Introduction to Unconventional
Superconductivity

Manfred Sigrist

Theoretische Physik, ETH-H6nggerberg, 8093 Ziirich, ®&nwand

Abstract. This lecture gives a basic introduction into some aspedtssafinconventional supercon-
ductivity. First we analyze the conditions to realized umentional superconductivity in strongly
correlated electron systems. Then an introduction of tiieggized BCS theory is given and sev-
eral key properties of unconventional pairing states aseutdised. The phenomenological treatment
based on the Ginzburg-Landau formulations provides a viewr@onventional superconductivity
based on the concept of symmetry breaking. Finally somecgsp&two examples will be discussed:
high-temperature superconductivity and spin-tripletssapnductivity in S§RuQy.
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INTRODUCTION

Superconductivity remains to be one of the most fascinadimg) intriguing phases of
matter even nearly hundred years after its first observafianng to the breakthroughin
1957 by Bardeen, Cooper and Schrieffer we understand suphuctivity as a conden-
sate of electron pairs, so-called Cooper pairs, which fanetd an attractive interaction
among electrons. In the superconducting materials knowvtih the mid-seventies this
interaction is mediated by electron-phonon coupling wigides rise to Cooper pairs in
the most symmetric form, i.e. vanishing relative orbitagalar momentum and spin sin-
glet configuration (nowadays callegdvave pairing). After the introduction of the BCS
concept, also studies of alternative pairing forms staiedaly on Anderson and Morel
[1] as well as Balian and Werthamer [2] investigated supaiiaoting phases which later
would be identified as the A- and the B-phase of superfitdd [3]. In contrast to the
s-wave superconductors the A- and B-phase are charactdryzEdoper pairs with an-
gular momentum 1 and spin-triplet configuration. This washikeginning of the era of
unconventionasuperconductivity, condensates of Cooper pairs of lowersgtry, in
contrast to theonventionabuperconductors with the most symmetric Cooper pairs.

The discovery of superfluidity in théHe in 1971 by Osheroff, Richardson and Lee
gave the first example of unconventional Cooper pairingf4jHe other pairing mecha-
nisms are obviously of non-phononic origin, based on vavdls and spin fluctuation
mediated interactions [3, 5]. MoreovéHe is the prime example for a strongly corre-
lated Fermi liquid where the short range repulsive intéoadeads to strong renormal-
isations of the quasiparticle mass and other quantitieteridtive pairing mechanism
and strong correlation effects are key elements to prevestrens from undergoing
conventionak-wave pairing.

The natural aim to find among solids a system with unconveati€ooper pairing
was not satisfied until much latter when at the end of sevemtiel beginning of the



eighties two novel classes of strongly correlated matemare found among which
some were superconducting - the heavy Fermion compounds §.,and organic con-
ductors [9, 10]. The first type of materials are intermetalltontaining rare earth ions
and the second are highly anisotropic conductors basediorgaits. Although it is not
clear until today which form of Cooper pairing is realizednrany of these materials,
some of them possess complex phase diagrams with sevdexkdif superconducting
phases, firmly establishing the unconventional nature oth bypes of material super-
conductivity emerges out of phase that are nearly magnetevalve under pressure
from a magnetically ordered state. In 1986 the discoverygiittemperature supercon-
ductivity in cuprate compounds with layered perovskiteaire announced the era of
unconventional superconductivity to a wider community][This system dominates to
the present days the study of superconductivity. A few yese necessary to estab-
lish the unconventional character to pairing for the cugsaCooper pairs possess in the
quasi-two-dimensional systems a so-called spin sirdytet ,-wave structure [12, 13].
In cuprate materials the important role of magnetism in thregext of the unusual metal-
lic properties and superconductivity is underlined by thet that this superconductor
emerges from an antiferromagnetic Mott-insulator uponieadoping [14].

The essential role which magnetism could play for unconeeat superconductivity
became one of the guiding strategies in the nineties in thecBefor new materials.
Striking examples of superconductivity associated witlynedic phases are several Ce-
based compounds where superconductivity is associatédawquantum critical point
of an antiferromagnetically ordered phase. Gdltb], CePdSi; [15, 16] and CeMlg
(M=Co,Rh,Ir) [17, 18] are a few examples of this type. Swsingly superconductivity
was also found inside a ferromagnetic phases in4JG8], URhGe [20] and ZrZpn[21],
possibly connected with the corresponding magnetic quauptuase transition.

SrRuO, whose superconductivity was discovered in 1994 deservpeaat place
as an exemplary case of an unconventional superconductoiting from a strongly
correlated Fermi liquid phase [22]. In various respectsayine considered as an analog
to 3He, including the pairing symmetry which is closely relatedhe A-phase of the
superfluid. Many aspects of this superconductor have beplorex in much detail
during the last ten years [23, 24]

More recently the superconducting skutterudites such &s/8ity, have been
aroused much interest as new examples of heavy Fermion ialatenth multiple
superconducting phases [25]. The exploration of supentettivity in materials with
geometrically frustrated crystall lattices has been ahtntrecent focus. This in-
cludes NaCo(Qy intercalated with water which has been considered as azatialn
of superconductivity on a triangular lattice [26]. Also suponductivity in metalls
with the pyrochlor structure belong to this class such agResO; [27] and AOsOg
(A=Cs,RDb,K) [28], although it is not clear whether they arcaonventional. Crystal
structure can have an even crucial impact on supercondycthan in the case of
frustrated lattices, if inversion symmetry is missing. Ase will see later inversion
together with time reversal invariance are among the keynsgtmes for Cooper pair
formation. The discovery of superconductivity in the he&grmion systems CefSi
and Ulr have reopened the discussion of superconductivityis kind of systems [29].

During the past two decades we experience important deweots in the field of
unconventional superconductivity, from the side of neweriats as well as theoretical



understanding. New strategies for the discovery of unaotwmeal superconductors bear
fruits besides the tremendous progress in sample produetloch is a mandatory
accessory for the observation of unconventional superotitdy phases which are
very sensitive to material disorder effects. These leatates cover a few aspects and
developments in the field of unconventional supercondigtiMaturally this overview
is selective and the viewpoint is biased by the preferenttsedecturer.

CONVENTIONAL VERSUS UNCONVENTIONAL
SUPERCONDUCTIVITY

The most fundamental experimental aspect of supercomityas the screening of a
magnetic field, the Meissner-Ochsenfeld effect, which iegphlso the existence of per-
sistent electric currents. The microscopic theory whiabvjates such a feature is based
on the coherent state introduced by Bardeen, Cooper aniefehrin this chapter we
will give a brief introduction to this BCS state (screenirifpets, however, will be only
addressed later in the context of the phenomenologicaldBngzLandau formulation)
and motivate the generalization beyond the standard BG8\tloé conventional super-
conductivity. We will compare also the electron-phonon hatsm for superconduc-
tivity with possible alternative mechanisms, in particulaased on effective interaction
originating from spin fluctuations.

Standard BCS theory

It is convenient for the further discussion to first introdube basics of the meanfield
formulation of the BCS theory using a very simple model. Taerfation of Cooper
pairs which is at the heart of the microscopic theory of Barge€Cooper and Schrieffer,
requires the presence of an attractive interaction betvedsstrons. For our purpose
it is sufficient to use a structureless contact interactidnctv yields the following
Hamiltonian in a second-quantization language,

—5é&.cl e t y .
= RXE"C'k’sck5+gHZqC‘k’+q,TCR/—q,iCkwcm' (1)
,S , /7

WherecT_k,S (ci creates (annihilates) an electron with momentknand spins. The
first term is the kinetic energy accounting for the band stmgcof the metal, where
&, is measured relative to the chemical potentiali.e. & = &, — = Zﬁ—;(k’z — k&)
for a parabolic band. The second term describes the twaelgarhteraction which
is represented by a structureless scattering matrix elegenhis corresponds to a
attractive contact interactiod (¥ — r’) = g3(F — r') (with g < 0) such thav ¢, =
V(g =k—k')= [d3U (F)ddT = g. Note that in this case only particle of opposite
spin interact.

For the BCS theory the relevant scattering processes ase thfgparticle pairs with
vanishing total momentum, belonging to the set of stét&s]) ® | — k |)}. Therefore



we concentrate on the reduced Hamiltonian

H = szcﬂ Crst+0 Z c k1 Gk iy - (@)

ignoring all other pair scattering events. Bardeen, CoapeérSchrieffer introduced the
following variational ground state

‘(DBCS> |:| {UR —|—Vk TkT T } ‘VaC> (3)

where|vag denotes the electron vacuum;g|2+ 7 |2 =1). This is a coherent states of
electron pairs (Cooper pairs) giving a lower energy tharbdre Fermi gas.

An alternative approach which provides also straightfadiyethe quasiparticle spec-
trum of the coherent state is given by the mean field theorghvhllows us to reduce
the interaction part. Among the possible meanfields we wseffrdiagonal

b = (¢, %1 ()

which connects states of particle numbers different by 8uggested by the variational
state (3). Note that the expectation val4e = trjexp(—B.2)A]/trlexp(—B.7)]. W
may interpreby as the wavefunction of the Cooper pairs in momentum spaserting

C Gk = by + {C_HCRT — by } into the Hamiltonian and neglecting terms quadratic in

{...} (we assumé|{...}|?) < |b;|%) we obtain the meanfield Hamiltonian

H = szcq Cpst 0 z bt .c_ I(lckTerk,c l_bEbR’ (5)
K.k’
_ RZERCRSCRS— % (8% g cq, +ack ¢ ) —aby (6)
S

with A = —g3 ;, by, Itis now straightforward to find the quasiparticle spewtrof this
one-patrticle Hamiltonian by introducing new Fermion opersly; . with the property

yIs: i, VEJ = Eg yﬂ To reach such a diagonalization of the Hamiltonian we use
the Bogolyubov transformation

_ t _ T
Cpy = Ug¥ia TVkVg, and € g = ViV + Uk, (7)

with }uR}2+ }VR}Z =1 and indices 1 and 2 stands for the electron like and hole like
quasiparticle. Note that the functions andv;, are identical with those of the variational
state (3). The Hamiltonian acquires the diagonal form

Hint = 3 16 — By +00g] + 3 B (%, Ve + Vi, Yoo ©
K k

where the quasiparticle energy is giventy =, /ER? + A2, The spectrum of the Hamil-
tonian has two branches which originate from electron arne In@nches. The attractive
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FIGURE 1. Schematic quasiparticle spectrum: The solid line showspleetrum with a finite energy
gap and the dashed line corresponds to the spectrud fo0 with the same quasiparticle occupation.
States withE < 0 are occupied by quasiparticles and emptyHar 0. Obviously the opening of the gap
lowers the groundstate energy.

interactiong leads to an instability of the Fermi surface and the openfraggap 2\ (see

Fig.1). The gap is the result of hybridizing’ electrondiland hole-like quasiparticles

leading to new quasiparticles as a superposition of electind hole-like character.
The energy gap has to be determined self-consistently fnefgap equation”:

* A E_‘
b= 93 by =93l (€)= 03 o2 tanh(kB'_‘I_) ©)

with the Fermi factorf(E) = 1/(1+ €¥/%8T). Note that this energy gaf(T) only
depends on temperature. We define the critical tempera¢ae the temperature where
the gap vanishes. In the limlf — 0 of Eq.(9) we obtain the linearized gap equation
determiningTy:

_ 1 Sk _ N(&) ¢
A= —gA% %€, tanh(kBT) = 1= —g/df 2 tanh(kBTC> : (10)

whereN(&) is the density of states of the electrons. This integral h&sgarithmic
divergence fo€ — +o0. Thus we need to introduce a cutoff enesgyo obtain sensible
result. This corresponds to a characteristic energy sdaleattactive interaction and
is assumed to be much smaller than the Fermi energy or thevaiatia, the electronic
energy scale. In other words we may say that the attractbegaction is only present
in a narrow energy range around the Fermi surface. Thenmsésgitimate to assume
that the density of states is constad{é ) — Np, yielding:

1= —gNo/_EC gtanh( d ) — —gN\gln <1'14£C) (11)

2kgTc keTc



from which we derive
keTe = 1.14e.e /19No (12)

The critical temperatur&; depends on the cutoff energy.
The energy gap at zero temperature is also straightforwaaditulated using the same
energy cutoff:

1—— —gl\bsinh‘l% (13)

& dé B
o), Verim

A(T = 0) ~ 2.6 Y9N — 1 764 T (14)

Obviously we can express the gap By with a universal proportionality factor and
without the appearance ef. This is the signature of the scheme which we call "weak-
coupling” approximation. It is possible to express phyksigentities cutoff-free, ifl; is
known.

Finally we estimate the condensation energy at 0 which corresponds to the energy
gain due to the opening of the gap. Since this gap is very shmttondensation energy
originates from the modification of the quasi particle atery close to the Fermi
energy. Therefore we obtain

such that

1
Econd= Z (& —Eg +0by] ~ _§N0|A|2 : (15)
K

The condensation energy depends on the density of states BRetmi surface and the
zero-temperature gap magnitude. Thus within the weak cogipheanfield treatment
Econdis determined by the modified quasiparticle spectrum onily. 1.

