Neutron and x-ray scattering studies of superconductors

B. Keimer

Max-Planck-Institute for Solid State Research

lecture 1

conventional superconductors

inelastic nuclear neutron scattering from phonons

unconventional superconductors

magnetic structure determination by elastic magnetic neutron scattering

inelastic magnetic neutron scattering from magnons and paramagnons

Neutron and x-ray scattering studies of superconductors

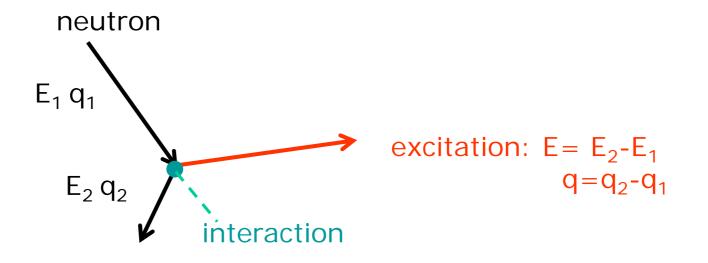
lecture 2: unconventional superconductors

- magnetic neutron scattering continued
- resonant inelastic x-ray scattering from magnons and paramagnons
- resonant elastic x-ray scattering from charge density waves

lecture 3: cuprate and nickelate superlattices

- orbital occupation
- magnetic order
- charge density waves

Neutron scattering



strong (nuclear) interactionelasticlattice structureinelasticlattice dynamics

magnetic (dipole-dipole) interaction

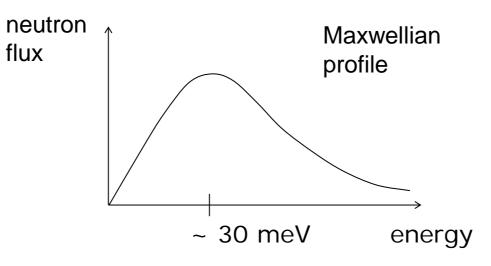
elasticmagnetic structureinelasticmagnetic excitations

Neutron sources

research reacor

 $^{235}U + n \rightarrow A + B + 2.3n$

FRM-II Garching, Germany



Neutron sources

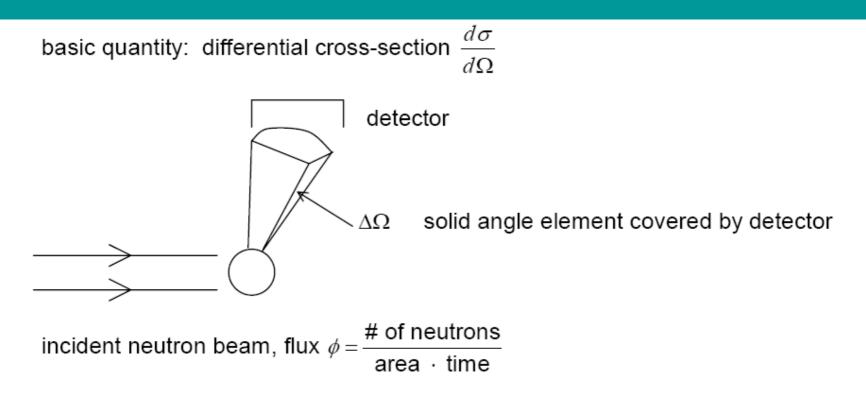
spallation source

 $p + Hg \rightarrow A + B + xn$

SNS Oak Ridge, TN

- 1. Source
- 2. Linac
- 3. Beamlines
- 4. Accumulator ring
- 5. Target area

Elastic neutron scattering



 $\frac{d\sigma}{d\Omega}$ = # of neutrons scattered into solid angle element $d\Omega$ per unit time,

normalized to incident flux.

dimensions:
$$\left[\frac{d\sigma}{d\Omega}\right] = \frac{1}{\left[\Delta\Omega\right]\left[t\right]\left[\phi\right]} = \text{ area}$$

dimensionless

Elastic neutron scattering

calculation of $\frac{d\sigma}{d\Omega}$ through Fermi's Golden Rule: transition rate (# of transitions per unit time): $W = \frac{2\pi}{\hbar} \left| \left\langle \vec{k}_f | V | \vec{k}_i \right\rangle \right|^2 \rho_f(E)$ Density of final states $\begin{vmatrix} k_i \end{pmatrix} = \frac{1}{\sqrt{L^3}} e^{i\vec{k}_i \cdot \vec{r}} \\ \begin{vmatrix} k_f \end{pmatrix} = \frac{1}{\sqrt{L^3}} e^{i\vec{k}_f \cdot \vec{r}} \end{vmatrix}$ plane waves incident neutron flux: $\frac{\text{velocity}}{L^3} = \frac{\hbar k_i}{m_n L^3} \\ k_i = k_f \text{ for elastic scattering}$ $\rho_f(E) = \underbrace{\left(\frac{L}{2\pi}\right)^3}_{\text{density of}} \frac{d\vec{k}_f}{dE} \qquad \qquad d\vec{k}_f = k_f^{-2} dk_f d\Omega$ $\rho_f(E) = \left(\frac{L}{2\pi}\right)^3 k_f^{-2} \frac{dk_f}{dE} d\Omega = \left(\frac{L}{2\pi}\right)^3 \frac{m_n k_f}{\hbar^2} d\Omega \qquad \text{with } \frac{dE}{dk_f} = \frac{\hbar^2 k_f}{m_n}$ $\Rightarrow \frac{d\sigma}{d\Omega} = \frac{W}{\text{incident flux}} = \left(\frac{m_n}{2\pi\hbar^2}\right)^2 \left|\int V e^{i\left(\vec{k}_i - \vec{k}_f\right)\cdot\vec{r}} d\vec{r}\right|^2$ $= \left(\frac{m_n}{2\pi\hbar^2}\right)^2 \left|\int V(\vec{r}) e^{-i\vec{Q}\cdot\vec{r}} d\vec{r}\right|^2$ "Born approximation"

für Festkörperforschun

Elastic nuclear neutron scattering

For short range strong force, use approximate interaction potential

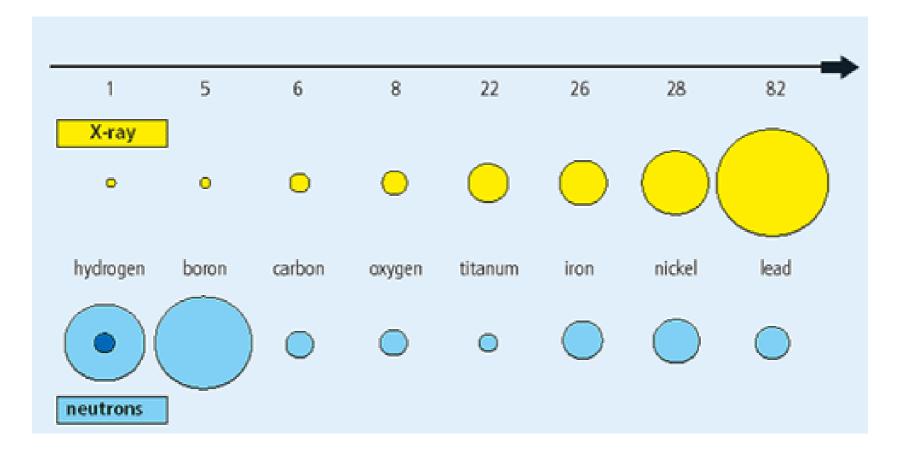
 $V(\vec{r}) = \frac{2\pi\hbar^2}{m_n} b \,\delta\left(\vec{r} - \vec{R}\right)$ position of nucleus scattering length b ~ size of nucleus ~ 10^{-15} m 'scattering length' for single nucleus: $\frac{d\sigma}{d\Omega} = |b|^2$ total cross section: $\sigma = \int \frac{d\sigma}{d\Omega} d\Omega = 4\pi b^2$ lattice of nuclei: $V(\vec{r}) = \frac{2\pi\hbar^2}{m_n} \sum_{\vec{R}} b_{\vec{R}} \,\delta\left(\vec{r} - \vec{R}\right) \quad b_{\vec{R}}$: scattering length of nucleus at lattice site \vec{R} $\frac{d\sigma}{d\Omega} = \left| \int d\vec{r} \sum_{R} b_R \,\delta\left(\vec{r} - \vec{R}\right) e^{i\vec{Q}\cdot\vec{r}} \right|^2 = \left| \sum_{R} b_R \,e^{i\vec{Q}\cdot\vec{R}} \right|^2 = b^2 \frac{N(2\pi)^3}{v_o} \sum_{\vec{K}} \delta\left(\vec{Q} - \vec{K}\right)$ Bragg peaks

