}_{0}(0)S^{\beta}_{l}(t) \right\rangle e^{-i\omega t} dt$$

spin-spin correlation function

Is there an equivalent expression for RIXS?

RIXS cross section

Haverkort, PRL 2010

$$\frac{d^2\sigma}{d\Omega\,dE} \propto -\chi^{\prime\prime}({\bf Q},\omega)$$

$$\chi(\omega, \mathbf{Q}) = -\iota \int_0^\infty e^{\iota \omega t} \langle i | R^{\varepsilon_i \varepsilon_o}_{\omega_i, \mathbf{Q}}(t)^{\dagger} R^{\varepsilon_i \varepsilon_o}_{\omega_i, \mathbf{Q}}(t=0) | i \rangle dt$$

 $\epsilon_i \epsilon_o =$ incident, outgoing photon polarization

$$R_{j}^{\varepsilon_{i}\varepsilon_{o}} = \frac{\sigma^{(0)}\varepsilon_{i} \cdot \varepsilon_{o}^{*}}{s} + \frac{\frac{\sigma^{(1)}}{s}\varepsilon_{i} \times \varepsilon_{o}^{*} \cdot S}{s} + \frac{\sigma^{(2)}}{s(2s-1)}(\varepsilon_{i} \cdot S \varepsilon_{o}^{*} \cdot S + \varepsilon_{o}^{*} \cdot S \varepsilon_{i} \cdot S - \frac{2}{3}\varepsilon_{i} \cdot \varepsilon_{o}^{*}S^{2})$$

X-ray absorption X-ray magnetic circular dichroism X-ray magnetic linear dichroism

vanishes for $S = \frac{1}{2}$

caution for larger S e.g. iron pnictides!

RIXS from cuprates

$$R_{\omega_{i},Q}^{\varepsilon_{i}\varepsilon_{o}} = \sigma^{(0)}\varepsilon_{i} \cdot \varepsilon_{o}^{*} + \frac{\sigma^{(1)}}{s}\varepsilon_{o}^{*} \times \varepsilon_{i} \cdot S_{Q}$$

charge spin
$$\chi(\omega, \mathbf{Q}) = -\iota \int_{0}^{\infty} e^{\iota\omega t} \langle i | (\varepsilon_{o}^{*} \times \varepsilon_{i} \cdot S_{Q}(t))^{\dagger} (\varepsilon_{o}^{*} \times \varepsilon_{i} \cdot S_{Q}(t=0)) | i \rangle$$

RIXS can detect single-magnon excitations in crossed polarization similar to neutrons, but with different polarization factor

dependence on RIXS intensity on **incoming** photon polarization allows separation of spin and charge excitations polarization **analysis**

planned for ERIXS

für Festkörperforschung

RIXS from doped cuprates

Le Tacon et al. Nature Phys. 2011

well defined "paramagnon" excitations at all doping levels

für Festkörperforschung

Spin excitations in doped cuprates

- magnon-like quasiparticle excitations observed at all doping levels
- energy-integrated spectral weight conserved upon doping

• nearest-neighbor spin correlations almost independent of doping

für Festkörperforschun

Highly overdoped Tl₂Ba₂CuO_{6+x}

für Festkörperforschung

well defined fermionic quasiparticles

Quantum Monte Carlo calculations of 2D Hubbard model

- RIXS cross section proportional to $S(Q,\omega)$ even in doped cuprates
- persistence of paramagnon excitations reproduced possible controversy: *Benjamin, Demler et al., PRL 2014*

Competing order in YBa₂Cu₃O_{6+x}

Optical Raman scattering

Li et al. PRL 2012

Optical Raman scattering

two-magnon peak shows

shift & intensity enhancement

- at T_c at optimal doping
- above T_c in pseudogap regime

feedback effect

of pairing interaction on high-energy magnons analogous to low-energy magnetic resonant mode

Li et al. PRL 2012

Eliashberg theory

Superconducting fluctuations in underdoped YBCO

c-axis optical conductivity

superconducting fluctuations observed up to at least 180 K

Eliashberg theory

pair breaking pair forming **RIXS Data** INS Data 400 350 Energy (meV) 300 250 200 150 La₂CuO₄ o La₂CuO₄ 100 La1.915Sr0.085CuO4 La_{1.875}Sr_{0.125}CuO₄ 50 La_{1.84}Sr_{0.16}CuO₄ 0 300 Energy (meV) 250 200 150 Nd_{1.2}Ba_{1.8}Cu₃O₆ 100 Nd_{1.2}Ba_{1.8}Cu₃O₇ YBa2Cu3O6.6 YBa2Cu3O6.6 YBa2Cu3O6.5 50 YBa,Cu,O, 0 Х Μ

overdoped LSCO excitations at q ~ (π,π) disappear \rightarrow reduction of T_c

Wakimoto et al. PRL 2007

Charge density wave

resonant inelastic x-ray scattering on underdoped YBCO_{6.6} -0.30photon energy tuned to L-edge of planar Cu resonant elastic scattering (REXS) at q = (0, 0.31)-0.34 polarization dependence indicates -0.26 charge correlations -0.37 -0.18 Ghiringhelli et al., Science 2012 dd Achkar et al., PRL 2012 Blanco-Canosa et al., PRL 2013 consistent with NMR -3 -2 Wu et al., Nature 2011; Nature Com. 2013 Energy loss (eV)