Electron-Phonon interaction and Coulomb Repulsion

So far the nature of the model interaction was not specifiedifrdiscussion. We now
turn to the electron-phonon mediated interaction and whickely connected with the
Coulomb interaction. Thus, it is necessary examine alseffieet of Coulomb repulsion
on the pairing of electrons. Electron possesses chargepandiegrees of freedom. In
a metal Coulomb interaction coupling to charge is renorzedlithrough many body

effects. 2
4
Vi = #e(d @) (18)
< ge(d, w)

whered = k — k’. The dielectric constare(d, w) describes the effect of dynamical
screening of charge fluctuations. This occurs due to thealegement of the electrons
as well as the polarization of the elastic (positively cleafgonic lattice of the metal i.e.

due to phonons. We can decompose the renormalized intanacto two corresponding

parts
K Pk P +Kep @ —
——

renorm. Coulomb electron-phonon



with how = & — &;,. where the first is due Thomas-Fermi screening which is dened
as instantaneous so that we ignore the frequency dependérescreening length is

Ae=krg with Kip= GZ.erne, (18)

which is of the order of a few lattice constants, making theeraction very short
ranged. The second part due to the phonons, in the same wayamged, involves the
dynamics of the ions which slow compared electronic timdescaHerew, describes
the spectrum of the acoustic phonang= sqat long wave-lengths, implying the Debye
energyhap as a characteristic energy scale. This interaction isaitteafor frequencies
|w| < wy < wp and repulsive otherwise. In this way the Debey frequencyeagpas a
natural energy cutoff;. We will now use a simple model given by Anderson and Morel
to discuss the superconducting instability including thpuisive part of the Coulomb
interaction which we had ignored in the introduction ab®@] |

Anderson-Morel-Model

Including now also the effect of the repulsive Coulomb iat#ion we set up a
simplified weak-coupling model which keeps the most esakfaatures of the electron
band and the structure of the interaction (17). The eledtaord is characterized by its
widthW = 2Eg with the chemical potential in the center and a constantitieofstates
N(&) = No. The interaction is divided into a repulsive and an attv@gtiartVee andVep,
respectively, originating from the two parts in (17). Theeggy range of the attractive
part is centered around the Fermi energy bounded by thef @nefgyep = hwp while
the repulsive part extends over the whole band width. Thudefiee

L __\/€e ep
Vk,k’ _V‘k’,'k’/ +V‘k’,R/

ee _ eerr g y_ ) H>0 for—W <&, & <W
NOVRk/_NOV (Ek’fk’)_{ 0 else

—A for—ep <é&;:. &, <
NOVI-(?%, _ NOVep(E'k’afi(‘/) _ { 0 <0 ecl)se & < Ek’gk éD
(19)
with §; = &; — &r. We set up the corresponding BCS-type Hamiltonian with tlee m
mentum dependent interaction

B 1 1 ~
7= 2 G CrsT g 2 Vi O O O S 20
k,s K,k

which we decouple in the analogous way as in the previousoseletading to the gap
equation

. ~ . ~ T Af
AR =— R7R/<C—R/¢CR’T> ; AE = - Z Rf’<CR’TC—R’¢> . (21)
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FIGURE 2. Modelinteraction: The left panel shows the basic energeddpnce of the interaction (17).
The right panel is a very simplified model interaction witle #sssential features of an overall repulsive
interaction with an attractive part around the Fermi energy

We introduce the simplifying form
Ap = A8y )9 (22)

wheregy describes the angular structure of the gap which is alsodimof the energy.
We reduce the linearized gap equation to the form

a()=-No [ de(e. &) e Zacer, 23)
whereV (£,&’) is defined as
(E E Q z g; Vk k’gk’ (E E ) (E/_E'k’/) : (24)

K,k

whereVy, ¢, is taken from (19). This interaction requests that= 1. Sinc the approxi-

mation for the band structure and the pairing interactio(lB) give to distinct energy
regions we also put the analogous parametrization angatizad@ap

{ Ay for |E|<ep

Ay for ep<|E|<W

A(§) = (25)

With this simplifications we arrive at the following two lingzed coupled gap equations

A — () _M)Al/eodf,tanr(ﬁlgl/z) U, df tanr(B/E /2)
0 E 3] E
= (A —u)A1In(1.14ep /keT) — uA2IN(W/ep)
(26)
AZ — —UAl /EDdE/tanr(B/E /2) uA dE tanr(B/E /2)
0 E & E

= —puA1In(1.14ep /ksT) — uDo IN(W/&p) .
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FIGURE 3. The left panel shows the density of states of the simple maigthe right panel gives the
schematic energy dependence of the gap as a functién of

The condition thaf\; > # 0 (non-zero determinant) defings

1
kgTe = 1.14¢p exp(—)\ — H*) (27)

with
% H

" 1+ uin(W/ep)

This has a structure similar to that of the previous sectartafrom the fact that the
effect of the attractive potential is slightly diminishel finite transition temperature
exist as long ad > p*. The important result is that the effect of the repulsive IGob
interaction does not enter in its full strength but is renalired. The reduction depends
on the ratiodV/¢p, i.e. the ratio of the energy scales involved. This renoizatibn of
the Coulomb repulsion displays the retardation effect eftlectron-phonon interaction.
The polarization of the ionic lattice due to electron pdssa time scales much longer
the characteristic time scale of the electrenf{/Er < wy 1 Thus an electron interact
with another electron via lattice deformation without hayto be at the same time at
the same position in the lattice.

The gap as a function & changes sign atp which allows to optimize the pairing
energy taking the different sign of the interaction into@aat.

A similar form for T. comes out of the full retarded solution of the equations of
the superconducting instability by means of the Eliashifengulation in the so-called
strong coupling limit:

u (28)

(29)

keTe = O.7sDexp( 104(1+4) ) )

A —pr(140.621)

This form is due to Mac Millan and takes also the effect of thagjparticle renormal-
ization due to the electron-phonon interaction into ac¢¢8i], contained in the factor

(1+A) of the numerator in the exponent. While the most simple waakpling form for
Tc gives thafl; [ wp we expect to observe the so-called isotope effectTi.&l Mig,}/ 2,
sinceap 0 Mig,}/z. Including retardation effects, however, gives a new ddpane ofl;

on the cutoff energy so that we find deviation from the simptefof the isotope effect.



Strongly correlated electron systems

In simple metals it is rather easy for the electron-phonderaction to overcome the
Coulomb repulsion through the retardation effect. The catidn electrons are much
faster than the ions and move basically as free particlesodcalled strongly correlated
electron systems, however, electrons are often more céseemted with atomic orbitals
and retain more of their localized character, like in triasimetal oxides or rare-earth
intermetallics forming so-called heavy Fermion systeniee fearly localized electrons
are considerably slower in their motion such that Coulontéractions are comparable
to the kinetic energy or even larger. In the heavy Fermiorenets the characteristic
energy scale associated with the carriers at the Fermi gnergven smaller that the
Debye energy. Under such conditions the retardation effees not provide sufficient
help and Coulomb interaction dominates over the attraefi®etron-phonon coupling.

Symmetry of the pair wave function

Both the Coulomb and the electron-phonon interaction angsteort ranged and may
be viewed practically as contact interactions so that tmeyelt by two electrons only
if they can be found with a finite probability at the same sginsidering the pair
wavefunction

Y(r,s7.8)=f(|[F —F|)x(ss) (30)

the obital partf (T') has to be in thé = 0-channel for a rotationally symmetric systems
and the spin configuration has spin-singlet character (paiticles of the opposite spin
can meet at the same point). Foxk u* the Cooper pairing instability is suppressed by
Coulomb interaction. The short-ranged repulsive intéoaactan be avoided by electron
pairs with a non-vanishing orbital angular momentlum 0. Then the pair wavefunc-
tion vanishes for the two electrons at the same pldé¢e (C r' for r — 0). Cooper pairs

in a rotationally symmetric environment satisfy the follagy basic symmetry require-
ments. The fact that two identical Fermions pair required their wave functions is
antisymmetric under exchange of the two electrons yieltleviing conditions:

Y(r',s;r,s)=—y(r,s7,8) = f(—{F - T'})Xes
f(_?> = f(?), XS7S' = _XS'7S7 l 2072747"'7 S:O (31)
f(_r) = —f(?), XS7S' :XS'7S7 | = 173757"'7 S=1

As parity is given by(—1)', even partity means spin singlet and odd parity means
spin triplet pairing. From this viewpoint we define a convenal superconductor as a
condensate df= 0 Cooper pairs, i.e. the most symmetric pairing state. Uneational

are all other states with> 0. This distinction is not restricted to rotation symmetric
systems, but can be applied in the modified form also to reahls&hich possess
(lower) point group symmetry of the crystalline latticeiefe the angular momentum
is replaced by the irreducible representations of the mpioip, as we will see later.



Alternative mechanisms

If the short-ranged Coulomb repulsion jams the electroorpin interaction for pair-
ing, alternative pairing interactions have to be found.rBioteractions are of less im-
portance, if pairing is realized in a channel different frita most symmetric one.

Okse = <C—R,SCR§> with XQR;S,S’ =0 (32)
Kk

which means that there is no pairing amplitude for electronghe same position.
Mechanisms giving rise to this kind of pairing should pravia not too short-ranged
interaction.

Kohn and Luttinger asked in 1965 the question whether gawould be possible
based poorly on Coulomb interaction [32]. Their pairing heatism is based on a
part of the renormalized Coulomb interaction which we hatbrgd. Due to the sharp
Fermi edge in metals the renormalized Coulomb interactassesses also a long-range
oscillatory tail. These are the Friedel oscillations ggvitse to a potential of the large-

form X
COS Kgr
V(r)= 3 (33)
which has obviously both attractive as well as repulsivésgpdtairing states of higher

angular momentum would be able to take advantage of thecttggportion ofV (r).
The resulting critical temperature obtained from thisriatéion is

TC ~ _(2|)4

T = e (34)
with | > 0. Although the relevant energy scale is the Fermi energyaadiwidth, this
mechanism is irrelevant for real superconductivity, siexen forl = 1 the achievabl@&.
would be of order of 107 x Tg. Nevertheless it is possible to undergo a superconduct-
ing transition at very low temperature if no other instdpihas happened. An approach
resulting in more feasible critical temperatures was givgrBerk and Schrieffer [33],
who studied the exchange of spin fluctuations. In contrasteaelectron-phonon inter-
action and the Kohn-Luttinger mechanism which are baseti@electron charge only,
the spin plays the key role in this case.

Mechanism based on spin-fluctuation exchange

The electron-phonon mechanism is based on the polarigabilithe elastic ionic
lattice in a metal. In a similar way also spins can form a ppédle medium and
yield an effective interaction among electrons. Theserpahle spins can be localized
degrees of freedom or the spins of the conduction electrmmgelves. Nearly magnetic
materials are most suitable for this type of interaction.Wilkillustrate this here on the
example of a nearly ferromagnetic metal, described by thee3tmodel.

We consider an electron with spi§ at the position? and timet. By means of
the exchange interaction (exchange hole) the electron gperizes the spin of the



surrounding electrons. In this way it acts like a local maigrfeeld of the form

H(F,t) = _ul?ﬁs(? t) (35)

wherepsg is the Bohr magneton arld=U /Q is derived from the exchange interaction

Hox= [ Frd*US(F ')y (F)py(F) (36)

which appears here as a repulsive contact interactionerigiihU between electrons of
opposite spingds(T) denotes the density of electrons of spiat ', Q is the volume).
According to linear response theory, the electron spinkresipond to the local field as
described by the dynamical spin susceptibility

§(F”,t’):u3/d3r dt x(F'—F,t' —t)H (T,1) (37)

assumingy (T,t) to be isotropic in spin space. Again invoking the exchangerattion
it is possible to derive an effective Zeeman energy for the density at r’,t’).

AE = — “ﬁBs(r' )ﬁ(?’,t’):I—ﬁé(?’,t’)-us/dsfth( ~FU—H(F.1) (38)

which can be reformulated in terms of electron spin derssitie

%gf_——/d?’ d3’/dtdfxr Pt &70)-8(FY). (39)

and can be rewritten in momentum space as

55354%/734}

(40)
This scattering process is shown diagrammatically in Fig.érder to be specific in the
form of the interaction we approximate the spin suscejityltly its RPA form:

112 =
%éf————/dw Rex(d,w) > {Cik+d,sl031&2(2?752}'{&'(’—@7%

R R S17527%7&

X(q,(@:% (41)
with
(4,0) ~N (1 L ) <K w<E (42)
Xold, ~ N 12(% 2V |q‘ q 1y F

wherexo(, w) is the bare dynamical susceptibility of the isotropic alectgas. For a
parabolic band (i.e. no nesting features) the static stibdéy is maximal for g =0
wherex (g =0,w=0) =Np/(1—INp). The divergence of the susceptibility forlINg

is the well-known Stoner’s instability corresponding te timset of ferromagnetic order.
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FIGURE 4. Process of pair scattering of electrons due to spin flucatios. paramagnon exchange.
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FIGURE 5. Real and imaginary part of the dynamical susceptibilitye Batic real part of has a
maximum atg = 0. The imaginary part shows a broak peak whose center is aggde anw-J relation
describing the paramagnon as a strongly damped collectsitagon.

Turning to the imaginary part gt we find for a giveng a maximum as a function
of w, which is interpreted as a rather broad resonance, cpeamagnonwith the
approximate dispersiosing = mLNO(l— INo)Veq for small g (Fig.5).

By analogy to the electron-phonon interaction, we use tbetln-paramagnon cou-
pling as a pairing potential (spin fluctuation exchange raa@m). Limiting ourselves
to the Cooper pairing channel the interaction term is writie

; L T T . .
st = AZ Z Vk7k’§3152%S4CR7slc—R7szc— K%K s (43)
k,k’31752753=54
with
|2 S,



Since the Cooper scattering matrix element is spin depénderobtain different values
for the spin-singlet and spin-triplet configuration:

Vip =g Rax(k-K,0=¢—g,) for $=0,
(45)
|2 I
t
Vig = —gR&(k-K,w=g—g) for S=1,

Obviously this is repulsive for the singlet, but attractivethe triplet channel. Thus
odd-parity pairing states are favored with= 1,3,5,.... Similar to electron-phonon
interaction retardation effects play a role. The attract®obtained roughly within an
energy rangev < aoq providing the natural energy cutoff from the maximal pargmen
resonance energy foy~ 2Kkg:

8
&=—(1—1INpg)E 46
c mNo( 0)Er (46)
Itis important to notice thad; < EF near the Stoner instability, an effect of the so-called
critical slowing down (spin fluctuations become slower)aBmning all possibilities we
find that thd = 1-state is the most favored odd-parity state of this intewsacWe choose
for the gap functiod\; = Ag; with

1 .
of = Yia(k) = { X a=0 (47)

‘)

[ V2

the thred = 1 spherical harmonick& R/k). Projecting with thigy; we define

V(E.&) =-35 Y gix(k—K.w=0)f5(§ —&)5(&' ~ &)
- (48)
Vi [€], 1€ <&
%{ 0 otherwise
where I NG
V1=~ INg? (49)

Since we are now left with a BCS-like formulation, it is sghiforward to derive the
critical temperature is
kgTc = <‘:ce_1/}\S ) (50)



with

1/ INg \?
AS:Novlzl—Z(l_l?\lo) . (51)

Assuming the Coulomb repulsion as a contact interactionaveodl have a correction in
the exponent in the case bf> 0. It is important note here that while the Coulomb and
electron-phonon interaction has usually the range of tlerids-Fermi screening length,
the paramagnon mediated interaction is longer ranged Wwiéhmagnetic correlation
length{ as the length scale. The correlation length is defined as

&~ [dn?(S(r)-80) (52)

Since we have an Ornstein-Zernike form for the static sugiméty, we can write for
the static susceptibility

1
O0—s— 53
X(8) 0 g (53)
which compared with (42, 41) leads to
1 IN
2 0
53_12@ 1—INg " (4)

The correlation length diverges at the Stoner instabildynpfavoring higher angular
momentum pairing. Eventually th@-dependence of the pairing interaction apart from
the spin dependence, is decisive for the choice of the mpstiate.