for unit cell with several atoms, basis vector \vec{d}

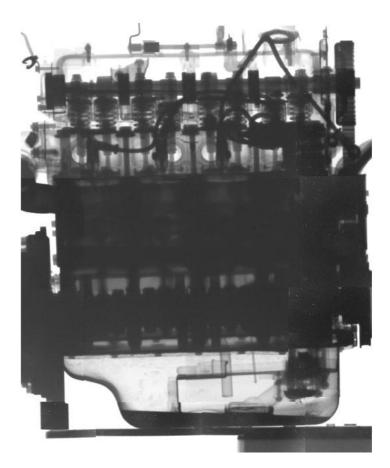
$$\frac{d\sigma}{d\Omega} = N \frac{(2\pi)^3}{v_0} \sum_{\vec{K}} \delta \left(\vec{Q} - \vec{K} \right) \left| F_N \left(\vec{K} \right) \right|^2$$
$$F_N \left(\vec{K} \right) = \sum_{\vec{d}} e^{i \vec{Q} \cdot \vec{d}} b_{\vec{d}} \qquad \text{``nuclear structure factor''}$$

at reciprocal lattice vectors K

Neutron scattering lengths



Neutron radiography



Inelastic neutron scattering

elastic cross section
$$\frac{d\sigma}{d\Omega} = \frac{\# \text{ of neutrons scattered into } d\Omega}{(\text{unit time}) \bullet (\text{incident flux})}$$

inelastic cross section
$$\frac{d^2\sigma}{dEd\Omega} = \frac{\# \text{ of neutrons scattered into } d\Omega}{(\text{unit time}) \bullet (\text{incident flux}) \bullet (\text{energy})}$$

inelastic nuclear neutron scattering

$$\frac{d^{2}\sigma}{d\Omega \, dE} = \frac{k_{f}}{k_{i}} \frac{1}{2\pi\hbar} \sum_{jj'} b_{j'} b_{j} \int_{-\infty}^{\infty} \sum_{\lambda_{i}} p_{\lambda_{i}} \left\langle \lambda_{i} \left| e^{-i\mathbf{Q}\mathbf{R}_{j'}(0)} e^{i\mathbf{Q}\mathbf{R}_{j}(t)} \right| \lambda_{i} \right\rangle e^{-i\omega t} dt$$

 $|\lambda_i\rangle |\lambda_f\rangle$ initial, final state of sample

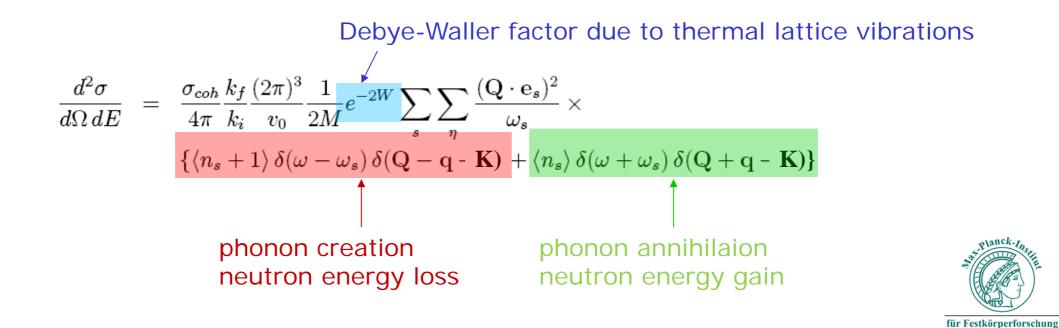
 $\hbar\omega = \frac{\hbar^2 k_i^2}{2m_n} - \frac{\hbar^2 k_f^2}{2m_n} = E_{\lambda_i} - E_{\lambda_f} \quad \text{energy of excitation created by neutron in sample}$

 $p_{\lambda_i} = \exp(-E_{\lambda_i}\beta)/Z$ $Z = \sum_{\lambda_i} \exp(-E_{\lambda_i}\beta)$ partition function

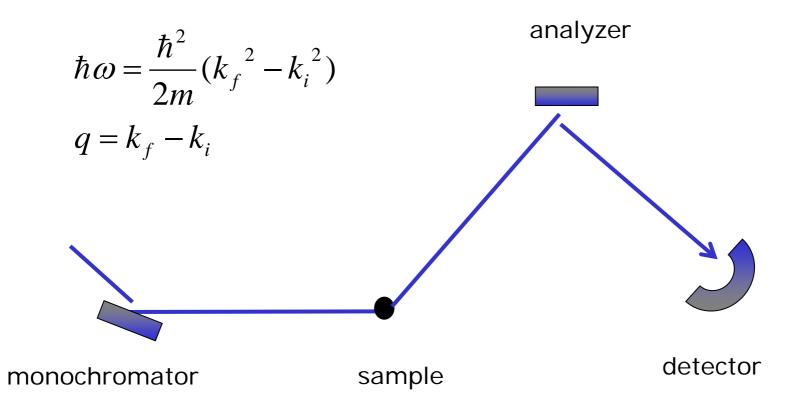
Inelastic nuclear neutron scattering

$$\frac{d^{2}\sigma}{d\Omega dE} = \frac{k_{f}}{k_{i}} \frac{1}{2\pi\hbar} \frac{\sigma_{coh}}{4\pi} \sum_{jj'} \int_{-\infty}^{\infty} \left\langle e^{-i\mathbf{QR}_{j'}(0)} e^{i\mathbf{QR}_{j}(t)} \right\rangle \exp\left(-i\omega t\right) dt$$
$$\langle e^{\cdots}e^{\cdots} \rangle = \sum p_{\lambda_{i}} \left\langle \lambda_{i} \right| e^{\cdots}e^{\cdots} \left| \lambda_{i} \right\rangle \quad \text{thermal average} \qquad \sigma_{coh} = 4\pi (\overline{b})^{2}$$

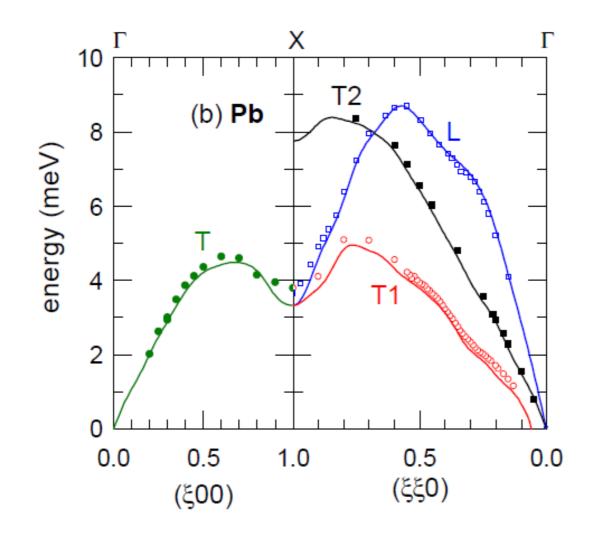
 $|\lambda\rangle$ characterized by population n_s of phonons of energy $\hbar\omega_s(\vec{k})$ in branch s



Triple-axis spectrometer



Phonon dispersions in Pb



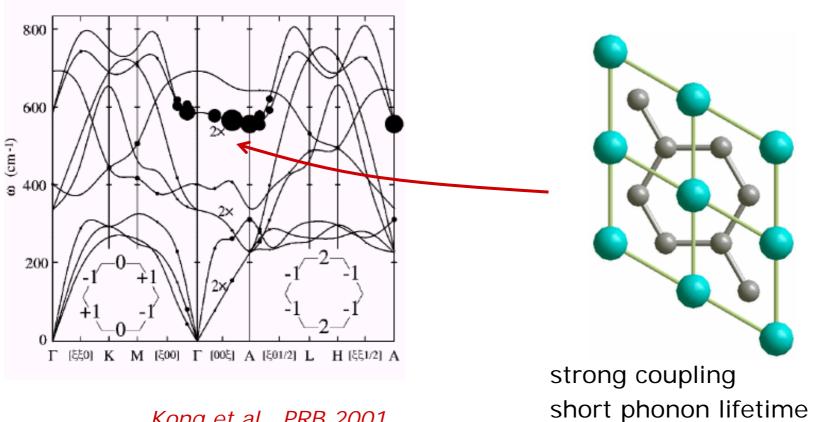
excellent agreement with ab-initio lattice dynamics

Munnikes, Boeri et al.

