# Neutron and x-ray scattering studies of superconductors

#### lecture 2: unconventional superconductors

- magnetic neutron scattering continued
- resonant inelastic x-ray scattering from magnons and paramagnons
- resonant elastic x-ray scattering from charge density waves

#### lecture 3: cuprate and nickelate superlattices

- orbital occupation
- magnetic order
- charge density waves



# Phase diagram of YBa<sub>2</sub>Cu<sub>3</sub>O<sub>6+x</sub>





# YBa<sub>2</sub>Cu<sub>3</sub>O<sub>6</sub> magnons

$$H = \Sigma_{ij} (J_{\parallel} S_i^{(a,b)} \bullet S_j^{(a,b)}) + \Sigma_i (J_{\perp 1} S_i^{(a)} \bullet S_i^{(b)} + J_{\perp 2} S_i^{(b)} \bullet S_i^{(a)})$$



für Festkörperforschung

# Competing order in YBa<sub>2</sub>Cu<sub>3</sub>O<sub>6+x</sub>



für Festkörperforschung

# Lightly doped YBCO



analogous to Bragg peak, spin waves of antiferromagnetic Mott insulator but centered on incommensurate wave vector

# Low-energy spin fluctuations



#### uniaxial incommensurate magnetic order

in lightly doped, weakly metallic YBCO → "spin density wave"



# **Temperature** dependence



#### energy width $\Gamma$ of quasielastic peak narrows continuously as T $\rightarrow$ 0

generic behavior in 2D Heisenberg systems disorder also contributes  $\rightarrow$  "cluster spin glass"



# Electronic nematic state in YBCO



spontaneous onset of incommensurability upon cooling below ~150 K

 $\rightarrow$  orientational symmetry broken

**but no static magnetic order**  $\rightarrow$  translational symmetry unbroken

electronic analog of nematic liquid crystal

Fradkin, Kivelson et al. Yamase, Metzner et al. Ando et al. McKenzie et al. ...



#### Electronic nematic state in YBCO





possible route towards nematicity: **Pomeranchuk instability** 

> Halboth & Metzner, PRL 2000 Yamase & Kohno, JPSJ 2000

#### resistivity, Nerst effect anisotropies

turn up at similar temperature

Ando et al., PRL 2002 Daou et al., Nature 2010

# Quantum critical point

#### $YBa_2Cu_3O_{6.45}$ T = 2K (in IC-SDW state)



#### ω/T scaling of $\chi$ <sup>''</sup>

evidence of **quantum critical point** where magnetic order disappears



# Competing order in YBa<sub>2</sub>Cu<sub>3</sub>O<sub>6+x</sub>



für Festkörperforschung

# Beyond the QCP

 $YBCO_{6.6} \quad T_{c} = 61 \text{ K} \quad p \sim 0.11$ no static magnetic order



Suchaneck et al., PRL 2010 see also Fong et al., PRB 2000; Dai et al., PRB 2000



#### Magnetic resonant mode



strong feedback effect of the pairing interaction on bosonic spectrum similar amplitude, *T*-dependence in two families of high-T<sub>c</sub> superconductors

#### Magnetic resonant mode



*Hinkov et al. Nature 2004 Nature Phys. 2007* 

#### hour-glass dispersion

- magnon-like dispersion at high energies
- "inverted" dispersion at low energies

Mook et al. Dai et al. ...



#### Inelastic magnetic neutron scattering

$$\frac{d^2\sigma}{d\Omega\,dE} = 2(\gamma r_0)^2 \frac{k_f}{k_i} N \left|F(\mathbf{Q})\right|^2 e^{-2W} \frac{1}{\pi (g\mu_{\mathrm{B}})^2} \frac{1}{1 - e^{-\hbar\omega\beta}} \chi''(\mathbf{Q},\omega)$$

#### itinerant electrons electrons $\rightarrow$ Lindhard function & RPA

$$\chi_0(q,\omega) = \sum_k \frac{f(E_{k+q\uparrow}) - f(E_{k\downarrow})}{\hbar\omega - (E_{k+q} - E_k - \Delta) + i\varepsilon}$$

band dispersions

$$\chi(q,\omega) = \frac{\chi_0(q,\omega)}{1 - J(q)\chi_0(q,\omega)}$$

RPA expression J(q) peaked at  $q = (\pi,\pi)$ 



# INS from superconductors

# $\begin{aligned} \chi(q,\omega) &= \sum_{k} \left\{ \frac{1}{2} \left( 1 + \frac{\varepsilon_{k} \varepsilon_{k+q} + \Delta_{k} \Delta_{k+q}}{E_{k} E_{k+q}} \right) \frac{f(E_{k+q}) - f(E_{k})}{\omega - (E_{k+q} - E_{k}) + i\delta} & \text{scattering of thermally excited pairs} \right. \\ &+ \frac{1}{4} \left( 1 - \frac{\varepsilon_{k} \varepsilon_{k+q} + \Delta_{k} \Delta_{k+q}}{E_{k} E_{k+q}} \right) \frac{1 - f(E_{k+q}) - f(E_{k})}{\omega + (E_{k+q} + E_{k}) + i\delta} & \text{pair annihilation} \\ &+ \frac{1}{4} \left( 1 - \frac{\varepsilon_{k} \varepsilon_{k+q} + \Delta_{k} \Delta_{k+q}}{E_{k} E_{k+q}} \right) \frac{f(E_{k+q}) + f(E_{k}) - 1}{\omega - (E_{k+q} + E_{k}) + i\delta} \right\} & \text{pair creation} \\ &E_{k} = \sqrt{\varepsilon_{k}^{2} + \Delta_{k}^{2}} & Fong et al., PRL 1995 \\ Monthoux & Scalapino, PRL 1994 \end{aligned}$

 $\chi'' \rightarrow 0$  at  $q = (\pi, \pi)$  in s-wave superconductor resonant mode implies **sign change** in superconducting gap function d-wave in cuprates,  $s_{\pm}$  in iron pnictides



# Magnetic resonant mode



# Universal high-energy spin excitations

#### underdoped cuprates

high-energy excitations weakly dependent on temperature, doping, structural details

#### $\textbf{YBa}_{2}\textbf{Cu}_{3}\textbf{O}_{6.6}$

63 meV



*Hinkov et al. Nature Phys. 2007* 

#### $\textbf{La}_{1.91}\textbf{Sr}_{0.09}\textbf{CuO}_{4}$



*Lipscombe et al. PRL 2009* 



# Understanding unconventional superconductors

#### experimental observations

- gapped, non-critical spin fluctuations
- feedback effect of superconductivity on spin fluctuation spectra
- fermionic quasiparticles, at least at low temperature



- $\rightarrow$  quantify strength of spin fluctuation mediated pairing interaction
- $\rightarrow$  calculate T<sub>c</sub>, energy gap, ...  $\rightarrow$  guideline for materials design

Eliashberg theory is the only method that is currently available.



# Joint analysis ARPES – INS

#### anomalous spin excitations

from neutron scattering



#### electronic band dispersions

from photoemission





# Eliashberg theory



high-temperature superconductivity

... but what about optimal doping?