Superconducitivity in the vicinity of magnetic quantum critical point

Based on these considerations we construct now a phaseuidgr the spin triplet
state near a quantum phase transition to ferromagnetic. gkttbough we have done
some rough approximations, a qualitative view is stillstiative. The Stoner-criterion
1—1INg = 0 defines the zero-temperature transition point so that wetake|Ng as the
controlling parameter which might be changed in real makeior example, by applying
pressure. FoiNg > 1 the metal has a finite Curie-temperatilige] (INg— 1)%/2 (iin the
standard mean field approach).

In the paramagnetic region there are two basic trends detegrthe superconducting
transition temperatur&.. The coupling constant; diverges while the cutoff energs
vanishes at the quantum critical point. This gives rise &rtbn-monotonous behavior
of T, which passes a maximum with increasliNg and vanishing at the quantum critical
point. While the exact behavior is modified by the renornaian of the quasiparticle
weight close to the quantum critical point which has beemigd here, the fact that
goes through a maximum and disappears right at the quantiticakcpoint. [34, 35].

We do not touch here the question whether superconductixatyld also appear in-
side the ferromagnetic phase within our theory. It has bbews by Fay and Appel that
spin polarized pairing states (so-called non-unitaryesfaaire possible [34]. This kind
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FIGURE 6. Schematic phase diagram of the superconducting phase €a€)he ferromagnetic quan-
tum critical point.

of finding is very interesting in the context of the earliermtiened superconductivity in
UGey, URhGe and ZrZpwhich are superconducting inside the ferromagnetic region
In these materials there is no superconductivity in thempagmetic region which is dif-
ficult to understand within our discussion. So far there isspstem known where the
phase diagram of Fig.6 would apply. The situation in the vecgntly discovered super-
conducting phase at the ferromagnetic quantum criticaltpoiUlr is not clear yet [36]

In particular, this material has the complication that it Im@ inversion center. On the
other hand, there are many examples for superconductivitgmnection with quantum
phase transitions to antiferromagnetic order as also ssrlin the introduction.

GENERALIZED BCS-THEORY

After having discussed the motivation to consider supetaotivity due to Cooper pairs
of general structure, we would like to introduce here theegalize formulation of the
BCS theory and discuss some of the basic properties of ueational superconductors
[37]. For this purpose we do not invoke any particular pgirmechanism nor assume a
special symmetry of the metal. Nevertheless, in some caseplete rotation symmetry
will be imposed to do concrete calculations.

THE GAP FUNCTION

The generalized BCS theory relies on an extended form of ibeostopic interaction
where we consider again only the scattering of electronspaith vanishing total
momentum which is attractive. The correspondig Hamiltorman be written as

N . to ot o
n= Z &kCrCrst 2 Z > Vi K105 O O i 5 O K CRrsy (55)
k7S k7k/31732753734



with pair scattering matrix elements

V-

k7R/;31329354 = <—R,S]_; R7SQ|\7| - R’/7SS; R/7S4> . (56)

Due to Fermionic anticommutation rules the following relas must hold

V-

KRssss = Vokkigsss = VE-Kissss — V-k—Kississ - (57)

We consider a weak-coupling approach with an interactiba@tve in an energy range
defined by a cutoffe;, i.e. the scattering matrix elements are non-zero -far <
&g, &g < & &c andee < Er.

Analogous to the simple case we introduce an off-diagonalmfild

by s« = (€ g LCke) (58)

which leads to the mean field Hamiltonian

T «
kacﬂ Cps— 2 Z [ ksls2 Cie, +A-k»7SlSZCRSlC_RSZ]+K+sma||terms

K.s1,5
(59)
where 1
— = o tot o
=3 HZ > Vikissss CigC ke (C ksCiis,): (60)
K S1:52.5.54

The generalized gafy ¢ are defined as a function & and the spings,s) by the
self-consistent equations

ARss =~ > Vi kstssPR s
k', S354
(61)
ksé z Vk’kSlSQS’S [
K's1%
The gap function is now a complex<2 complex matrix in spin space
—~ Ay Ay
A, — < (et ) _ (62)
KIT Tkl

The structure of the gap function is related to the wave fonatf the Cooper pairs,
bﬂ . In order to get a deeper insight into the symmetry propedfehe gap function,

we separatbk .5 into an orbital part and a spin part



The parity of the orbital part and the spin configuration amkdd due to the antisym-
metry condition of the many-Fermion wave functions as nogr@d above:

Even Parity: ¢(k) =@(-k) & Xag=5(10)—|11) spin singlet
(1T1)
_ . . 1 o
Odd Parity: @(k) =—@(—k) < Xss = 7 (| TL)y+111))  spin triplet
(D)
(64)
Consequently, the gap function obeys the following rules:
. . { A—R,slsz = _AR,stl even )
ks~ C-kss T
_A—Kslsz = AR,SQS:L odd
or in short notation N

Based on these points, we parametrize the form of th@ Znatrix representing the gap
function. For even parity (spin singlet), we only need aachlnctiony(k),

~ (DB B 0wk _isuk
Aﬂ_ k7TT k7Tl):( — ): k . 67
“ (Am B —w(k) 0 ) ©0

which satisfiegp(k) = ¢(—k). For the odd parity case, the spin triplet configuration
has to be represented by three components which we int®asdhe vector function
d (k) in the following form

b= (a7 ak ) =( ~(R il & S EICRIL?

Ak By dz(k) dy(k) +idy
(68)
with d (k) = —d(—k). This notation will turn out to be very useful consideringaro
tions in spin space as will see shortly. We find that
A ETR \w(K)|?60 spin singlet
(69)

— ~

ERETR = |d|26p+i(d x d*)- & spin triplet.
While for the spin singlet case leads always{AMigﬁE O Gy, the unit matrix, in the spin
triplet channel also components different framis possible. Pairing states with non-
zeroq(k) =id(k) x d(k)* are callechon-unitaryand are related to pairing with some
intrinsic spin polarization, sinc€ (k) is connected with the spin expectation value



tr[ERETR 3] for momentumk. As will become clear below a necessary condition for
g # 0 is broken time reversal symmetry.

Symmetry aspects

Cooper pairs consist of two electrons of opposite momentdgirzéro-momentum
pairs) which are degenerate in energy. There are certaisykaynetries which guarantee
the possibility to find such states at the Fermi energy.

For spin singlet pairing the key symmetry is time reversahiance [38]. Starting
with an electronic state with momentuknand spin up}, we obtain a proper degenerate
partner state by time reverddl

KIk 1) =]-k,1) (70)

such that we have the necessary partner states to form sjietsCooper pairs|:R 7

>7 ‘ —k l) ~
Spin triplet pairing requires in addtion to time reversa thversion symmetry to

generate the proper partner states [39]. We start from tie state and obtain

KIkT)=|-k 1), T[k1)=]-k1), IKIkT)=]k,l) (72)

which allows us to form all possible spin triplet configuoeis.

We want to review the important symmetries and examine tbigé&ct on the gap
functions. This will be important in the future discussidritee superconducting phases,
in particular, in the context of phenomenological desaipt The symmetries relevant
to us are rotations in real and spin space, time reversagrsion andU (1)-gauge
symmetry.

Orbital rotation:

N
9C; s = Crig)k.s 9c; = Cooii (72)

whereR(g) is the rotation matrix in three dimensiona correspondirgdperation of.

Spin rotation:

0= 3 D (@stCis  and 0o = 3 D (0)iccy, (74)
gh; = D% (9)8;D.4(g). (75)

where ~ o
Dy(g) =€ (76)

with @ the rotation vector of the operatignSpin rotation has naturally no influence on
a singlet configuration because the total spin is zero. Owttier hand, the triplet case



corresponds to the usual rotation applied ondheector
gd (k) =Rs(g)d (k) (77)

with R (g) the three-dimensional representation of the correspgnditation. One
would note that the gap function is then represented in gp@tes as a spin pointing

along thed -vector

A{—[ T+ LD} =id{| T +[ LD} +dAI TH+[ 1)} (78)

This rather simple behavior under spin rotation is the beonéthe above parametriza-
tion of the gap function.
Time-reversal symmetni

Koy = ;(—iay)sgcjm (79)
KAy = 6YA: 69 (80)
We usedK = —iéYC with C the operator of complex-conjugation. Note tHétis
antilinear. A
Inversion symmetry
A A +ER spin-singlet
ICR,S = C—R,S = lAR = A—R = R . . (81)
—Ay  spin-triplet
U (1)-gauge symmetry:
~ o e
®c, =7 = Ay =D0pE? (82)

Results for the scalar functiap and the vector functiod are summarized below.

| Operation | Singlet | Triplet \

Fermion exchange (k) = ¢(—k) d(k)=—d(—k)
Orbital rotation | gy(k) = w(R(g)k) | gd (k) = d(R(g)k)
Spin rotation gy (k) = y(k) gd (k) =Ry (g)d(k)
Time-reversal Ky(k) =y (—k) | Kd(k)=—d*(—k)

U(1)-gauge dY(k)=€e?P(k) | dd(k)=€?d (k)




Examples of Gap functions
We introduce here several typical forms of gap functions spheerical Fermi surface,
which will later used as examples to discuss some propesfieke unconventional

superconducting phases. In particular, we are interest#tuki quasiparticle gap which
is given in the general formulation of the gap function by

{L/J(RZ spin singlet

|d(k)|2 spin triplet

Oy 2 = %tr (8iag) = (83)

k

and is essential for the discussion of the elementary logrggnexcitations in the
superconducting phase. Note that for non-unitary states
Ay

L= 1d(k)P£|d* (k) x d (k)| (84)

with two different gaps.

Isotropic pairing: There are conventional and unconventional pairing stateshahave
isotropic properties. The conventional spin singlet pain thel = 0 (swave) channel
is given by

W(k) = Do, (85)

which gives obviously rise to an isotropic quasiparticle gs; | = [Ag|.
Among the unconnventional states there is one spin triplates the Balian-
Werthamer-state which also has an isotropic gap [2]d Hgector is given by

- — AO ~ ~ ~ AO kx
d(k)=—Rke+9k+2k) =— 1 ky |, (86)
ke ke \ K
so that thed is pointing isotropically outwards on the Fermi surfacee Hfap is then
04l = @18 = 1d(K)P = 180X = g 57)
kKl = 2 KoKk T = |A0 k|2: = |80|

While the quasiparticle gap is the same for both states, Weseg below that they are
different in their spin susceptibility. Note that the Balisllerthamer state corresponds
to theB-phase of superfluidHe [3, 5].

Anisotropic spin-singlet statée consider here one example for 2, a so-called
d-wave pairing state:
- A
W(K) =12 (K =K) (88)

It has line nodes fofky,ky) || (+1,£1) and represents the pairing realized in high-
temperature superconductors. Other good candidates lftedeforms of d-wave”
pairing are found among the heavy fermions supercondydoch as UPgAl 3, Celrg,
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FIGURE 7. Phase diagram éHe.

CePdSiy, etc. which are associated with quantum phase transitioastiferromagnetic
order.

Anisotropic spin-triplet state®ne of the most interesting anisotropic spin triplet parin
(I =1 or p-wave) states is

d(k) = 203k, +ik,) (89)
e
with A
2+
A |7 = |Ao|? Xk%ky. (90)

This gap has point nodes fér| (0,0, +1). Interestingly this this state has a finite orbital
angular momentum along tzexis,L, = +1, so that it is sometimes called chiglvave
state or ABM-phase (Anderson Brinkmann Morel) [1, 40]. Tiyise of Cooper pairing
is realized in®He under pressure as the so-calfe®Phase[3, 5] and in the quasi-two
dimensional metal SRuQy [23].

Nonunitary stateAll previous examples have been so-called unitary staflé}(ﬁig [
09). A well-known example of a non-unitary state is

Ay I
d(i) = 209k = AR:( & g), (91)

which corresponds to th&;-Phaseof 3He. This state shows pairing only in one of the
two spin state|(17), and not in the statg| | )). We see that

(92)



gives the spin expectation value for the Cooper pair. Thieseaves half of all electrons
unpaired and is hard to stabilize due to reduced condensatiergy. Ir°He it appears
only in magnetic field which provides a bias for differentrsgiirections. A similar
bias appears of course also in ferromagnetic metals. Tleusuperconducting phases in
UGe,, URhGe and ZnZrare most likely non-unitary.