Electron-phonon interaction

electron-phonon interaction in simple metals predicted by ab-initio LDA

example MgB₂



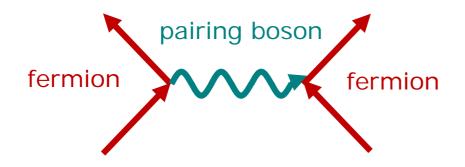
Kong et al., PRB 2001

für Festkörperforschung

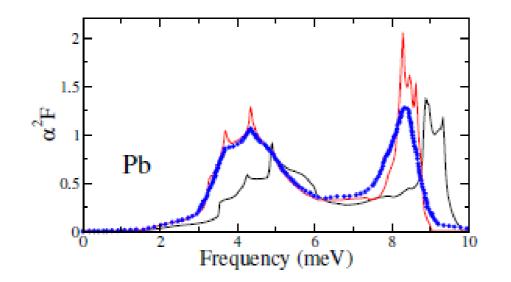
typical phonon linewidth: 1-100 µeV

Conventional superconductors

understanding based on quasiparticles



fermionic spectrum from tunneling

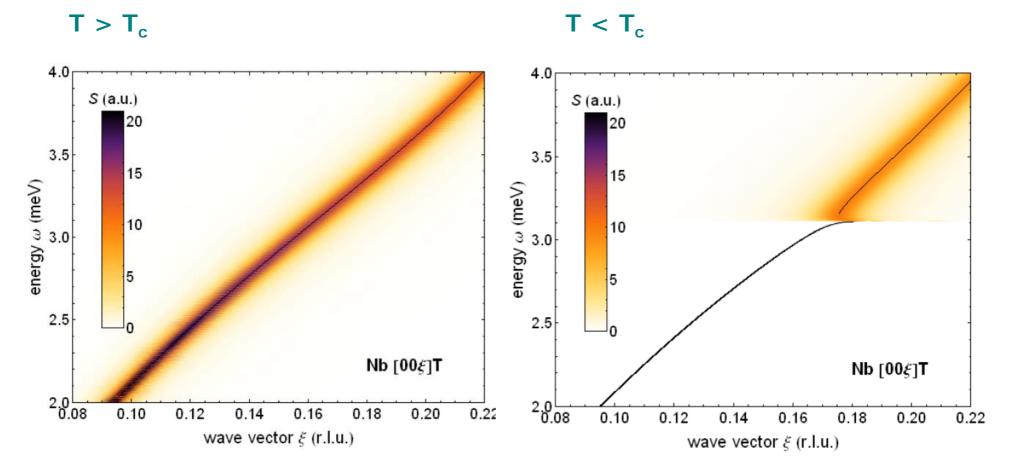


experimental tunnel spectrum

calculated spectrum based on phonon dispersions from neutrons

Resonant mode in conventional superconductors

phonon dispersion



N. Munnikes after Allen et al., PRB 1997

feedback of pairing interaction on intermediate boson

Resonant mode in conventional superconductors

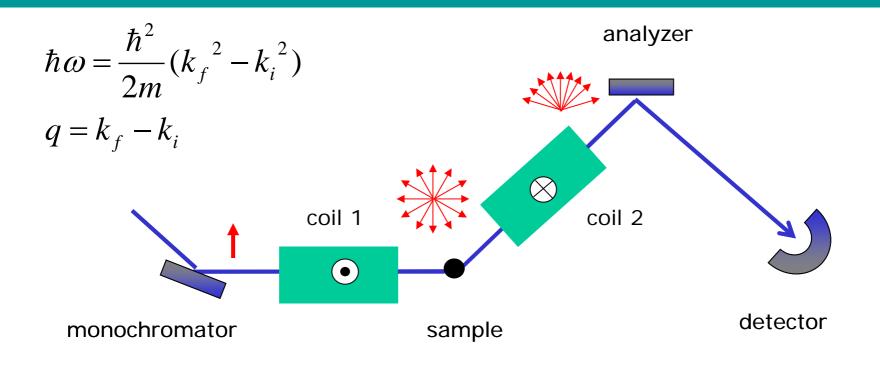
first observed in borocarbides

400 15.2 K 12 K 1200 300 3 K 200 counts 800 400 0 -15.2 K -12 K 2_(3K) 0.6 -----3 K calculated intensity 0.4 2∆(12K) 0.2 0 3 12 15 9 0 6 E (meV)

Stassis et al., PRB 1997 Weber et al., PRL 2008

für Festkörperforschung

Neutron spin echo spectroscopy



triple axis spectrometer:

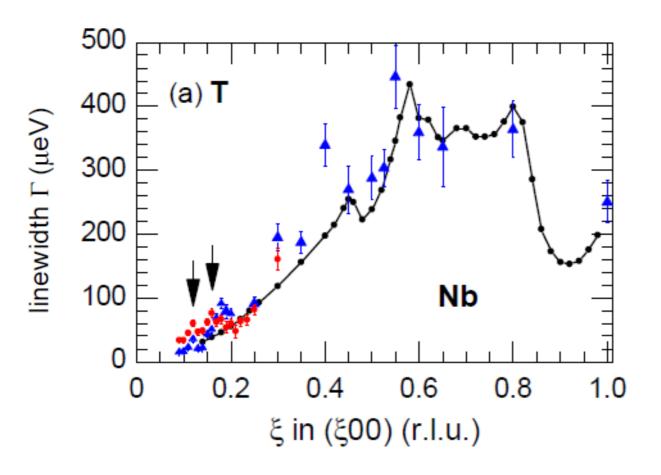
excitation energy ~ 1-100 meV energy resolution ~ 0.1-10 meV

triple axis – spin echo spectrometer: excitation energy ~ 1-100 meV energy resolution ~ 1 – 100 μ eV

3 orders of magnitude gain in energy resolution → possible to resolve excitation lifetimes in solids

TRISP Spectrometer at FRM-II

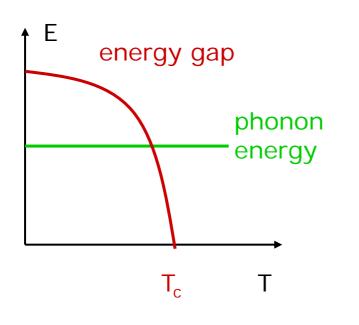
Electrn-phonon interaction

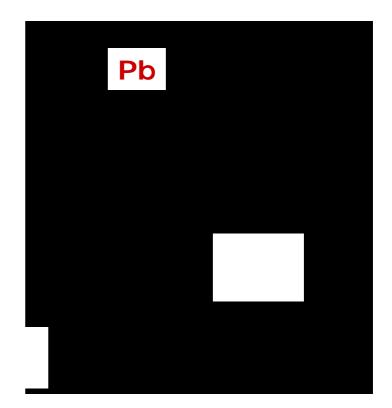


electron-phonon linewidths in good agreement with ab-initio lattice dynamics

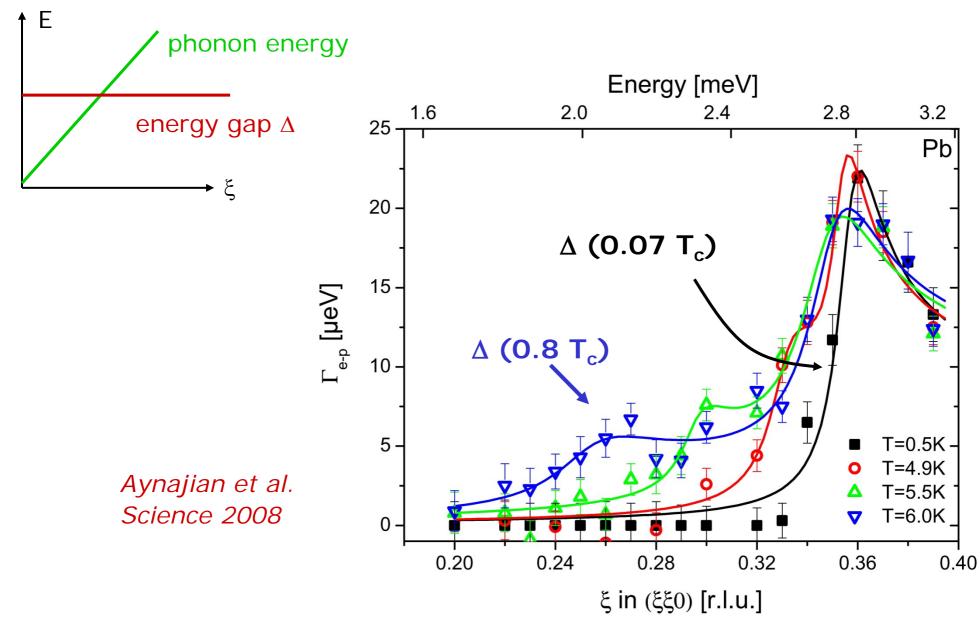
Munnikes, Boeri et al.