confirmed with hard x-rays

Chang et al., Nature Phys. 2012; Blackburn et al., PRL 2013

Charge density wave

hard x-ray diffraction pattern

short-range superstructure from oxygen dopant order superposed on signatures of electronic charge order

für Festkörperforschung

Le Tacon et al. Nature Phys. 2014

Site-selective charge correlations

REXS signal

not present at resonance of chain Cu

only planar Cu atoms involved

comparison of planar REXS signal and NREXS from chains

→ REXS is incommensurate q = (ξ 0 L) with ξ = 0.31 ≠ $\frac{1}{3}$

Achkar et al., PRL 2012

CDW temperature dependence

YBa₂Cu₃O_{6.6}

→ CDW nearly critical

correlation length suppressed below $\rm T_{\rm c}$

→ CDW competes with superconductivity CDW fluctuations reduce T_c

Ghiringhelli et al., Science 2012 Achkar et al., PRL 2012 Blanco-Canosa et al., PRL 2013; arXiv 2014

für Festkörperforschung

Doping dependence of CDW wavevector

Blanco-Canosa et al. arXiv 2014

- CDW wave vector qualitatively consistent with size of Fermi surface
- different from "stripes" in La_{2-x}(Sr,Ba)_xCuO₄

CDW and Fermi arcs

Doping dependence of CDW amplitude

- CDW amplitude maximum at p ~ 0.12
- CDW vanishes for $p \sim 0.08$, 0.16
- → two quantum critical points?

Blanco-Canosa et al. arXiv 2014

Competing order in YBa₂Cu₃O_{6+x}

für Festkörperforschung

Magnetic field dependence

Blanco-Canosa et al. PRL 2013, arXiv 2014

magnetic field weakens superconductivity enhances CDW correlations

Magnetic field dependence

transport experiments in high magnetic fields

superconducting dome splits into two domes centers coincide with CDW quantum critical points

Are quantum-critical CDW fluctuations important for high-T_c?

Magnetic field dependence

H-dependence of CDW

H-dependence of SDW for YBCO_{6.45}

Blanco-Canosa et al. PRL 2013 see also Backburn et al., PRL 2013

Haug et al. PRL 2009

three-phase competition between SDW, CDW, dSC for $p \sim 0.08$

Spinless impurities

substitution of 2% Zn²⁺ (S=0) for planar Cu²⁺ (S= $\frac{1}{2}$) in YBCO
6.6enhances IC-SDW in YBCO
6.6degrades IC-CDW

Suchaneck et al., PRL 010

Blanco-Canosa et al., PRL 2013

three-phase competition between SDW, CDW, superconductivity

Doping dependence of CDW onset temperature

onset of CDW

onset of superconducting fluctuations

Blanco-Canosa et al., arXiv 2014

Dubroka et al., PRL 2011

combined CDW & superconducting fluctuations in pseudogap regime

Combined CDW-dSC fluctuations

fit of CDW intensity versus temperature in multi-component order parameter model

Hayward et al., Science 2014

CDW displacement pattern

polarization dependence of resonant scattering intensity indicates bond CDW with d-wave displacement pattern

für Festkörperforschung

Comin et al., arXiv 2014

Doping dependence of CDW anisotropy

- p < 0.12: strong uniaxial anisotropy
- p ~ 0.12: nearly isotropic
- p > 0.12: anisotropy switches sign

consistent with uniaxial modulation

more comprehensive analysis by Comin, Damascelli *et al.*

Blanco-Canosa et al., arXiv 2014

Electron-phonon interaction

ARPES anomalies at antinodes

interpreted as evidence of electron-magnon and/or electron-phonon interaction

isotope effect

indicates phonon contribution

Iwasawa et al., PRL 2008

Cuk et al., PRL 2004

CDW dynamics?

acoustic phonons at room temperature

Le Tacon et al., Nature Phys. 2014

acoustic phonon dispersions & intensities well described by LDA

CDW-induced phonon anomalies

 $T < T_c$ giant phonon softening $T > T_c$ giant phonon linewidth

in narrow range around CDW wavevector

Le Tacon et al. Nature Phys. 2014

für Festkörperforschung

highly anisotropic electron-phonon interaction

favors CDW formation, not superconductivity

CDW-induced central peak in YBCO_{6.6}

elastic central peak ($\Delta E < 100 \mu eV$)

impurity-nucleated CDW nanodomains below 150 K

Le Tacon et al. Nature Phys. 2014

Optical phonons

Cu-O bond-bending mode in optimally doped YBCO₇

onset of dispersion anomaly for T \sim T $_{\rm c}$

Optical phonons

similar dispersion anomaly for Cu-O bond-stretching mode

- fluctuating CDWs at optimaly doping?
- CDW-related Kohn anomalies → antinodal ARPES kinks?

Summary & Outlook

summary

reasonably comprehensive description of spin and charge correlations in cuprates

key theoretical challenges

- understanding relative stability of SDW, CDW, superconductivity in 2D metals
- quantitative understanding of high-temperature superconductivity
- prediction of higher-temperature superconductors

outlook

- oxide molecular beam epitaxy
- dynamical control