Bogolyubov Quasiparticles and Self-Consistent Equations

We can diagonalize the mean-field Hamiltonian (59) by mediBgolyubov trans-
formation. It is convenient to rewrite (59) in the followifigrm

PN
I = ZCR(%(‘CR +K, (93)
k
with
Ck1 R
Ck| 1 &% by
CR = CT . and g-k’ = é R . (94)
_FkT Al —Eﬁao
CcC .
—k|

We are now searching the diagonalized form

T/\
A =y ALERAG+K (95)
k
where
%K1 Ee, 0 0 0
ar
] % -~ | 0 E_ 0O 0
Ap = aim and E;= 0 0 -E, 0 (96)
a . 0 0 0 -E;
—k|

The Bogolyubov transformation is given by the unitary malﬁk with

R vk .
UR = = CR ZURA
Vi

AN _/\T/\/\
K and ER_UR DA (97)

k

=

andURUE = ULkrUR =1.
We restrict ourselves to the case of unitary pairing. Thisuees thak; = Ey , =

E; . The solution of the eigenvalue problem leadsifcandvy

E; +&;)0 —A;
TG S 2L R S K (98)

2B, (E; + &) J2E B+ &)




and the energy

) 1
E; =, /E_k?HAR\Z with 1Ay \2 —tr <ATA ) (99)

With the new quaS|part|cIe operators (61) we can expressélfeconsistence or gap
equation usm@& ak,g) = Oy 0 f(Ey) where f(E) = 1/(exp(E/ksT) + 1) is the
Fermi dlstrlbutlon function:

_ T t
B¢ sis, __RIZ VR7RI;31323834{§ kss kSSe<a ke g )= URS4§VR553<aRgaRS>}
S3%4

Ay, E.
— 73493 —k
Z Vk K/;s1953% 2E; tanh(szT)
K’ s34

(100)

We introduce now a newly parametrized pairing interacteymtin order to obtain a
simpler form of the self-consistence equation,
_ 10 A0 2 2

VR,R’;31323334 Yk, Rlaslsaasz% +‘]R,R/ Osisy” Osps3 (101)
consisting of a spin independent or density-density terch sgn-spin exchange cou-
pling. In the following we assume that these interactiomsarly non-zero in a certain
range around the Fermi energy with a cutoff eneggyFor spin singlet pairing the gap

equation can be expressed tpfk),

= E"/
P(k)=— z (90 —3% ) tanh( 2k;T) (102)

and|A; |2 = |@(k)[2 For spin triplet channel, the gap equation takes the form

d(k)=—=5 0z + %) O;(ER/> tanh(zE—Rfl_) (103)
o N —— K/ ks

—

with [Ag 2 = |d(k)[2



Critical tempeature and gap magnitude atT =0

The linearized gap equation can now be used to determineriti@lctemperature.
We consider first the spin singlet case

k/) ER/
- ZVE K’ zgk, tanh(ZKBT)
£ ) (104)

_ _N0<v§ S w(K) Ve FS/ dé = tanh(2kBT
= |n(1.1350/kBT)

where(...); - denotes the angular average over the Fermi surface. Thatiegican
be expressed as a eigenvalue problem

—AP(K) = —No(v o W(K))g es (105)

leading to
keTe = 1.14e.e Y2 . (106)

HereA is a dimensionless and positive parameter. The superctinguastability corre-
sponds to the highest eigenvalue (highigsbf (105) which determines also the structure
of the Cooper pairs.

The spin-triplet case has an analogous gap equation whictihéoevaluation ofT¢
takes the form

—Ad(k) = —No(vf 1, d(K)) g es (107)

and the same type of solutions. Naturally the solution of ittetability problem is
specific to the pairing interaction.
We now turn to the zero-temperature limit and determine tae f@r the case of

spin singlet pairing. We introduds, as the maximal gap and writp(R) = Am@y with
|Gz| < 1. The gap al = 0 is obtained from the equation

! > : (108)

&
AmQy, = <Vs-k’ -k’/AmQR//O dé . —
\/ E + ‘Amgp/‘ K ES

Multiplying both sides witkgz and averagind over the Fermi surface, using (105) and
integrating ovek, we obtain eventually

28 2¢
= op 2 ¢ = — _C _ N 2 N R
= A<‘9k‘ '“(mmgﬁ\»m A 'n(Am){l (187 20185 ) s -
| (109)




From this we get the ratio of the maximal gap aRdo be

~ (2 ~
o1 = 176 ex0( (G PIn(6;. D) s) > 176, (110)

While this ratio is universal for the isotropic Fermi sudaa the caseg;; = 1, we see
that it in general depends on the gap anisotropy. Like in entignal superconductors,
in this ratio the cutoff energy has been eliminated, such wecan express the gap
magnitude byT, i.e. we are dealing with the weak-coupling limit.

Condensation energy afl =0
We now compute the condensation energyl at O within the weak coupling ap-

proach. Starting from Hamiltonian (59), we obtain in the Blygibov transformed for-
mulation

1
- . t 4, _ . af
A = 2sz|< (af g —apal ) +K. (112)
S
with A A
1 Ksisp KS2s1 ( Eg )
K== _ksi» %29 anh . (112)
2,2 % 2kaT

Then, the condensation energylat 0O is given by

AN
1 K K,s
Econd —<%/>A_ <%ﬂ/ 22 2 Z 731;2Eﬂ :
K.s1.% K
& & 1
. g+ (0 [CoE
0/0 dé (& — (/&= + 0] >k,FS>+<‘ il 0 d¢ eyl
k,FS
No No ~
~ = B s = =5 1Bl *(16¢ ) s
(113)

under the assumptions thaf\;| < & and for simplicity, thatNo is isotropic.
(For an anisotropic Fermi densiﬂylo(ﬁ), we can extend this expressidfyong =
—(1/2)(N0(k)|A—k»|2)R rs) Using now (110) we can compare different condensation
energies 7
Econd = 2 (1B g s = oMo (176KeTo)? (10l s X0 —(|G5 I gl

cond mdg Wk ps= T30 (- o) (019 & ps P (IGk]“In[Gk Dk o)

(114)

It is now obvious that an isotropic gap under these conditiginves the largest gain
in condensation energy and explains why among the spiretrgpate the BW-state is
most stable, if no bias in the pairing interaction (spin#ocbupling and strong coupling
effects) favors a different state.



Specific heat discontinuity at T

A characteristic feature of the second order normal-supehector phase transition

is the jump in specific heat dt which is related to the release of entropy through the

opening of the gap at the Fermi surface. First, we write tlezifig heat starting from
the general form for the entropy:

S= "2 Y {fEIN(F(E) +(1-f(E)InA- ()} =

ds 2 df(Eg)  2No [+ /OF(EQ) [, ToAm(T)? . 1
C=Tar=o2% gt 7 Wd5<agz{%‘§—7?—“ﬂ}>
(115)
The specific heat of the normal state is easily obtained hiynget,, = 0,
2N [t 0F(&) o 21°k3
Cn - —? . df (95 E ~ 3 NOT 3 (116)

with the standard Sommerfeld T-linear dependence. The jarspecific heat depends
on the variation of the gap with temperature. It can be exya@ess

5 1212

K| _CGl 3 _gp, JeDF| g0 e

Cn T=T¢ Cn T=Tc 27T2k123-|_ Kl Tk,FS oT ToTe ‘ <|QR|4>R7FS
(117)

This result infers that the specific heat discontinuity ssl@ronounced in anisotropic
gap functions than in the isotropic case. The entropy chagmaller for a given gap
sizelAn in the anisotropic case, since quasiparticle excitatiatislawer energy are still
allowed.

To show the last equality in (117), the temperature deperel@h Ay, has to be
determined. For this purpose we return to the gap equatiochwie want to consider
nearT;. Using the definition oA we have the relation

1 T & 1 '3
S =—n (ﬁ) —/O dfgtanh(%ﬁ) . (118)
With this expression ok for an arbitraryT, we find
T & 1 E-
5 12\ L 5 2+ K
iaesan(5) = )79 (e el )), .

g “qr L 3 119
_<|gR|2>R7FS/O dfgtanh<2k?) (119)

= | 2b(10 g

-

KFS



with
—+o00

B dEZ 2 - 8mkET2

Note that{ (3) = S n—3 ~ 1.2 is the Riemann function. Thus, in the vicinity d,
we have

(120)

T ;
(121)
I\ 8P e
— 5.3|Am(0)? (1— ﬁ) Mexmgkmn\gkwk 9

which inserted into (117) gives the result presented forstecific heat discontinuity.
This behavior o\, (T) is general for the mean-field description of a second-ortiase
transition.

Low Temperature Properties

The low temperature properties of superconductors arergesdedy the low-energy
quasiparticle excitations. Thus, in the frame of geneedliBCS theory, the key quantity
which controls the thermodynamics is the quasiparticlessidg of states. As will be-
come clear immediately, the topology of the nodes in the gaptfon is very decisive
in this respect.

The density of states is defined as

DIN

Y 3(E (122)
X

where we use the Bogolyubov quasiparticles spectrum

R =0/ EE 102 (123)

We decompose thilé-integral into the (radial) energypart and the angular part (average
over the Fermi surface):

dQ;
i [ 088(,/8+ |ty - E)

dQyg

(-t
No — k,FS
an | Je2 \Amgsz JE2— By |2

N(E) =No /
(124)
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FIGURE 8. Quasiparticle density of state§E) for the isotropic gap, the gap with point nodes and line
nodes.

The density of states for an isotropic gap functggn="1 is straightforward :

0 E| < Am

N(E) = No E (125)
= An<|E|
VEZ— [An[2

No state can be found with energies belwyand a characteristic square-root singularity
signals the onset of continuous spectrum abfwe At higher energies the density of
states approaches the normal state value, so that the icélugrsuperconductivity is
restricted to an energy range of several times the gap.

Turning to anisotropic gap functions we find an importantng®in the density of
states, since "subgap” states appear. First we considgrwaitfaline nodes. As a simple
example we také; = Amcosf which has a line node in they-plane. We obtain

T
) |E| <Am

E +1 1 E 2
N(E) = NOA_ L dXRe< E/A )2 2) - NOA_ A
mJ— (E/Bm)*—x m arcsin(fm) Am < |E|

(126)
Indeed a finite density of states is found below the maximp| gawn to zero energy.
However, the density of states vanishes in a charactenstycatE = 0, In the case of
line nodes it is a linear behavior. The singularitygat A, is replaced by a cusp. The
anisotropy smoothens the singularity found for the isatrgap.
The second class of node topology are the point nodes. Asan@& we consider
|A¢| = Amsin® which hasz-axial symmetry with point nodes alorgdirection. The




density of states has then the form

E 1
N(E) = NOA_m/dXRe<\/x2+((E/Am)2—1)> = Aml

which also vanishes continuously whé&n— 0. but here with a quadratic behavior
N(E) O E?, due the fact that fewer excitations with nearly zero-epeng accessible
than in the case of line nodes. Bt= Ay, N(E) is logarithmically divergent.

We examine now the influence of the node topology on the lomptrture thermody-
namics using the example of the specific heat. The isotr@pdends us to the result of a
conventional superconductor. We can safely assume thatyatow temperature the gap
magnitude has saturated and does not change much anymerefdre the behavior of
the specific heat is dominated by the quasiparticle dengijates.

1+ £

(127)

E
1=

o df(Ep df(E) E? 1
C(T) = 5%'5? di _/dE NEE)E ?_/dE NCE) ke T2 4 cosi(E/2kgT)

2
E/kBT o —Am/keT
4kBT2 /Am \/f Noks (kBT) \/ 21ikg TAme
(128)

This exponential behavior is typical of a gaped system ftiadly activated), like in
a semiconductor. The gap sets a natural energy scale whicbecaerived from the
exponential behavior.

For line or point nodes this thermally activated behaviarasered by the low-lying
guasiparticle states. Simple scaling in the integrals gshaithe powerlaw in the density
of states aE — 0, N(E) O E", translates directly to a powerlaw in the temperature
dependence:

/dEN £’ 1 /d £’ 1 oTmt
ksT2 4 cosH(E/2kgT) ksT2 4cosi(E/2kgT) (129)
129

The prefactor is determined by the detailed form of the angigendence and is not
necessarily connected witly, in a simple way. It is important to note that this behavior
is only really valid forT < T¢, and is not easily observed in experiments, since various
other influences can complicate the behavior. In particuigpurity scattering changes
the low-energy density of states strongly.

More generally, thermodynamic quantities are governedheydensity of states so
that they usually have a powerlaw behavior for nodal supetaotors. Here are a few
examples of such thermodynamic quantities. A particulariportant quantity is the
London penetration depth, because here only contribubbtise superconducting part
are involved, while for most other quantities also the @abfstitice or other contributions
are involved. For an arbitrary field direction we find

A0)2-A(T) 2= Z/dEN(E) <—%(EE>) =% constT" (130)



for N(E) O E". Thus the London penetration depth approaches its zerpetetture
value also in a powerlaw, if the nodes can be found in the gapspecific direction
where the screening currents are moving parallel to nogetitins these powerlaws are
corrected to higher exponents.

Quantity Line nodes| Point nodes

spec. heaC(T) T? T3

London penetration length(T) —A(0) | T (T3) | T2 (T9

NMR 1/T1 T3 T5
heat conductivity (T) T2 T3
ultrasound absorptioa(T) T (T3 | T?2 (T%

ltems withT2(TP) are direction dependent and possess different powerlapending
on the orientation of fields or polarizations of the ultrasdu

Spin Susceptibility

The spin susceptibility provides an excellent means targjsish between spin sin-
glet and spin triplet pairing. In spin singlet superconduetthe spin susceptibility is
suppressed because Cooper pairs have to be broken up in@m#arize the electron
spins. Spin triplet superconductors are more easily sdariged since the Cooper pairs
keep arS= 1 degree of freedom, at least for certain orientations.

We consider here superconductor were the external magheldic only couples
through Zeeman coupling, i.e. we ignore the orbital coupimhich is responsible for
Meissner screening. The external magnetic field is chosba &ong thez-axis:

e = —uBHZZ {CT’MCRT — ciklcm} (131)
k

We tackle the problem by distinguishing two distinct caséshe gap matrix. First,
consider a superconducting state with only off-diagonplmatrix elements, i. ;. =

ARu = 0. This includes both spin-singlet pairingR(Tl = —A—k»“) as well as triplet-
pairing (ARTL = ARn = d || Zwith equal spin-pairing in the-y-plane). In this case the



quasiparticles Hamiltonian becomes diagonal

Hop = % {Exal,ag +Ex ol &, | (132)

with Ep =, /ERZ + A |2 — sugHz ands =1, | or +,—. The induced magnetization is
M; = Ug Z(cichkT CT’lekl> (133)
K

with
(Chlid = 3 {ugasl®1Ege) + Mo *(1- 1B} (139

Note thatjuy o |* O dsq, [Vigl® O 18 4l andjug, [>+ v, [> = 1. It follows that

of(Ep)

H,—0
k

=

M. = ey (F(Eg)— f(Eg)))
k

Finally the spin susceptibility reads

M; 2 B dQ~
W, e NO/ 47T/ £4kBTcosH’-( /2kBT)_XP 4

Y(kT) = XxeY(T)

(136)
with xp = 2u3No the Pauli spin susceptibility of the normal state. The fiorcy (k; T)

is thek-dependent Yosida function, adT) is the angle-average Yosida function. Note

that both functions depends on the predisdependence of the quasiparticle spectrum.
AboveT =T, itis equal to 1, and below;; the T-dependence depends on the concrete
shape of the gap function. In any case for a finite jaypes to zero at = 0.