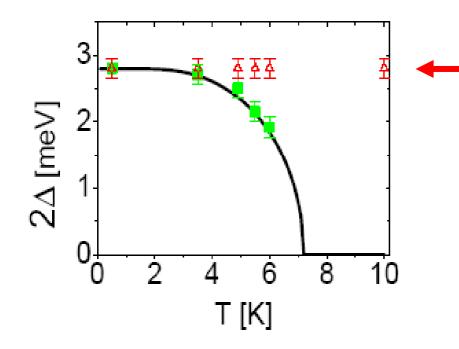
lifetime renormalization below superconducting $T_c = 7.2$ K





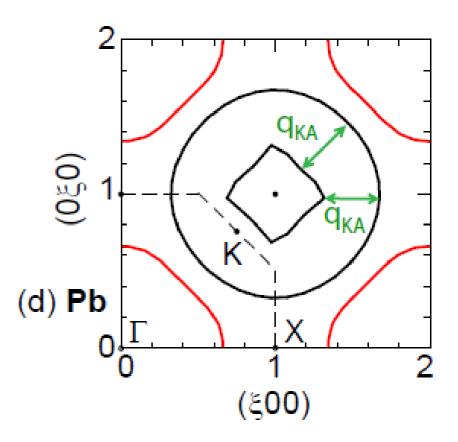
Keller et al., PRL 2006





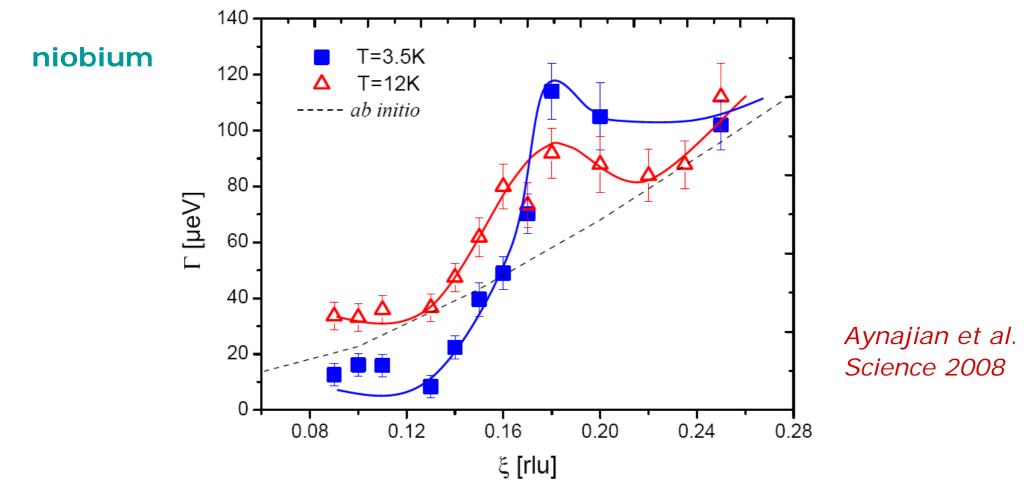
superconducting energy gap

merges with second linewidth maximum at low T

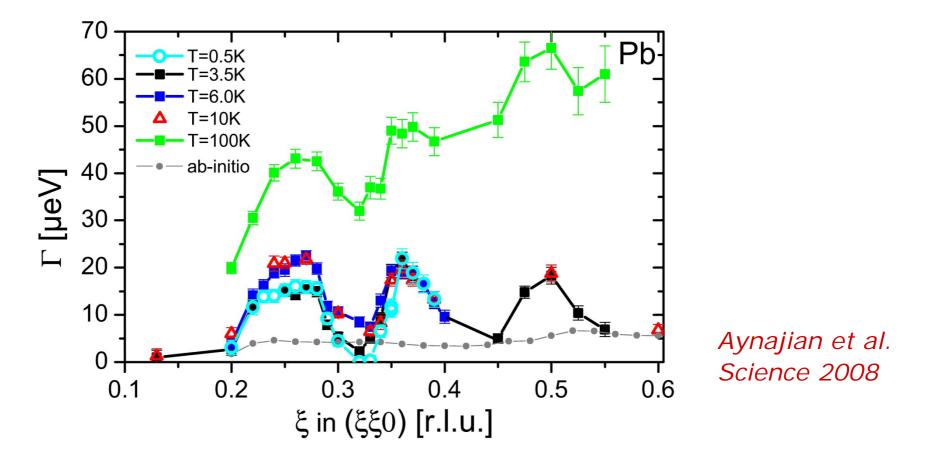


origin: Kohn anomaly due to Fermi surface nesting

Accident ?



no! same effect observed in Nb



Kohn anomalies not predicted in TA branch by ab-initio LDA calculations → many-body correlations beyond LDA

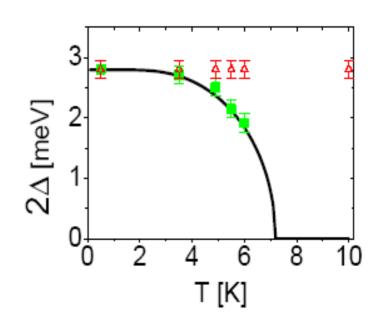
charge density wave fluctations?

scenario

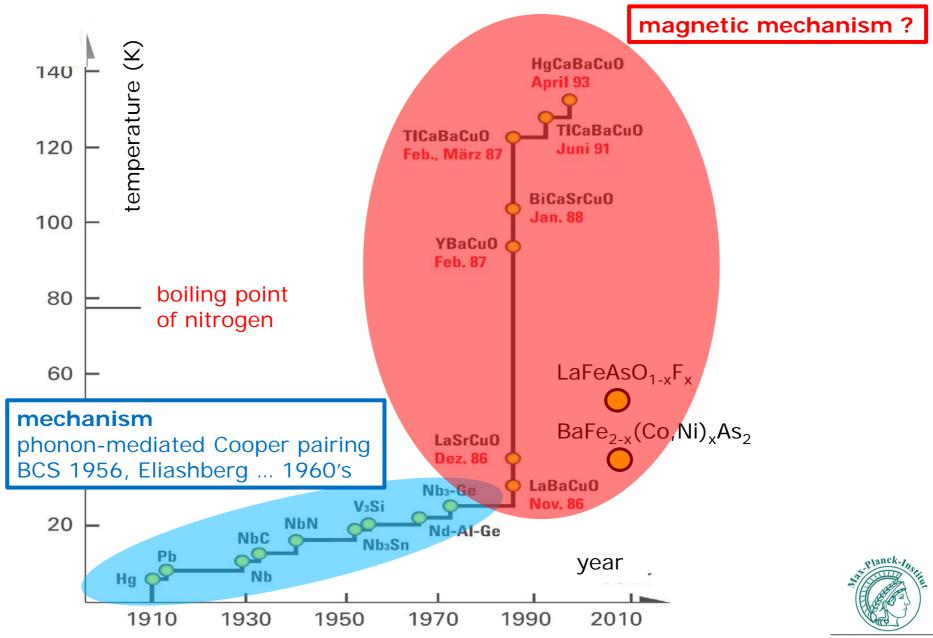
- many-body effects beyond LDA: charge density wave fluctuations
- dynamical nesting \rightarrow Kohn anomalies
- interference between CDW and superconducting fluctuations limits growth of superconducting energy gap
- not explain by BCS/Eliashberg theory

