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Lecture Notes, C. Jarzynski, University of Maryland
Boulder School for Condensed Matter and Materials Physics, 2009
Nonequilibrium Statistical Mechanics: Fundamental Problems and Applications

Nonequilibrium work relations
I. Macroscopic thermodynamics and the second law

Review of thermodynamic processes
Summarize relevant thermodynamic concepts using pedagogical example - 
stretching a rubber band - then discuss how these concepts might apply
to a microscopic analogue - stretching a single molecule.
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• system of interest  =  rubber band (+ spring)
• thermal environment  =  surrounding air  (“heat bath”, “reservoir”)
• work parameter  =  λ

We act on the system by manipulating the work parameter.

 λ fixed  →  system relaxes to equilibrium state ( λ,T).
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microscopic analogue: stretching a single molecule

• system of interest  =  RNA + beads
• thermal environment  =  water
• work parameter  =  λ

(laser trap ~ ideal spring)

alternative approach:
   use atomic-force microscopy instead of laser trap

[Lip02]

[Har07]



3

The first and second laws of thermodynamics make predictions
regarding such processes …

First Law of Thermodynamics

! 

"U =W +Q

This is essentially a statement of energy conservation,
but keep in mind that the meaning of the quantities involved
depends on how we define our system of interest. 

Rubber band example:

   1. U = internal energy of rubber band alone
   

   2. U = internal energy of rubber band + ideal spring

Both definitions are acceptable, but we must choose one and
stick with it.  In these lectures I will use definition 2.

! 

W = Fspring " dz#

! 

W = Fspring " d#$

Let’s define a thermodynamic process to be a sequence of events
in which a system of interest evolves from one equilibrium state
to another.
   - focus on thermodynamic processes in which we act on the system
     by manipulating a work parameter λ
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Second Law of Thermodynamics

! 

dQ

T
" #S = SBA

B

$ % SA

There exists a state function, S (entropy) such that

for any thermodynamic process from state A to state B.

• Reversible processes: 

(Clausius inequality)

! 
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• Irreversible processes: 

! 

dQ

T
< SBA

B

" # SA

( T = temperature of surroundings
        from which heat is absorbed  )
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Apply Clausius inequality to stretching a rubber band:

! 

dQ

T
" #S

A

B

$

! 

W " #F+   First Law     →

( F = U-TS = Helmholtz free energy )

1. Start at λ=A , in equilibrium w/ surrounding air
2. Stretch rapidly,  λ : A→B …  rubber band heats up
3. Hold λ fixed and allow to cool down

T = Tair (constant)

The inequality W≥ΔF is the general statement of the Clausius
inequality for processes involving a single thermal reservoir.

Often convenient to separate contributions to W:

! 

W = " W # PdV + µ
i
dn

i

i
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• closed system at constant pressure:

! 

" W # $F + P$V = $G

• fixed volume, open system:

! 

" W # $F % µ
i
$n

i

i

& = $'
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Cyclic processes:

A
λ1

λ2

ΔF=FA-FA=0

Clausius inequality :    Wcyc ≥ 0  ( equivalently, Qcyc ≤ 0 )

No work can be extracted from a cyclic process involving
only one thermal reservoir

(Kelvin-Planck statement of 2nd law)

… no perpetual motion machines of the second kind:

heat in work out

system

Q > 0 W < 0

“no free lunch”

Isothermal* cyclic process :

*  “isothermal” = only one reservoir is present
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Exercise. When a rubber band is stretched rapidly, its temperature
increases.  Using the Kelvin-Planck statement of the second law,
show that this empirical observation implies that a rubber band will
contract when heated.  You will need to make reasonable assumptions
about time scales involving heat exchange and self-equilibration.

“Conjugate” / “forward-reverse” processes.

We’ll often consider a pair of processes:

      Forward process , λ : A→B   (then relax to equilibrium)
      Reverse process , λ : B←A   (then relax to equilibrium)

with

! 

"
t

R
= "#$ t

F

where τ is the duration of the process, e.g.:

! 
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! 

"W
R
# $F #W

F

cycle : A→B→A … Wcyc = WF + WR ≥ 0
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How might these results apply to thermodynamic processes
involving microscopic systems?

1. Start at λ=A , in equilibrium w/ water
2. Stretch rapidly,  λ : A→B
3. Hold λ fixed and allow to re-equilibrate
4. “Unstretch” rapidly, λ : A←B
5. Hold λ fixed and allow to re-equilibrate
6. Repeat

forward

reverse

thermal fluctuations of microscopic degrees of freedom
           →         statistical fluctuations in W  !

extrapolating the 2nd law to the microscopic scale, we expect:

ρF(W)

ρR(-W)

ΔF
W

<-WR>  ≤  ΔF  ≤  <WF> 