The resulting spin susceptibility parallel to the field i thuperconducting phase is
suppressed both for spin-singlet pairing and spin-tripiting (Fig.9). This is due to
the fact that in the spin-triplet superconducting statesthia orientation is confined in
thex-y-plane. We do not consider here that the Zeeman couplingtimdhce a change
of the superconducting phase.

We now move on to the case of the diagonal gap maf!srwfl =A;

XL =

kit = =0 and

Akﬁ = Aku (d L 2). This corresponds to spin-triplet pairing with a spin otéion
parallel to thez-axis. The energies in the quasiparticle-spectrum (13pawk; =

V&2 By 2 with & = & —sugHz.
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FIGURE 9. Spin susceptibility in the superconducting phase: For sjpiglet pairing the susceptibility
vanishes aT = 0. The precisd -dependence is determined by the gap structure. For the [B&ethe
spin susceptibility drops to),/3 in all field directions. The ABM-phase has an anisotropsceptibility

which remains constant faf - H = 0.

The expectation value (134) of the magnetization (133) reads
& E: & E;
_ T KT k| k|
Mz—HBZ{EH tanh<2kBT) E*ltanh<2kBT)

Hz—>0

E;
/dE {—tanh(ZKBT)} = 2uiNoH, = xpH;
(137)

In this case the spin susceptibility remains unchangededddif the magnetic field
lies parallel to the spin orientation of the triplet Coopairghere is no need for pair
breaking in order to polarize the spin. Also the essentiatidmons to form Cooper pairs
of degenerate electron states with both spins parallel foparallel) to the magnetic
field is satisfied.

Based on the two special results there are two cases for inssgceptibility in spin
triplet superconductors:

—ZUBHZNO/

i

1 d(k)LH
X(T)=xp 40- : (138)

k L R u
L) d(k) | A

It becomes obvious that the susceptibility remains uncearithe d-vector lies for all
k in the plane perpendicular to the magnetic field. On the dthed, the susceptibility
vanishes al = 0, if d is parallel to the field for alk. The generalization for arbitrary



fields and spin triplet gap functions yields

X(T) v :Xp/djjf {q,v —RM(l_y(R;T))} (139)

We consider here as a first example the BW-phase for wilidh) = Ag(Kky + Yk, +
Zk;). The calculation by (139) leads to

XM = xos (1-51-Y(T)) (140)

The spin susceptibilty is isotrop and reachgs 3 for T = 0. A further example is the
ABM -state for which we havel (k) = Ag2(ky+ iky). In this case the susceptibility reads

YABM(T) H |z

X(T) = XP{ ) , (141)
1 H L1z

with YABM(T) the Yosida-Function for the ABM-state after integratiorenthe Fermi
surface. This phase might be realized ipF8xO, from spin susceptibility measurements
for fields in thex-y-plane [81].

Obviously it is not only possible to distinguish betweemsginglet and spin triplet
pairing, but also between different spin triplet state aglas thed -vector is sufficiently
"pinned” due to spin-orbit coupling. The spin suscepttiiannot be measured directly
by the sample magnetization because of Meissner-scredtagever, a local probe like
nuclear magnetic resonance (NMR) measurements allow ussteree the temperature
dependence of the local susceptibility in the mixed phase€x phase) of the supercon-
ductor, by looking at the Knight shift, the shift of resonartimes in the NMR spectrum
[41]. Similar measurements are also possible with muonrgbéxation.

The Paramagnetic Limit

The response to Zeeman coupling can play an important ralegarconductors with
very short coherence lengthg= hv; /mi|A|. The coherence length can be viewed as the
extension of the Cooper pairs. The upper critical fidid due to the orbital depairing
depends ol in the following way

%)

Ho=—>—
c2 27_[502

(142)

so thatHg can acquire large values for smdl. If this is the case depairing due to
Zeeman spin splitting can become decisive for the destmicti the superconductivity.
This phenomenon is called paramagnetic limiting (or Pa@irandrasker- or Clogston-
limiting). The paramagnetic limiting field is connectedvihe spin susceptibility in the



following way. We have to compare the superconducting cogaliion energy with the
magnetization energy which could be reached by the apitat a magnetic field:

No
Ez= XpOuy — X(T)uv)HuHy A Econd= —?|Am|2<|gp|2>p7|:s

(143)
where we have restricted the comparisorte- 0 and xp = 2u§No. For spin-singlet
superconductors, we immediately find that a critical fieldevehthe two energies are

identical. 1
Hy,= Dl /{9125 ca. 144
p “B\/é| m‘ <‘gk‘ >k7FS ( )

Thus forHe > Hp superconductivity would break down Et= Hy, actually as a dis-
continuous first order transition unlike the second ordamdition for orbital depairing
atHeo. This condition orHg, is generally quite restrictive, so that it is generally not s
easy to find superconductors displaying paramagneticifignit

If paramagnetic limiting is absent, it can be taken as a sigrspin triplet pairing.
However, the effect is field direction dependent in genaiate the magnetic energy

E, = —ﬁRe<d“<l§)—f'V£k)> HyuHy | (145)
2 [d (k)| EES

=1
24

)

has to be compared with the condensation energy. For irestdmecthe ABM-phase
discussed earlier would not be paramagnetically limitediéds in thex-y plane.

PHENOMENOLOGICAL THEORY AND SYMMETRIES

The description of superconductivity based on the theoryplofse transition by
Ginzburg-Landau is one of the corner stones of our phenologital understanding of
superconductivity in general. The particular strengthhi$ phenomenological theory
lies in its generality allowing a formulation even withoutyadetailed microscopic
understanding of a superconductor. The key quantity ioter parametedescribing
the superconducting phase. This order parameter vanistiae normal statel > T,
and grows continuously from zero beldw The crucial aspect of the Ginzburg-Landau
theory lies in the concept of spontaneous symmetry breadireg(continuous) second
order phase transition. This suggests to base the theoggnametrical grounds which is
a powerful strategy as we will show below. The fundamentairsetry to be broken in
the superconducting phaselg1)-gauge symmetry. This suggests an order parameter
which would change under the operationaa)E U (1). While this is the only important
symmetry for conventional superconductors, we will se@wdhat time reversal and
point group symmetry of a crystal can also appear in gensrakr@ken symmetries in
unconventional superconductors [42, 43]



Conventional Superconductors

In order to introduce some basic concepts, it is useful tdysfirst the Ginzburg-
Landau phenomenology of conventional superconductorg €wice for the order
parameter is the gap functioh = —gb; which indeed changes undek(1)-gauge
operation by a phase and becomes continuously finite b&loternatively we could
chooseby, itsself as the pair wavefunction. In any case we define arr grai@meten
asA=n(r,T) as a space and temperature dependent complex wavefunesorting
the superconducting condensate (related also with thetdefsoherent Cooper pairs).
This order parameter changes under basic symmetries as

time reversal : Kn = n*
~ | (146)
U(1)gauge: ®&n =ne®

where the vector potential and the electron field operatwasge under gauge transfor-
mation as

Yy,  A(F) & Yrexmme Ky + Ox(F) (147)

with @ = 2iex /hc, sincen O <\TJLTJ>. Consequently afinite order parameter picks a certain

phase which can be changedlbyl)-gauge transformation, breaking this symmetry.
Following Landau we expand the free energy arolipdh the order parameter.

The free energy is a scalar under symmetry operations bielgrig the group? =

# xU(1). The most general form including the possibility of spatiatiations of the

order parameter is given by

1

Fn, AiT) = [ dr [alin/+b(T)nl*+K(TIinR+ (B A2 (146)
with R )
ﬁ:Ti+§A. (149)

the canonical "momentum” (gradient) of the Cooper pairshafrge 2. Only powers of
n*n appear which are invariant under time reversal as well @§-gauge operations.
We stop the expansion at fourth order. The third term dessribe stiffness of the order
parameter against spatial modulations and contains themalrcoupling between the
order parameter and the vector potential and giving this tergauge invariant form.
This term reflects one of the important consequences of @awittt brokerlJ (1)-gauge
symmetry as we will see below. Finally the last term is the neaig field energy. The
coefficients are

aT)~a(T-T),a >0, b(T)~b(Ts)=b>0 and K(T)~K(Tg)=K >0
(150)

so thata(T) changes sign af = T, andF is bound towards negative values. For given

temperature we find the equilibrium state by minimizing treefenergy variationally

with respect ta) and A.



We discuss first the uniform superconducting phase ign@padgjal variations and the
magnetic field:

0 T>Te

oC —amn+2inf = o= (151)
on LAl o,

2 =
The order parameter satisfies the requirement to be onlyaommbelowT. and to grow
continuously from zero. We can now use this solution to dateussome thermodynamic
guantities such as entropy and specific heat:

dF ||2da JFdn OF dn*

0=

Segr T SNt anar Yo ar
:O
ds —d|n|? B _a%  8mKETNg
C Tﬁ NCn+ T dT = AC|T:TC_C_Cn|T:TC_%_T(3)Q‘
(152)

Using the specific heat result we can related the @tinto the microscopic parameter.

The latest enables us to rela’é/b to the microscopic parameters of the BCS theory.
Assuming that the order parameter corresponds to the gapmaerive the coefficients
No

as
ad=Q— and b= QM .
Te 16m2k3T2
Now we turn to the general inhomogenous form of the orderpatar and the vector
potential. The given expansion of the free energy is validviariations of the order
parameter on length scales much longer the zero-tempereabherence lengtéy. The
variational minimization of the free energy with respecbtith 1 and A leads to the
Ginzburg-Landau equations

(153)

an+2bnin?—KMA*-Min=0

(154)
2e * A S 1o = N\
EK{n fin+nfi*n }—ETD x (O x &) =0

The second equation can be rewritten as the stationary Mbaguations which links

current and magnetic field

i><§=4—’T2eK{n ﬂn+nﬂn}:4%TT, (155)

with | as the supercurrent. For a uniform order paramgjérthis equation can be
simplified into an equation for the magnetic field only

oo A 8¢? .
Ox(OxB)=-"CKnee = 0O2B=

B 1
c C A2 (156)



which is the London equation describing the screening ofntlagnetic field. This is
an essential consequence of the brokiéi)-gauge symmetry and corresponds to the
Higgs-mechanism in gauge field theories making gauge fieldssive by violating
gauge symmetries. A result of the London equation is thatxéermal magnetic field
can only penetrate a sample on lengththe London penetration length:

32?5 AmEPng
c? Kinl®= mc

where the second equality gives the standard form afith ng as the superfluid density.
Note thatng is the electronic densitye. at T = 0. Near the phase transition one finds

A 2= (157)

T 7¢(3)ne | 2
T =2n(1l—-= )| =—"-— 158
nS( ) Ne ( TC) 8( nkBTc;)z‘r” ) ( )
which relateK to microscopic parameters
_ TZ(3)ne

There is a second important length scale in the Ginzburgthaequation, the coherence
lengthé. We look at the terms of the first equation in (154), which aredr in the order
parameter. Here we can defieaturally as a characteristic length.

(a(T) — Kﬁzﬁz) n=a(T) {1— 52@2} n
_RPK RK h2v2 T (160)

2 _ — _
R R T T

which we may compare with coherence lenggh= hve /mA| at T = 0.

Generalization to unconventional order parameters

The extension of the phenomenological theory to generakrsopducting order
parameters requires to include further symmetries of tiséesy. This leads us to the
classification of the possible order parameters in termsefrteducible representations
of the corresponding symmetry group analogous to the sttjostates in quantum
mechanics. In the standard case the second order phasédraoan be restricted to a
single representation.

To explain this point we consider again the linearized gapaégns we had derived
ealier for spin singlet and spin triplet pairing with the dapctionsy (k) and d(k),
respectively.

—AP(K) = —No(V ., W(K))p ks for spin singlet pairing
7 (161)
—Ad(k)=—No(\, d(k))i ks for spin triplet pairing



where all symmetries are incorporated in the pairing irtiswa. This is an eigenvalue
problem which gives possible transition tempertufesThe largest one defines the
real physical instability temperature of the normal stdteis corresponds here to the
largest eigenvalu@d . The eigenfunctions belong to irreducible representatiwhose
dimensionality gives the degeneracy of a given eigenvale.have shown in the
previous chapter how the gap functions is transformed usgiermetry operations.
These operations include besides the time reversal and thegauge symmetry also
the orbital and the spin rotation. In solids the orbital tiotais limited to the point group
operation of the crystal lattice. Thus we will not be allowteduse the relative angular
momentum to label the irreducible representationsSfi(3). We will also assume that
spin-orbit coupling is sufficiently strong, so that one cansider the spin to be "frozen”
to the lattice and rotate together with the orbital rotagion

We now would like to construct a free energy that describetas® transition to
an unconventional superconducting phase. Following Lasdacipe we pick the gap
function with the highest, and decompose in the independent basis functions of this
representationym(k)} or {dm(k)}:

‘/—’(R) = Z”lm'l’m(R) and J(R) = anon(R) . (162)

where the sum runs over all basis functions of the releveadircible representation. Itis
thus assumed that all other representations have sufficlenter critical temperatures

to be ignored safely. We will use the coefficiemts as order parameters in the free
energy. The free energy must be real and a scalar functional of the general order
parametemn, and also of the vector potential so it is denoten, K;T], with T the
temperature parameter. Afly, transform under symmetry operations like coordinates
in the basis of function§ym(k)} or {dm(k)}, and transform ag — n* (n — €9n)
under time-reversal{(1)-gauge) operation. The generic form of the sc&lés given

by

FNm, A;T] =Fn(T)+/d3r{az|’7m|2+ > By ma My M, Mg iy
m m,—,my

1 (163)
+mz Z Kmlmz,nlnz (nnlnml)* (rlnznmz) + g_[( U x A)z}
h,Mp Ny, N2
where o
a=a(T-To), a,bmKpya >0 and M =0 +iﬁ:A’ , (164)

andF,(T) the normal state free energy, which will omitted from now e parameters
are chosen to satisfy the symmetry condition. The impomaertt of this formulation
is that the we can formulate this theory based on a few matdgj@endent parameters
which should be determined either experimentally or defrfvem a microscopic theory.
This theory goes beyond the weak-coupling approach we had umsthe previous
chapter and is therefore more general.