remains open problem

Johnston et al., PRB 2011

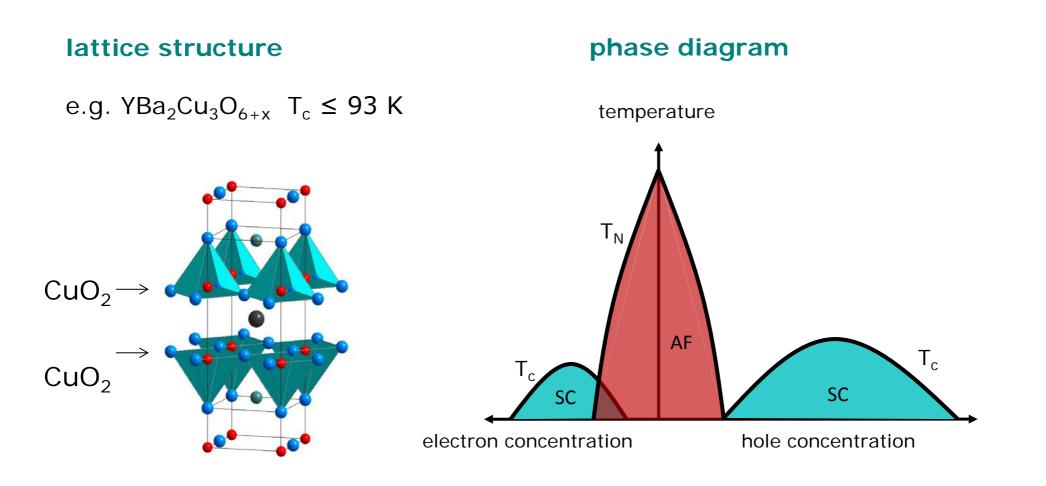


High temperature superconductivity

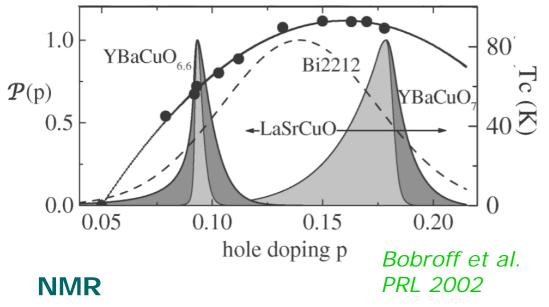


für Festkörperforschung

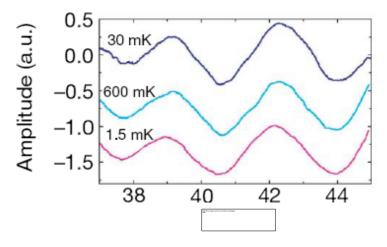
Copper oxide superconductors



YBa₂Cu₃O_{6+x}



high homogeneity, low disorder

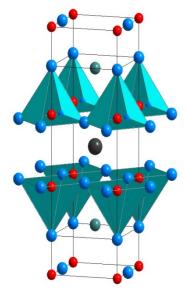


Doiron-Leyraud et al.SeNature 2007Na

Sebastian et al. Nature 2008

quantum oscillations

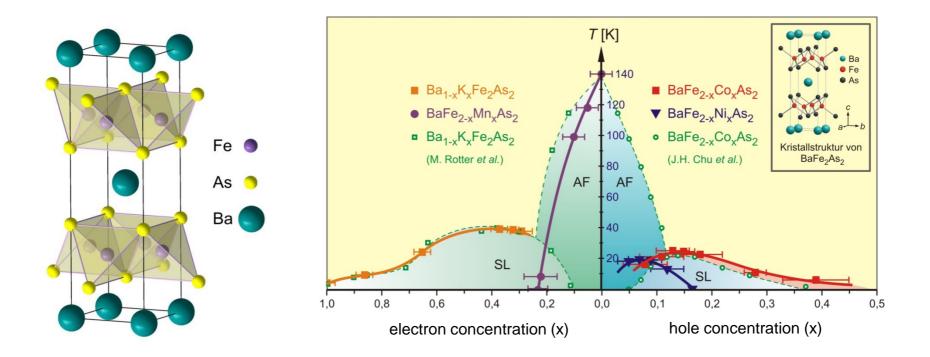
→ fermionic quasiparticles



untwinned crystals

scattering & transport probes can discriminate between uniaxial and biaxial modulations

Iron pnictide superconductors



- lattice structure different from cuprates
- phase diagram similar to cuprates
- focus on magnetic mechanisms of Cooper pairing

$$\bar{\mu}_n$$

$$\vec{\mu}_e = -2\mu_B \vec{s}_e$$
 with $\mu_B = \frac{e\hbar}{2m_e}$
 $\vec{\mu}_n = -g_n \mu_N \vec{s}_n \equiv -\gamma \mu_N \vec{\sigma}$ with $\mu_N = \frac{e\hbar}{2m_n}$ and $\gamma = \frac{g_n}{2} = 1.913$

$$\frac{d\sigma}{d\Omega} = \left(\frac{m_n}{2\pi\hbar^2}\right)^2 \left| \left\langle \vec{k}_f m_f \left| H_{\text{int}} \left| \vec{k}_i m_i \right\rangle \right|^2 \text{ with } H_{\text{int}} = -\vec{\mu}_n \cdot \vec{H}_e \right\rangle \right|^2$$

$$\begin{split} \bar{\mathcal{A}}_{e} &= \frac{\mu_{0}}{4\pi} \frac{\bar{\mu}_{e} \times \bar{r}}{|\bar{r}^{3}|} = \frac{\mu_{0}}{4\pi} \bar{\mu}_{e} \times \bar{\nabla} \frac{1}{|\bar{r}|} & \text{collect all prefactors:} \\ \bar{\mathcal{H}}_{e} &= \bar{\nabla} \times \bar{\mathcal{A}}_{e} = \frac{\mu_{0}}{4\pi} \bar{\nabla} \times \left(\bar{\mu}_{e} \times \nabla \frac{1}{|\bar{r}|} \right) & \left(\frac{m_{n}}{2\pi\hbar^{2}} \right)^{2} \left(2\gamma\mu_{N}\mu_{B} \right)^{2} \left(4\pi \right)^{2} = (\gamma\tau_{0})^{2} \\ \frac{d\sigma}{d\Omega} &= \left(\frac{m_{n}}{2\pi\hbar^{2}} \right)^{2} \left(2\gamma\mu_{N}\mu_{B} \right)^{2} \left| \left\langle \bar{k}_{f}, m_{f} \right| \bar{\sigma}_{n} \cdot \bar{\nabla} \times \left(\bar{s}_{e} \times \nabla \frac{1}{|\bar{r}|} \right) \right| \bar{k}_{i}, m_{i} \right\rangle \right|^{2} \\ \int \frac{d\bar{p}}{|\bar{p}|^{2}} e^{i\bar{p}\cdot\bar{r}} &= 2\pi \int_{0}^{\infty} d|\bar{p}| \frac{1}{j} e^{i|\bar{p}||\bar{r}|\cos\Theta} d(\cos\Theta) &= 2\pi \int_{0}^{\infty} d|\bar{p}| \frac{\sin|\bar{p}||\bar{r}|}{|\bar{p}||\bar{r}|} = \frac{2\pi^{2}}{|\bar{r}|} & \bar{p} \text{ auxiliary variable} \\ \nabla \times \left(\bar{s}_{e} \times \nabla \frac{1}{|\bar{r}|} \right) &= \frac{1}{2\pi^{2}} \int \frac{d\bar{p}}{|\bar{p}|^{2}} \bar{\nabla} \times \left(\bar{s}_{e} \times \bar{\nabla} \right) e^{i\bar{p}\cdot\bar{r}} \\ &= \frac{1}{2\pi^{2}} \int \hat{p} \times (\bar{s}_{e} \times \hat{p}) e^{i\bar{p}\cdot\bar{r}} d\bar{p} \\ \left\langle \bar{k}_{f} \left| \nabla \times \left(s_{e} \times \nabla \frac{1}{|\bar{r}|} \right) \right| \bar{k}_{i} \right\rangle &= \frac{1}{2\pi^{2}} \int d\bar{r} e^{-i\bar{Q}\cdot\bar{r}} \int d\bar{p} & \hat{p} \times (\bar{s}_{e} \times \hat{p}) e^{i\bar{p}\cdot\bar{r}} \\ &= \frac{4\pi \hat{Q} \times (\bar{s}_{e} \times \hat{Q})}{=\bar{s}_{e\perp}} \end{split}$$