Superconductor with tetragonal crystal structure

We consider here a superconductor in a system with tetragoystal structure and
strong spin-orbit coupling. This provides one of the mdsisirative examples among
the possible unconventional superconductors. In additi@ne are important uncon-
ventional superconductors of this symmetry, e.g. the béghperature superconductors
and SpRuQy. Thus the releventa point grouplsy, and complete the symmetry group
4 = Dgn x # xU (1) (spin rotation due to spin-orbit coupling is tied to orbitatiation).
For this symmetry group we give the irreducible represémntatiabeled as foD 4, with
their character table and basis functions for both the eard-odd-parity case (labgl
for “gerade”) and odd parity (labeifor “ungerade”).

T |E 2C4 C 2C, 2C; | 25 on 20y 204 | Basisfunction |
Agll 12 1 1 1 1 1 1 1 1|g=1

Ag|l 1 1 -1 -1 1 1 1 -1 1| ¢=kdky(ki—k)
Bg(1 -1 1 1 -1 1 -1 1 1 -1lyg=K-K
Bg|1l -1 1 -1 1 1 -1 1 -1 1|¢g=kk

Eg |2 0 -2 0 0 2 0 -2 0 0y={kdkekk
Awll 1 1 1 1 1 1 -1 -1 -1]d=3gk+Vk
Ayl 1 1 -1 -1 -1 -1 -1 1 1|d=sk-Yk
By|1 -1 1 1 -1 -1 1 -1 -1 1|d=%gk—yk
Buy|1l -1 1 -1 1 -1 1 -1 1 -1 d=sk+Vk
E,|2 0 -2 0 0 -2 0 2 0 0fd={zk2k}

Reading from the characters of the identity elemientve have four one dimensional
irreducible representations and one two-dimensionalessprtation for even and odd
parity. Note that the representatidgy, includes the conventional superconducting phase
while all others are necessarily unconventional.

It is easy to see that all one-dimensional representatiatidead to a Ginzburg-
Landau theory identical to that of the conventional supedcetor, since there is
only one order parameter componesit,k) = nuyo(k) or d(k) = ndo(k). The two-
dimensional representation is much more interesting tsecafi its two basis func-
tion and thus a functional that depends on two complex ordesimeter components
n = (Nxny)

—

Y(K) = nNxkxkz + nykyks or J(R> = NxZk+ nyzk, (165)

This additional degrees of freedom yield a more complicgiakeral form of the free
energy:



o R = 7 b2, *
F[A,A;T]= /d3r {a(T)m\%blln\4+f{nxzn%nxznyz}+b3|nx\2my|2

+K1{|r|x’7x|2‘|‘ |ny’7y|2} + K2{|r|x’7y|2+ ||_|y’7x|2}

+Ka{(Mxnx)* (Myny) +c.c.} + Ka{ (Mxny)"(Mynx) +c.c.}

1 - -
+K5{‘r|zrlx|2+ |nz’7y‘2}+§T(D x A)z

(166)
with a(T ), bj andK; real material dependent coefficients. It is important ttizeahat the
two components are closely connected with each other asecaedn in the forth-order
and the gradient terms.

Uniform phases

First we address the homogeneous superconducting phdsaitwixternal magnetic
fields. Thus we ignore the gradient terms and minimize theaneimg free energy. A
convenient parametrization simplifies the discussion:

i = no(cosa,€Vsina) = F =an3+[4by+ %Sinzza(bg—i—szOSZ/)]ng (167)

Since the free energy should always be bound below the folpwonstraints for the
coefficients have to be satisfied,

4b1 —bo+b3>0 and b, +br+b3>0. (168)

We find that forbs + by cos 2/ > 0 the anglex = 0, 17/2 minimizes the free energy. The
conditionbs +bycos %/ < 0 yieldsa = +71/4 as a stable angle. Depending on the sign
of by eithery =0, ror y = +711/2 gives a minimal free energy. This leads to three distinct
superconducting phases whose range in parameter §pate) is shown in the phase
diagram. We call these phase A, B and C.

| Phase|  w(k) d(k) | broken symmetry

A | k(keiky)  2(kytiky) U(1),.#




b, /b,

CRUSTRL HHHHHHH

FIGURE 10. Phase diagram of the three stable phases dE§herepresentation.

Each phase is two-fold degenerate besides the continuiflisgauge degeneracy. Be-
sides thaJ (1) gauge symmetry also other symmetries are brokenAtpkase violates
time reversal symmetry and tie andC-phases break rotation symmetry reducdidyg
(tetragonal) toDo, (orthorhombic). Time reversal violation is connected wshecial
magnetic properties as we will show below. The reduced ahgstmmetry yields lat-
tice deformation, although these are rather small. Thettre of the quasiparticle gap
allows us to make a statement on the relative stability ofttihee phases within the
weak-coupling scheme. TH& andC-phase have an equivalent gap structure and are
degenerate for a spherical Fermi surface. Afghase has less nodes than BaandC-
phase, e.g. in the triplet ca8éhas only two point nodes while the other two have two line
nodes. Consequently, tiephase is more stable. Naturally, Fermi surface anisatsopi
and other corrections may shift the situation towardsBh@andC-phase. It is a gen-
eral trend that time reversal symmetry breaking phasesrgane condensation energy
within weak-coupling theory of multi-component BCS consates.

London equation
The complex structure of the gradient terms is reflected eénstipercurrent density
which enters the London equation. The currents result firoenviariation of the free
energy function with respect t, | = —cdF /O A:
jx = 8me [Kyny Mxnx + Kang Mxny + Kang Myny + Kang Mynx +c.c.|
Jy = 81 [Kyny Myny + Kang Mynx + Kang Mxnx -+ Kang Mxny +c.c.] (169)

jz=8meKs{nyMznx+nyMzny+cc.} .



This structure yields a tensorial form for the London equai

[02Bx = A; 2By + A5 2By
02By = A3 °Bx+ A, 2By (170)
02B, = A, %B;

where the coefficients for homogeneous order parametergvae by

_ 327'1’2e2 - 32n2e2

Ar?= {KalmxP+ Koy}, A% = {Kalny2+ Kalnxl?} |
_, 32 . 32m2e?

AP =T (Kat Ka)(miny+nay) A2 =="5—Kelfi .

(171)
We find a diagonal form for th&-phase with)\s‘2 = 0 andA1 = A, which is isotropic
in the x-y-plane. On the other hand, tlBe andC-phase lead to main axis forms which
are anisotropic in the&-y-plane. This means also that the screening currents ansl, thu
the London penetration depths are different for differamgrations in the plane. This
may observed, for example, in the structure of the vorteticlat whose structure is
depending on the vortex-vortex interaction. If the vortattite for fields along the-
axis has orthorhombic symmetry, tBe or C-phase would be realized.

Broken time-reversal symmetry and magnetism

TheA-phase characterized by the gap functions
W(K) = Nky(ke+iky) and d(k) = n2(kc*iky) . (172)

has Cooper pair states with a finite angular momentum alang aéxis.

M = (@ (K)ik x Op(k))rs=£2(k3(K; +k2))rs # 0 (173)

Such states with a finite angular momentum average over ttmei Serface have been
called "ferromagnetic” by Volovik and Gorkov. There areatsne reversal symmetry
breaking phases where the Cooper pairs do not possess gnkranomentum, which
are called "antiferromagnetic”. An example for an antibenagnetic time reversal sym-
metry breaking phase is the so-caltéd is-wave state which is a complex superposition
of a conventionas-wave pairing state and tli&y d-wave state of the tetragonal system.

2dkoky{s—id (k% — k7)}
P(k)=s+id(Kk-K) = M :< —2dkzkx{s—|d k2 k2)}, > —0.
—Adkky{s—id( k2 K} )/ s
(174)
Because Cooper pairs are charged the angular momentumt1 of the A-phase

generates a magnetic moment which introduces intrinsicetiém into the supercon-
ducting state. However, this magnetism cannot be so edasdgroed. The Cooper pairs



overlapp and the "orbital currents” which induce the magnmabment cancel each other
in the depth of the superconductor. Moreover Meissner-@ulesd screening would ex-

pell any magnetization from the bulk. Hence the only realntlie observation of mag-

netism is in regions where both effects are diminished. $aglon can be provided by

inhomogeneties and interfaces in the superconductorinepgtrities or surfaces.

Magnetism near the surface

We consider now the time-reversal violatiAgphase in the vicinity of a surface. The
boundary conditions are not trivial as they require a cles®r on the interference be-
havior of Cooper pairs scattered at the surface. Let us assah the normal vector of
the planar surface is directed along thaxis. For specular reflection the parallel com-
ponentsk, andk; of the momentum are conserved, while the perpendicular coet
ky is inverted, i.eky — —ky. This behavior leads to a different behavior of the two or-
der parameter components at the surface. Under reflelfiQr{zk,) changes an#éky
(2k/) conserves the sign. Due to this property the former suffetestructive, the latter
a constructive interference, leading to a suppressioneobtber parameter component
Nnx and leavingny constant or even slightly enhanced. We use a variationabaph to
the behavior of the order parameter with the boundary condit

_ ony| _
Nxly—o =0, M T 0 (175)
and
Nx(X) = mﬁanh(?) and ny==ino (176)

for x > 0 and the surface at= 0. Hereé is the coherence length and the bulk value of
the order parameter is given by

a(Te—T)
4by —bo+bz

This simple form captures the essential features of thersapducting phase at the
surface. In particular, it is now interesting to study th@exeurrents near the surface.
We use the expressions in Eq.(169) and find that there isaigtumo current running
perpendicular to the surfacgy = 0. Moreover there is no current along thexis.
Neglecting the vector potential, we obtain for the curreangity parallel to they-
direction a finite value:

né = (177)

onNx _16neﬁ inyNo
ox & cosH(x/&)’

This corresponds to a current spontaneously flowing parall¢he surface without
applying a magnetic field. The extension of the current dgrtswards the bulk is
characterized by . The direction of the current depends on the sigmypand is thus
directly related to the orientation of in Cooper pair anguatement.
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FIGURE 11. Distribution of spontaneous currents parallel to the sierfand magnetic field. Screening
currents in opposite direction ensure that the magnetig fiahishes in the bulk of the superconductor.
The spontaneous current possesses the length&ciie screening currents

If the magnetic field outside of the superconductor vanigiesobtained current layer
would resultin a constant magnetic field inside. This unpdajsesult is corrected, if we
include the vector potential and solve corresponding "lamequation” with the source
currentjy(x) of (178).

92, 1 am.

The magnetic field inside the superconductor dacays to zélothe length scal@,
which is realized by a screening current density flowing ipagite direction to the
spontaneous current such that the net integrated curreisthes at the surface (Fig.11).
The net magnetization remains finite in the complete sabditd shows that the intrinsic
magnetism of the angular momentum of the Cooper pairs is\asigle at the edge of
the superconductor.

It can be shown in an analogous manner that spontaneoustsuoEur around impu-
rities and other defects in the superconductor. Such deéeetalso domain walls in the
superconducting phase between the two stable stated yith+1 andL, = —1. Con-
sequently, a time reversal symmetry breaking superconduwabuld possess a rather
broadly scattered internal magnetization due to inhomeigies of the superconduct-
ing condensate. Such a random field distribution can be wbddry local probes of
the magnetic field. Most suitable are muons which by meangmi-field muon relax-
ation techniques provides a very suitable means to detesmtidomly distributed field
by means of the muon spin depolarization rate. In this waynisit spontaneous mag-
netism has been observed in the superconducting phaseg givough estimate of the
generated fields of.@ — 1 Gauss. These materials are the spin-triplet supercomduct
SrRuQy [44], the heavy Fermion superconductor WThyBe;3z with 0.018< x < 0.045
[45], UPt; [48] and in skutterudite PrQShy» [51]. These results have been interpreted
as evidence for time reversal symmetry breaking superatimduphases.



Multiple Superconducting Phase Transitions

Unconventional superconductors are characterized byythengtries which are bro-
ken at the onset of superconductivity. Since a conventismaérconductor only breaks
U (1)-gauge symmetry, only one kind of phase transition is péssib contrast the pos-
sibility of violating several symmetries allows for sevesaperconducting phase tran-
sitions and complex phase diagrams of superconductingephasius the observation
of multiple superconducting phase transitions and diffephases is a clear proof for
unconventional superconductivity as long as the matesiaf highquality to exclude
different material phases in the same sample.

We would like here to illustrate the problem of multiple ts#tftons on a simple model.
For this purpose we use again the case of the two-componéet parameter leading
to the A-, B- or C-phase. The situation will now be modified slightly be redgcthe
crystal symmetry, say by a uniaxial distortion in a specifrection (e.g.x-direction)
to reduce the tetragonal symmeti,f) to a orthorhomibic onelyy,). This lifts the
degeneracy to the two components leading to different itrtansgemperatures in the
instability analysis, or the second order term of the GimgHiandau free energy:

d(T-T)|i? — a(T-To)|nx>+a (T —Tey)|ny? (180)

The splitting of the transition temperatures is assumedeteinall compared td;

(| Tex — Tey| < Texy) so that we do not need to alter any of the other parametetsein t
free energy expansion. We replace now the second orderettre free energ¥ [1j , T]
and analyze the phase transitions. We téke> Tcy. Thus the first instability goes to a
phase with only thex-component finite:

(T a(Tex—T)
A (T) = ( e ) - 20 (181)
0 0

for temperatures just belowx. Now consider the question at which temperature the
other component would appear. We tackle this problem byystgdthe instability
conditions forny in the Ginzburg-Landau free energy. Thus we extract thecte
second order term iny.