für Festkörperforschu

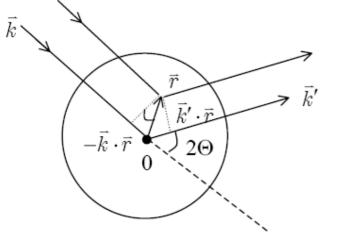
one electron

$$\begin{aligned} \frac{d\sigma}{d\Omega} &= (\gamma r_0)^2 \left| \left\langle m_f \left| \vec{\sigma} \cdot \vec{s}_{e\perp} \right| m_i \right\rangle \right|^2 & r_0 &= 2.8 \times 10^{-5} \hat{A} \quad \text{``classical electron radius''} \\ \left\langle m_f \left| \vec{\sigma} \cdot \vec{s}_{e\perp} \right| m_i \right\rangle &= s_{e\perp} \left\langle m_f \left| \sigma_z \right| m_i \right\rangle \quad = \begin{cases} s_{e\perp} \text{ if } m_f = m_i \\ 0 \text{ otherwise} & \text{non-spin-flip} \end{cases} & \text{average for unpolarized beam} \\ \sigma_z \rightarrow \sigma_x, \sigma_y & \text{spin-flip (not possible for nuclear scattering)} \end{cases} & \text{average for unpolarized beam} \\ \frac{d\sigma}{d\Omega} &= (\gamma r_0)^2 \left| \vec{s}_{e\perp} \right|^2 & \vec{s}_{e\perp} = 4\pi \hat{Q} \times \left(\vec{s}_e \times \hat{Q} \right) & \text{projection of the electron spin perpendicular to } \vec{Q} \end{aligned}$$

separate nuclear and magnetic neutron scattering by **spin polarization analysis**

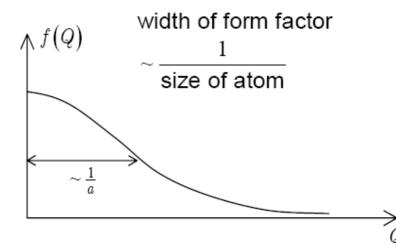
one atom

approximated as magnetized sphere, magnetization density M(r)



elastic scattering: $|\vec{k}| = |\vec{k}'|$ $|\vec{r}| \ll |\vec{R}|$ phase difference between wave scattered at 0 and at \vec{r} : $(\vec{k} - \vec{k}') \cdot \vec{r} \equiv \vec{Q} \cdot r$

$$\begin{split} &\frac{d\sigma}{d\Omega} = (\gamma r_0)^2 \Big[1 - \left(\hat{\eta} \cdot \hat{Q} \right)^2 \Big] \left| f \left(\bar{Q} \right) \right|^2 \\ &f \left(\bar{Q} \right) = \frac{1}{2\mu_B} \int \mathcal{M}(\vec{r}) \; e^{-i\bar{Q}\cdot\vec{r}} & \text{magnetic form factor} \\ & \bar{\mathcal{M}}(\vec{r}) = \mathcal{M}(\vec{r})\hat{\eta} & \text{magnetic dipole moment density} \end{split}$$



generalization for collinear magnets

$$\frac{d\sigma}{d\Omega} = (\gamma r_0)^2 \left[1 - \left(\hat{\eta} \cdot \hat{Q} \right)^2 \right] \left| \sum_{\bar{R}} (\pm) f_{\bar{R}} \left(\bar{Q} \right) e^{i \bar{Q} \cdot \bar{R}} \right|^2 \qquad \text{Bragg peaks}$$

$$= (\gamma r_0)^2 \left[1 - \left(\hat{\eta} \cdot \hat{Q} \right)^2 \right] N \frac{(2\pi)^3}{V_0} \sum_{\bar{K}_M} \left| F_M \left(\bar{K}_M \right) \right|^2 \delta \left(\bar{Q} - \bar{K}_M \right) \qquad \text{Bragg peaks}$$

$$= (\gamma r_0)^2 \left[1 - \left(\hat{\eta} \cdot \hat{Q} \right)^2 \right] N \frac{(2\pi)^3}{V_0} \sum_{\bar{K}_M} \left| F_M \left(\bar{K}_M \right) \right|^2 \delta \left(\bar{Q} - \bar{K}_M \right) \qquad \text{Bragg peaks}$$

$$= (\gamma r_0)^2 \left[1 - \left(\hat{\eta} \cdot \hat{Q} \right)^2 \right] N \frac{(2\pi)^3}{V_0} \sum_{\bar{K}_M} \left| F_M \left(\bar{K}_M \right) \right|^2 \delta \left(\bar{Q} - \bar{K}_M \right) \qquad \text{Bragg peaks}$$

$$= (\gamma r_0)^2 \left[1 - \left(\hat{\eta} \cdot \hat{Q} \right)^2 \right] N \frac{(2\pi)^3}{V_0} \sum_{\bar{K}_M} \left| F_M \left(\bar{K}_M \right) \right|^2 \delta \left(\bar{Q} - \bar{K}_M \right) \qquad \text{Bragg peaks}$$

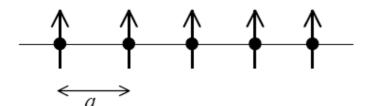
$$= (\gamma r_0)^2 \left[1 - \left(\hat{\eta} \cdot \hat{Q} \right)^2 \right] N \frac{(2\pi)^3}{V_0} \sum_{\bar{K}_M} \left| F_M \left(\bar{K}_M \right) \right|^2 \delta \left(\bar{Q} - \bar{K}_M \right) \qquad \text{Bragg peaks}$$

$$= (\gamma r_0)^2 \left[1 - \left(\hat{\eta} \cdot \hat{Q} \right)^2 \right] N \frac{(2\pi)^3}{V_0} \sum_{\bar{K}_M} \left| F_M \left(\bar{K}_M \right) \right|^2 \delta \left(\bar{Q} - \bar{K}_M \right) \qquad \text{Bragg peaks}$$

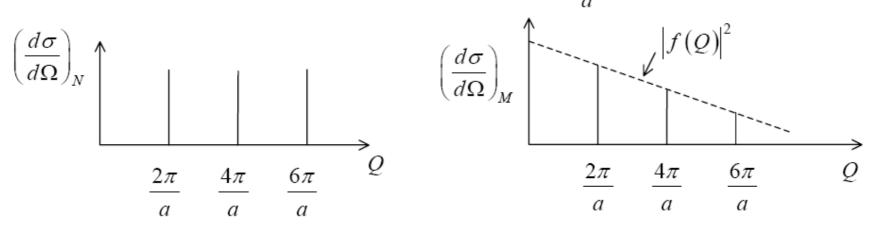
$$= (\gamma r_0)^2 \left[1 - \left(\hat{\eta} \cdot \hat{Q} \right)^2 \right] N \frac{(2\pi)^3}{V_0} \sum_{\bar{K}_M} \left| F_M \left(\bar{K}_M \right) \right|^2 \delta \left(\bar{Q} - \bar{K}_M \right) \qquad \text{Bragg peaks}$$

 \bar{K}_{M} magnetic reciprocal lattice vectors

Example one-dimensional ferromagnet



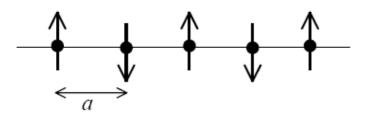
nuclear and magnetic unit cells identical $\Rightarrow K_M = K_N = \frac{2\pi}{3}n$, *n* integer.