{&(T = Tey) + (201 + ba) [nx(T) 2} [y |2 + %ni(ﬂ(n;z +n2) (182)

wherery is real given by (181). This is a bilinear form {ny, ny) and can written with
a component form fo(ny, ny).

(n2.ny) ( &(T — Toy) + (2b1 + bs) [nx(T) |2 b2nZ(T) ) ( ny )
i b2nZ(T) &l(T — Toy) + (2b1 + bg) [nx(T) (183) Ny
183
The new critical temperature is defined by the first zero ofdéerminant when the
temperature is lowered, i.e. :

d(T—Tey) + (201 —bp+b3)[nx(T)?=0 = ny+ny=0, (184)



FIGURE 12. Phase diagram of {J,ThyBe;3: Th-substitution for U gives four superconducting phases
[46]. The phasé andA’ are most likely identical. The phaget B is reached through multiple supercon-
ducting phase transitions. This phase has been found tmbed¢versal symmetry breaking by muon-spin
relaxation experiments [45]. The symmetry of the diffeneairing states have not been identified so far
[47].

d(T—Toy) + (2o + b+ b3)IN(T)?=0 = n;—ny=0. (185)
This yields to the following possible transition temperatu:

1—-RiTex/Tey with Ri— 2by £ by +bs

1-R; 2by (186)

/
Tcyi = TCy

where+ and — signs yield the imaginary (184) or real solution (185), exgvely, for
ny. The IargerTC’y determines a physical second phase transition and is detsrby
the coefficientd, andbs. The phase diagram in Fig.10 yields the region. In the ramge o
the A-phaseny is imaginary, inB real and no second phase transition occurs in region
of the phase diagram.

The two phase transitions are both of second order in our pkeaand lead to a
sequential symmetry breaking:

Té
Tex y { Don, range A (187)

G =Dy xH xU(l1) -5 DmxHt — YV range B

The first transition removes tHe(1)-gauge symmetry yielding superconductivity. In
the rangeA the time reversal symmetry is broken and in the raBdke orthorhombic
symmetry is removed. Note that the phase previously agsedcigith rangeC in the
phase diagram has the same crystal symmetry reduction asenay the assumed
uniaxial distortion. For this reason there is no further sygtry breaking possible in
this range.

How can we observe consecutive superconducting tran8tibims resistivity vanishes
already at the frist transtions and shows no features atebensl. The most common
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FIGURE 13. Phase diagram of URtThere are two consecutive superconducting transitiorseio
magnetic field, distinguishing the phaseand B [49]. The phaseB is likely time reversal symmetry
breaking [48]. In a magnetic field a third phaSés observed [50, 47].

guantity is the specific heat which shows a discontinuityaathesecond order phase
transition. However, also collective modes are very slgtédr detection of phase tran-
sitions. The sound velocity of ultrasound shows rather pomeed change at phase tran-
sitions for longitudinal polarization. There are, howeveteresting selection rules for
transverse polarized sound waves which can be used to ohtaminformation about
the nature of the superconducting phase transition. Anesal the lower critical mag-
netic fieldH¢; give a further possibility to locate a second supercondgdiiansition.
Anomalies of the upper critical fieltic; can give an indication for additional transi-
tions, however, this requires a careful extrapolation to Zield in order to find the cor-
respondindr{. If the second transition involves the violation of timeeesal symmetry
the onset of a signal in the zero-field muon spin relaxaticerd@nes the transition
[45, 48]. In fact in all systems where one has observed melspperconducting phase
transitions the signature of broken time reversal symmetry detected. Such systems
are U_4ThyBe;3 (0.018< x < 0.045) (Fig.12), UP4 (Fig.13) and PrOgShby ».

HIGH-TEMPERATURE SUPERCONDUCTORS

High-temperature cuprate superconductors have been fio¢he of condensed matter
research ever since their discovery by Bednorz and Mull&9®6 [11]. Although the
roughly twenty years have brought much insight in this cam@ystem, it is fair to
say that our knowledge of many essential points is stilltihi One aspect which can
be considered as established is the unconventionalityeauperconducting phase. The
evidence for a so-called._,.-wave state is overwhelming and it seems not so difficult
to argue for this pairing symmetry from theoretical pointgdw. Even more intriguing

is the fact that this superconducting phase emerges fromoragty correlated electron
system with a pronounced trend towards antiferromagnetisnthe chapter we will



give a brief overview on two of the most popular points of viewthe issue of high-

temperature superconductivity, keeping in mind that tkelksifis still widely open. Then

we will review also the most important experiments whichénbaeen used for the high-
temeprature superconductors to test the pairing symmetry.

Electronic system

High-temperature superconductors belong to a class afitram metal oxides with
a layered perovskite structure. Copper is the only tramsitinetal yielding high-
temperature superconductivity. One of the most simple @amgs is La xSKCuQy
wherex corresponds to the carrier-doping concentration as wepwitit out later. We
start with the "parent”-compound k&uQ, (x = 0) which consists of copper-oxide-
layers separated by La-ions. This is an ionic crystal whieeestements enter as ¥
CW™ and G~. While La- and O-ions are electronically in a nobel gas canfigon the
Cu-ion has a partially filled®shell. Starting from the@®'%4s!-configuration we end up
with 3d°, i.e. oned-electron missing. Thd-orbital degeneracy is lifted by the crystal
field in particular the octahedral oxigene cage around eaciof which gives rise to
an essential cubic symmetry, such thatdhevel splitts into two subsets:

3dyz
€ { ey tog: ¢ 3z (188)
3d322_r2 3dxy

A slight tetragonal deformation of the O-octahedra sphitse levels additionally such
that the electron vacancy would reside in #ed,._y»-orbital. Strong Coulomb repul-
sion essentially prevents the Cd-8rbitals from being doubly occupied by a second
hole and gives rise to the formation of a filled lower and an gmypper Hubbard-
band spitted by the Coulomb energy ~ 10eV. Inbetween the oxigengphole band
Is located with a finite gag to the upper 8,2_,2-Hubbard bandy > A). Any dis-
persion of the 8,._,»-hole would occur through the completely occupied Ps2ates
lying between to Cu sites. This is prevented by the chargestea gap to the pg-levels,
corresponding to the situation of a charge transfer insu(&ig.14). Thus every Cu-site
carries a spirs= 1/2 spin which interact through superexchange yielding aieuas
dimensional Heisenberg antiferromagnet:

=I5 S5, (189)
€7

whereJ ~ 0.12eV is the coupling strength. The stochiometric compowndn insu-
lator with antiferromagnetic order. Only carrier dopingdis to a metallic state which
eventually provides the condition for superconductivity.

We know both types of high-temperature superconductoestrein- and hole-doped
systems. LaCuQy is the parent compound for a hole-doped compound. We wilteon
trate to this case of hole-doping which is much better exgquidhan the electron-doped
compounds. From Fig.14 it is obvious that doped holes (inraghto doped electrons)
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FIGURE 14. Relevant electron configurations in the copper-oxide pl&oethe 3l,._,.-orbital on the
Cu-ion thea-hybridization with the O-p-orbitals is most important for dispersion (left panel) virtwer,
the right panel with the schematic density of states of tfferdint orbitals shows that this system is in
the charge transfer insulator regime. There is afyaptween the fillegp- and the empty upper Hubbard
band of thed,. »-orbitals.

FIGURE 15. Zhang-Rice singlet: Superposition of four @-Brbitals hybridizing with the Cu-@._ -
orbital.

do not enter the Cudorbitals, but the p-orbitals of the oxigenes. Hole-doping is re-
alized chemically by replacing Ba-ions by S#*-ions removing an additional electron
from the copper-oxide plane.

Zhang and Rice have shown that the additional holes spreadtbe four O -
orbitals around a Cu-site hybridizing with thel@ ,.-orbital to form a strong spin
singlet, the so-called Zhang-Rice singlet [52]. The sitfglanation leads to the removal
of theS=1/2 spin degree of freedom which was associated with the Cul$ieeZhang-



Rice singlet can also hop between the Cu-sites yielding mafsicancies in the spin
lattice (Fig.15).The dynamics of the doped system is deedrby the so-callet+J-
model, the natural extension of the Heisenberg-Hamiltomahis context:

A=t S [c?su—ni7_s><1—nj7_s>cjs+h.c.]+J;éi-éj- (190)
(i.n.s (L]

The first term is formulated as a hopping Hamiltonian for &tats with the matrix
element-t (~ 0.4eV) incorporating a strict constraint. The factéis—n; _s)(1—nj _s)
project on a subspace of the usual electron configurationesgnsuring that never
more than one electron occupies a site. With this Hamiltomia describe the interplay
between the dynamics of mobile holes and the antiferrontagoerrelations. Despite
the simplicity of the Hamiltonian it is absolutely not tréito extract the low-energy
physics of this system.

We may hope that essential features of the weakly hole-dopprhte are captured
by thet-J-model and answer the question of how does the metallic statgge out of
a doped magnetic insulator and eventually gives rise torsopductivity with an un-
precedented high transition temperature? The phase dhageaperature versus hole-
concentration, shows that the antiferromagnetic phasaickly destroyed by doping.
The system reaches a state of a strange metal and supertioiyglwath maximal T
around a doping concentration &f~ 0.15. In the phase diagram Fig.16 there is a in-
termediate phase between the antiferromagnetic phaséarsliperconducting dome,
which is called pseudo gap phase, due to the reduction oklmsvgy magnetic excita-
tions below a temperatuf®&*. In the "strange metal” phase as well as the pseudo gap re-
gion the charge carriers do not behave like a standard Feqandl Only for rather large
doping the Fermi liquid-like behavior is recovered. Howewere the superconductivity
disappears eventually. Taking the maxinighs a reference point, the so-called optimal
dopingdopt, One generally distinguishes two regions, timelerdopedside withd < Jopt
and theoverdopedside withd > &c. In the following we address these two regions with
different schemes. First we will consider the underdopgime where correlation ef-
fects are very important and where we study tottdeHamiltonian as the basic model.
Later we will turn to the overdoped region which we tacklenfrthe viewpoint of a
Fermi liquid with strong antiferromagnetic spin fluctuaiso

Underdoped Regime and RVB concept

The challenge of description of the underdoped phase lieapturing the essence of
the carrier motion in a background of spins with a strongfamttmagnetic correlation.
Anderson proposed shortly after the discovery of high-terapre superconductivity
that magnetism would evolve into a resonating valence bBMB] state which would
be very favorable for Cooper pairing [54]. The RVB phase iarabterized by very
short-range spin singlet correlation, in contrast to tHaite range correlation of the
antiferromagnetic order. This phase embodies the keyresita identify the pseudo gap
phase and the mechanism of the superconductivitytThmodel which we introduced
above seems to be most suitable for a theoretical study ©&#pect.
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FIGURE 16. Schematic phase diagram of the high-temepature superctumdutemperature versus
hole doping concentration.

One strategy to study ground state properties of ihenodel is the technique of the
Gutzwiller projection which is a variational approach. Vdmsider a suitable "uncorre-
lated” state{(p) and create a correlated state by projecting out all configurs with
doubly occupied sites. This is done with the Gutzwiller pobion operatoP:

W) =Plgo) with P=T](2—nn) (191)
|
Among the very best starting states are actually BCS-tystadés,

_ . LT AT
|Wo) = kDF(uk+VkCRTC—Rl)‘O> . (192)

where one finds that variationally most favorable state esadhe where Cooper pairs
possess,._,2-symmetry (for a very insightful review see [55]).

Gutzwiller’'s Approximation

Although the structure of is simple, it is generally difficult to calculate with this
operator. The expectation value

£, — Yol 7old) _ (WolPAoPIyo) (193)

(Wl W) (WolP[go)
and the variational minimization is usually done by meansasfational Monte Carlo
techniques [55].
An interesting approach which gives an interesting qualigaview of the correlation
effects in thet-J-model is called Gutzwiller approximation. The idea of thjgproxi-
mation is to renormalize matrix elements by means of stedilstounting of real space




configurations. Thus the fully correlated Hamiltonizd§; will be replaced by an effec-
tive Hamiltonian without constraints.

G = —it % |:CiTSCj3—|-h.C.:| —Hzni7s+gJJ z S §,~ ) (194)
<|7] 7S I7S <|7J>

Renormalization factorg; and g; are determined by comparing the constrained and
unconstraint expectation values:

<ciTSc,-s> =0 <ciTSc,-s>0 hopping (195)
Si-Si)=0s(Si-Sj) spinexchange (196)
(8-8) =0 (S-8),
<CiTTCL> =0a <CiTTCL>O pairing (297)

with (- --) the expectation values in the constrained Hamiltonian(an, the expecta-
tion values in the unconstrained Hamiltonian. Moreoveaiaipg renormalization factor
ga is introduced in order to discuss the renormalization ofglieing gap even though
it does not explicitly appear in the renormalized Hamiltoni

First we consideg; for the particle hopping:

(y|cheis|w) = g (ol cicis o) (198)

where|) is a state where all configurations of double occupancy aserdapwhile|¢o)

is an uncorrelated state witly) < /G| @o). Only states with one particle on sifeand
none on sité are relevant iny) so that we approximatg through the comparison of
configurational probabilities:

P(1,0) +P(1,0) =gt [Ro(T1,0) +Po(1,0)] - (199)

Here P and PR, are the probabilities for constraint and unconstraint camétions, re-
spectively. The left-hand side is the density of electroritiplying the density of holes
n(1—n). The right-hand side reads

Po(T,0) +Po(1,0) = (niy (1—nj1)) g+ (M (L—nj 1)) = (Mi)o— (NigNj1 ) — <”il”(12¢c>)%)

which yields approximativelyn — n? /4 —n? /4, since electrons are supposed to be un-
correlated. Therg; results as

2(1—n)
g~ (201)
The same reasoning can be done for the exchange renornuadiparameter. Now we
have
|s.s) < ails.s), - (202)

Since the process involves two electrons, exactly one onngighboring sites, the
probabilities of configurations give

Y Pss)=a) Ro(ss). (203)

s, s,



The left-hand side ig2. For electrons on neighboring siteand j, the right-hand side is

§<”i7s(1— Ni—s)Nj ¢ (1=} _¢))g = (NiNj)o—2(NiNjiNj o+ 4NN Njinj g -

(204)
This is approximated as* — 2n(n/2)? +4(n/2)* = (2 —n)?n?/4 so that

4

gy~

Finally we consider the renormalization of the pairing aitoples,ga. This is an off-
diagonal expectation value which couples states withmiffetotal number of electrons.
Thus the matrix elements take the form

WN)Ich el [WN—2)) = ga (do(N)| T c], [Bo(N—2)) < (206)
WN)) — Wldo(N)) and [@(N—2)) = w2lgo(N-2)),  (207)

with ga = WWW—2. The probabilities of the relevant configurations are

2
P(1L D) =T = RR(1, 1) = rim o — R (208)

so thatyy = 1. In the same way we evaluate

2

P(0,0) = (1-1)2 = K _oRo(0,0) = Ko (1—mp)(L—ny)) =2 (1-3) .