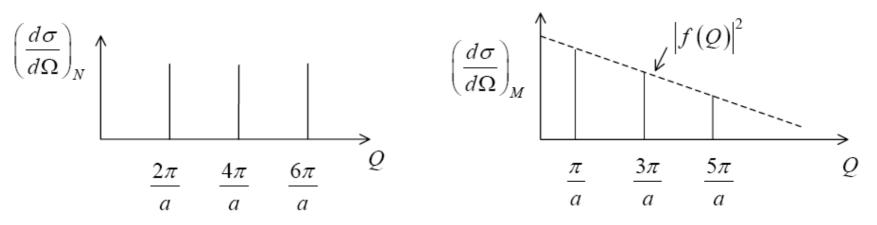
use **interference** between nuclear and magnetic scattering to create spin-polarized neutrons

$$\frac{d\sigma}{d\Omega} \sim \left|b\right|^2 + \left|\hat{\eta}\right|^2 + b\,\hat{\eta} \qquad \text{(up to prefactors)}$$

Example one-dimensional antiferromagnet



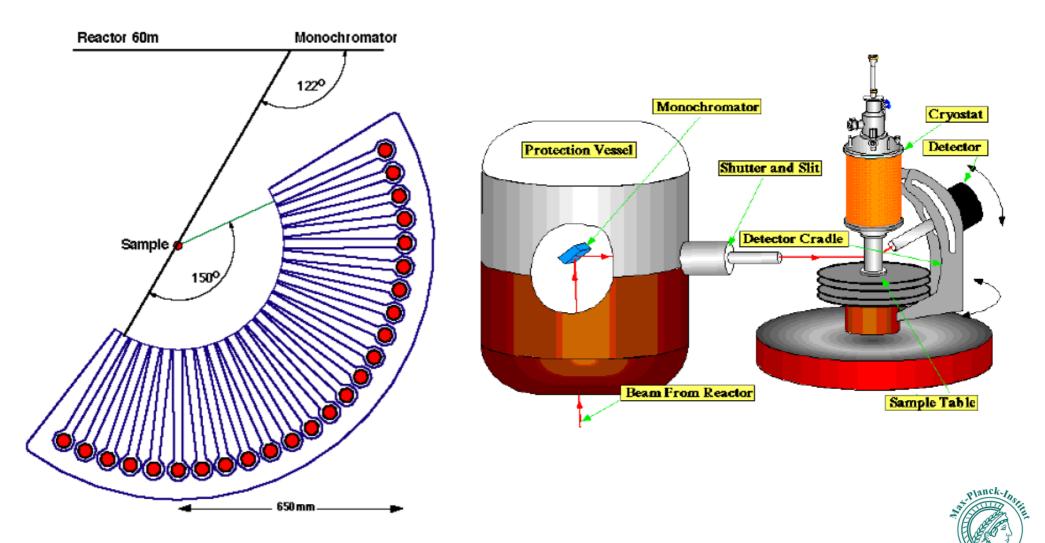
magnetic unit cell twice as large as nuclear unit cell $\Rightarrow K_M = \frac{\pi}{a} n \neq K_N = \frac{2\pi}{a} n$ $|F_M|^2 = |f(Q)|^2 |+1 - e^{iQa}|^2 = 4|f(Q)|^2 \sin^2 \frac{Qa}{2} = \begin{cases} 4|f(Q)|^2 & \text{for } n \text{ odd} \\ 0 & \text{for } n \text{ even} \end{cases}$



Neutron diffractometers

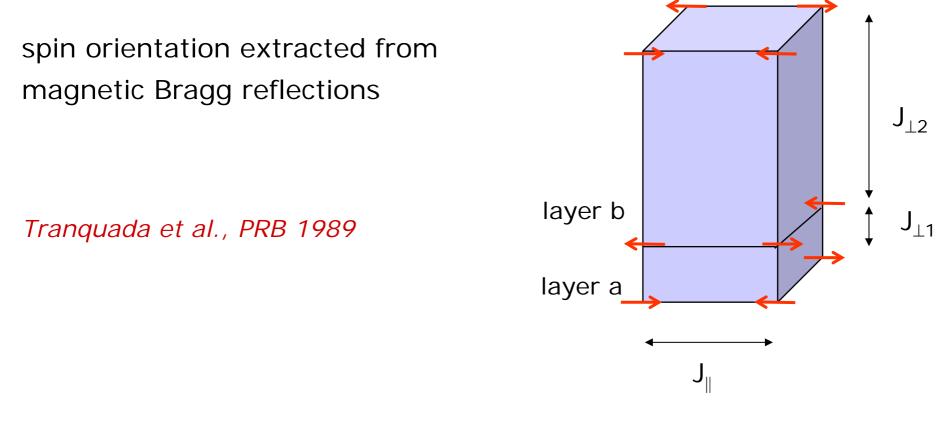
powder

single crystal



für Festkörperforschung

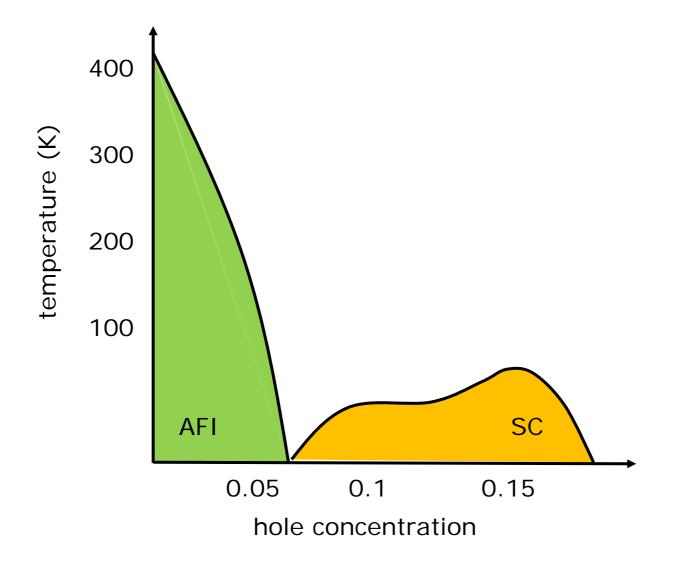
YBa₂Cu₃O₆ spin structure



$$H = \Sigma_{ij} (J_{\parallel} S_{i}^{(a,b)} \bullet S_{j}^{(a,b)}) + \Sigma_{i} (J_{\perp 1} S_{i}^{(a)} \bullet S_{i}^{(b)} + J_{\perp 2} S_{i}^{(b)} \bullet S_{i}^{(a)})$$

Sign, but not strength of exchange parameters determined by elastic neutron scattering

Phase diagram of YBa₂Cu₃O_{6+x}



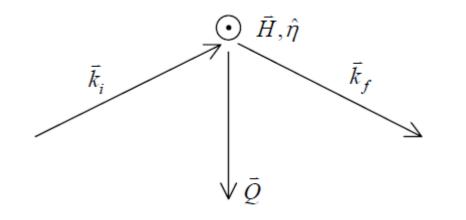
Spin-polarized neutrons

neutron spin operator

$$\left(\frac{d\sigma}{d\Omega}\right)_{M} = (\gamma r_{0})^{2} \left| \left\langle m_{f} \left| \vec{\sigma} \cdot \hat{\eta}_{\perp} \left| m_{i} \right\rangle \right|^{2} \sum_{\vec{K}_{M}} \left| F_{M} \left(\vec{Q} \right) \right|^{2} \delta \left(\vec{Q} - \vec{K}_{M} \right)$$
neutron spin states
defined by spin polarizers

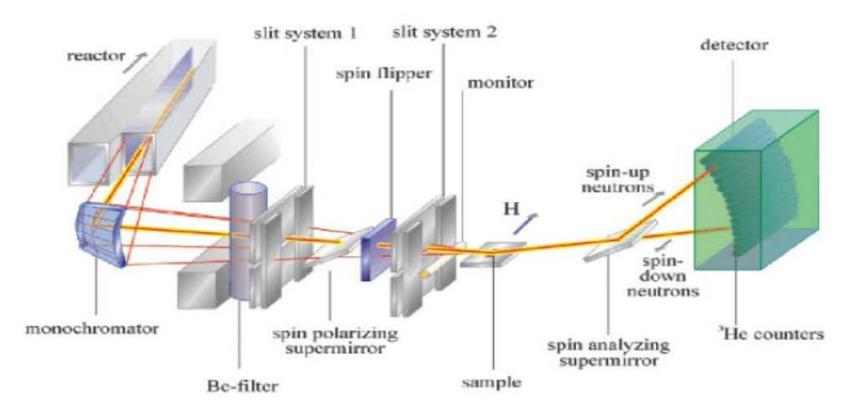
manipulate relative orientation of vectors $\sigma,\,\eta,\,Q$

 \rightarrow accurate determination of complex spin structures



Spin-polarized neutrons

Polarized neutron spectrometer



Spin density wave

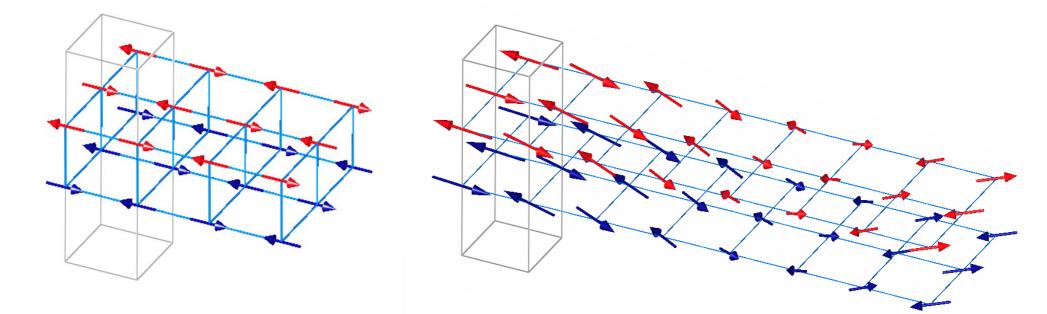
spin structures from spin-polarized neutron scattering

undoped YBa₂Cu₃O₆

commensurate antiferromagnetism

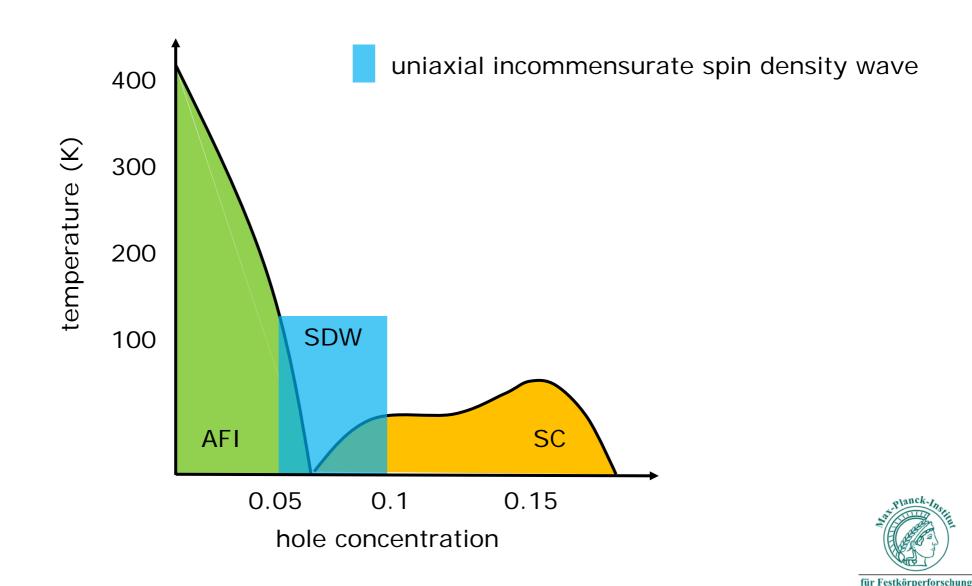
lightly doped YBa₂Cu₃O_{6+x}

noncollinear incommensurate structure, facilitates propagation of doped holes



Haug et al., PRL 2009, NJP 2012 Porras, Loew et al.

Competing order in YBa₂Cu₃O_{6+x}



Inelastic magnetic neutron scattering

polarization factor

$$\frac{d^2\sigma}{d\Omega \, dE} = (\gamma r_0)^2 \frac{k_f}{k_i} N \left| F(\mathbf{Q}) \right|^2 e^{-2W} \sum_{\alpha\beta} (\delta_{\alpha\beta} - \hat{Q}_{\alpha} \hat{Q}_{\beta}) S^{\alpha\beta}(\mathbf{Q}, \omega)$$

$$S^{\alpha\beta}(\mathbf{Q},\omega) = \frac{1}{2\pi\hbar} \int \sum_{l} e^{i\mathbf{Qr_{l}}} \left\langle S^{\alpha}_{0}(0)S^{\beta}_{l}(t) \right\rangle e^{-i\omega t} dt$$

spin-spin correlation function

fluctuation-dissipation theorem

$$S^{\alpha\beta}(\mathbf{Q},\omega) = \frac{1}{\pi (g\mu_{\mathrm{B}})^2} \frac{1}{1 - e^{-\hbar\omega\beta}} \chi_{\alpha\beta}''(\mathbf{Q},\omega)$$

 $\chi''(\mathbf{Q},\omega) = \mathrm{Tr}\,[\chi''_{\alpha\beta}(\mathbf{Q},\omega)]/3$

dynamical magnetic susceptibility response to time- and position-dependent H-field

$$\frac{d^2\sigma}{d\Omega \, dE} = 2(\gamma r_0)^2 \frac{k_f}{k_i} N \left| F(\mathbf{Q}) \right|^2 e^{-2W} \frac{1}{\pi (g\mu_{\mathrm{B}})^2} \frac{1}{1 - e^{-\hbar\omega\beta}} \chi''(\mathbf{Q},\omega)$$

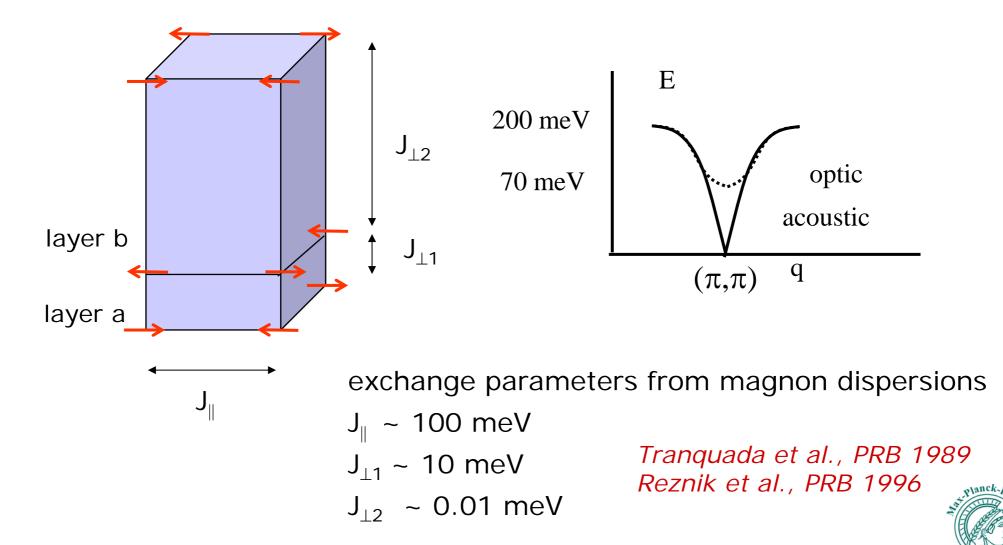
Inelastic magnetic neutron scattering

localized electrons → Heisenberg antiferromagnet, magnon creation

$$\frac{d^{2}\sigma}{d\Omega \, dE} = (\gamma r_{0})^{2} \frac{k_{f}}{k_{i}} |F(\mathbf{Q})|^{2} e^{-2W} \frac{(2\pi)^{3}}{4Nv_{0}} \{1 - (\hat{Q}\hat{\eta})^{2}\} \times \sum_{a=0,1} \sum_{q,K_{m}} \langle n_{q,a} + 1 \rangle \, \delta(\omega_{q,a} - \omega) \, \delta(\mathbf{Q} - \mathbf{q} - \mathbf{K}_{m})$$
magnon dispersions

YBa₂Cu₃O₆ magnons

$$H = \Sigma_{ij} (J_{\parallel} S_{i}^{(a,b)} \bullet S_{j}^{(a,b)}) + \Sigma_{i} (J_{\perp 1} S_{i}^{(a)} \bullet S_{i}^{(b)} + J_{\perp 2} S_{i}^{(b)} \bullet S_{i}^{(a)})$$



für Festkörperforschung