(209)
leading toyy—2 = 2(1—n)/(2— n) such that
~2(1-n)
Oar = 2_n =0, (210)

Both hopping and pairing are connected with the quasipantreight of the electrons at
the Fermi surface, which is reduced through the correlaftacts. We find that botb
andga vanish as we approach half-filling,— 1. It is obvious that the charge fluctua-
tions under the constraint would be suppressed giving oisecreasing difficulties for
hopping due to the lack of free sites. In much the same way @@ Bairing is relying
on the availability on configurations with unoccupied si®s the other hand, we find
thatg; takes its maximal (enhanced) value at half filling, since thelds with security
configuration where neighboring sites are occupied by jugis electrons.

Mean field treatment
The Fermionic operators which we useff; are now not constraint anymore and

within our approximation the effect of projections is inportated by the renormaliza-
tion factors. Nevertheless, we are still confronted withangrbody problem which we



would like to tackle by means of a mean field ansatz to decotngldHeisenberg part
of 7. It turns out that the following two types of mean fields arémyy a description
which carries the idea obtained from the above variaticealtinent:

Xij = <CiTSCj5>O and Ajj = <CiTTCJTl>O , (211)

whereyij is a hopping mean field anljj is a BCS-like pairing mean field. Note that we
neglect here the staggered magnetic moment as anothemushwiean field. These are
nearest-neighbor mean fields which are considered to berarfooughout the system
with

Xii+a, = Xx» Xii+a, = Xy Dijita, =D, Dijra =Dy (212)
The transformation to momentum space leads to the followifertive (one-particle)
mean field Hamiltonian

] 3J9;
HF =) ERCESCR,S_ > {ARCRLCRT + h'C'} + Tj > {}XR *+ Iy ‘2} (213)
s K K

with
3]
& = -2 {gtt‘f'ng)(G}COSka—u
a=x\y
3J
= §-H-05 > Xa COSKq (214)
a=xy
A g 3 z Ag coKy (215)
L= gy
k 2 a=xy ’

andey = —2tgi(cosky + cosky). The self-consistence equations lead to a stable solution
with
Xx=Xy=X and Ax=-A/=A (216)

for sufficiently low temperatures. The energy spectrum efBbgolyubov quasiparticles

is given by
Ep =+/&2+0;2 (217)

with an energy gap. The mean fielg has an onset temperatufé which gradually
decreases from a high value at half filling upon increaging 1 — n and eventually
reaches zero arourgg~ 0.3. The onset of the hopping mean field lies higher and has no
straightforward physical interpretation.

Despite the formal analogy the mean fidlgl is not the BCS superconducting order
parameter which we only obtain with proper renormalizataiing the restricted charge
fluctuations into account. We find

2(1—n)
Bgesi = Wy = — 4

(218)
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FIGURE 17. Phase diagram obtained from the Gutzwiller approximatiih the RVB phase assigned
to the pseudogap phase and the dome of superconductivijy (SC

such that the energy scale and correspondingly the suphrcting transition tempera-
ture lies belowr *. Indeed we find through the renormalization a dome shapekasvsn
from the experiment. Note however that quasiparticle gapsme=d would correspond
to theA;, the gap of the RVB phase and the reductionfgescorresponds only to the
characteristic temperature scdle

The symmetry of the Cooper pairs is unconventional with a spiglet even parity
state in theD4y-representatioB;g:

W(K) = A(cosky — cosky) (219)

which corresponds to the._,»-wave state found in experiment. Beyond the supercon-
ducting phase in low-doping region we find a phase with antation gap belowr *.
Although the onset of this phase is sharp within the preseamiield description, it is
interpreted as the pseudo gap phase. Experimentally there sharp transition at*,
but a wide crossover. This phase corresponds here to AndeiRUB phase, a short-
ranged spin singlet liquid as well described by the BCS-ilede. The superconducting
instability is reduced through suppression of charge fhatobas close to half-filling.

Interestingly, this pseudogap phase is predicted to havedme gap structure as the
superconducting phase. Indeed experimental results ootifis and can be counted as
further supporting evidence for this theory [65]. In thisywauch of the features of the
phase diagram can be reproduced. Antiferromagnetism is@dait, because the mean
field theory overestimates the stability o magnetic order.

Alternative approach to the underdoped phase

A similar result is obtained by the so-called slave-bos@oti which is an alternative
technigue to handle non-holonomic constraints suczgaécis < 1[56]. One introduces
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FIGURE 18. Phase diagram obtained from the slave-boson théiGrys the onset of the RVB phase
corresponding to spinord -wave) pairing.T, is the BEC transition of the holons. Only below both
superconductivity (SC) is realized. Note that quasipkesiacquire a coherent part beldw

a decomposition of the electron operator:

Gs=blfis, ck="flb = 3 flfis+blbi=1 (220)
S

This decomposition splits the electron into a bosonic dper@presenting the absence
of an electron and a fermionic operator for the spin, if arcteta is on the site. The
former is calledholonand the lattespinon Within the most simple scheme these two
degrees of freedom are behaving independently. This featuresponds to the concept
of spin-charge separation, well-known in the one-dimemalicorrelated electron sys-
tems (Luttinger liquids) [57]. Obviously an electron if ea¢tted from the system would
have to combine both degrees of freedom so that this methmalsalis to give account
of the absence of sharp quasiparticles in certain rangelseophase diagram for the
photoemission experiments.

Thet-J-model formulated in this composite-fermion language caadmin treated by
mean field approximation introducing analogous to above

Xij = <fi1s-f1'3> and Ajj = <fi1} fiTl> . (221)
for the fermionic spinon part anBl = (b;) for the bosonic holon part, wheiis the

mean field of the Bose-Einstein condensation (BEC) of thernmla coherent state.
Note that the real superconducting BCS order parametevesndiy

Bij pes= <CiTTC}rl> = (bibj) <fiT¢fﬁ> = b°j . (222)

In this approach the pseudogap phase is a BCS-like phase spthons while super-
conductivity requires the condensation of the holons intawdto the Cooper pairing of



the spinons (SC=RVB+BEC) (see Fig.18). Analogous to the@iller approximation
method one finds here an RVB phase below a characteristicetatupeT * and super-
conductivity appears at lower temperature. The holon cosal®on temperature grows
linearly with the hole density, whil&* decreases. Where the two temperatures cross we
find the maximalT; (optimal doping). In the overdoped regime we above the sigmer
ducting phase no spinon pairing while the holons are coretenBhe presence of the
condensate allows to find a coherent part in the electronhtiesg that one could inter-
pret the normal state here as Fermi liquid-like. The spiholon picture is complicated

by the fact that two degrees of freedom are coupled by(B-gauge field. Hence the
spin-charge separation is to some extent a spurious feaittine theory [56].

While the RVB-phase gives an elegant interpretation of th@eudoped region, it is
difficult to establish this picture firmely. The situationdemplicated by the fact that
many different states seem to have comparable energy. d2iscan stabilize phase-
separated states leading to the formation of charged stimpe spin background. Other
candidates have been the flux state or the d-density wawe wtath could compete
with the RVB phase. Another attempt to explain the pseudquzse is based on
an extended region of superconducting fluctuations. Coppis are created at high
temperature but do not form a phase coherent condensateoEhese proposed phases
and concepts relies on a set of experiments for their supdowever, no satisfactory
description of the emergence of the cuprated physics inidendoped region out of an
antiferromagnetic insulator has been given so far.

Overdoped Regime

In the overdoped regime the normal state properties tumanhore standard metal
state. The-J-model of the weakly-doped system is obsolete here and therigéon
in terms of a Fermi liquid phase with rather strong antiferagnetic spin fluctuations
looks more appropriate. This provides an alternative rooitdhe description of high-
temperature superconductivity, sparing out the compdoatof the underdoped (al-
though there are attempts to extend this kind of analyscstim underdoped region;
this is, however, beyond the scope of our lecture) [58]. Ttaetiag point is the Hub-
bard model in two dimensions from which we may derive an éffecspin fluctuation
based interaction between electrons, which is eventussiyansible for the formation of
Cooper pairs. Alternatively the spin fluctuations can alsmiroduced as a phenomeno-
logical input.



Effective spin fluctuation model

Restricting to the spin fluctuation induced interactiort pge can introduce to follow-
ing effective Hamiltonian:

vt o1 5 . o oot )
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(223)

with the band energ§; (= —2t(cosks+cosky) — i for a simple nearest-neighbor tight-
binding model)N as the number of sites of the lattice. The effective intéoadtas the
form
: Xo(3)
v(d)=U-+U?x(d with x(g)=-—2"12 (224)
(d) (d) (D)= 1050

with the approximative RPA form for the static spin susdeipity x(d) wherexo(q)
is the spin susceptibility of the free electron system. Sime are concerned with
the possibility of Cooper pairing, we ignore all scatteregents apart form the pair
scattering in the Cooper channel. Hence the interactiongbéine Hamiltonian reduces
to the following terms in which we separate out the spindgihgnd the spin-triplet part:
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with the spin-triplet and spin-singlet coupling matrix mlents,

o oL [V(R —K)=v(k+ R’)] resp. VS, = 3 [V(R —K)+v(k+ R’)]

k, k’ 4 . KK 4 s

(226)

In the sense of the weak-coupling these matrix elements @rezero only within an
energy region of width & around the Fermi energy. The interaction contains two parts
a repulsive onsite interactidt preventing to pair in the most simpsevave form, and
a susceptibility dependent part on which we will focus noWwe Busceptibility can in
priniciple be calculated in the RPA scheme using the giverdlsructure. Even more
sophisticated approaches developed for itinerant electystems close to magnetic
transitions may be applied such as the self-consistentmealization scheme [53]. In
order to keep matters simple we assume a simple form for geegtibility which gives
the essential features of the interaction. We parametg(ide as

X(d) =~ Xo[1—bf(q)] with  f = cosoy+cosgy , (227)

This x(q) describes antiferromagnetic spin fluctuations, if it is med at § = Q=
(r/a, 1/a) (a: lattice constant), i.éb > 0. In contrast, negativie corresponds to ferro-
magnetic spin fluctuations.



This approximation allows us now to write pairing matrix ralents in a particular
easy form where we can recognize the pairing symmetriesvedoFor the spin singlet
part we obtain

S =5 b{ f(k—K)+f(k+K)}

3; 2 Xob{ CcOsky + cOsky) (COSKy + COSK; ) + (COsky — Cosky) (Cosky — cosky) }
(228)
and the analog for the spin-triplet part
XoU? roT TT
Vi =20 {f(k=K) = f(k+K)}
(229)
XO b{S|nkXS|nk’+S|nkyS|nky}

Owing to this simplification in (227) both matrix elementsspess a factorized form
from which we immediately read the symmetry of the pair wawection as well as the
coupling constant:

Vi = zgn‘ﬁ’n YUR(K') (230)

with g, as coupling constant anph (k) the corresponding gap function form. Since we
are considering here a basically tetragonal system, thenggrg classification of the
pairing state foD 4, applies, which had given in the previous chapter. We cangrize
states belonging to the representatidag B1g andE,. We give here the list of possible
states and their names as they are often used in literature:

| T | gap function | coupling constanf name | type \

Ayg |1 U s-wave repulsive
3U 2X0b .

Aqg | COSKy + COSKy S extendeds-wave | attractive
Aog | sinkysinky(cosky —cosky) | — - absent
3U 2Xob .

B1g | COSky — COsky S dye_y2-wave attractive
Bog | sinkysinky - , dyy-wave absent

Eu | {sink,sinky} v i(ob p-wave repulsive

Note that the state called “extended s-wave” is not ag@ave state although it belongs
to the representatiofyg. The amplitude of this function vanishes when both elestron
are on the same lattice point since

1
N Z(coskX +cosky) =0. (231)
K



For antiferromagnetic spin-fluctuations, omyy (extendeds-wave) andB;gy pairing
states give rise to an attractive interaction. Both are @atal with the spin-singlet
channel. (Note that for negatitei.e. ferromagnetic spin fluctuations, the representation
Ey would provide the only channel with attractive interactjon

We now have to address the instability condition. The lireesk gap equation has the

form - R .
—A(K) = =(No(K)VE L w(K)) g s (232)

and look for the highest eigenvallAe(No(R): angle dependent density of states on the
Fermi level). It is easy to see that the instability is notyotépending on the coupling
constant which is identical for the extendewave and thel,._,.-wave state, but also
the gap function form on the Fermi surface plays a role, itig#ar the Fermi surface
average:

@] = (No(K)[@(K)|?)§ s (233)

We find thatl [a,,] < I[YB,,], i.e. the leading instability results from._,. -wave
pairing. It is easy to see that the extendedave state has a small gap function over
all the Fermi surface, while thi._,.-wave state has nodes along the (11)-direction, but
is largest along th¢€10)- and (01)-direction where the density of state is largest in the
two-dimensional electron system.

The discussion based on the spin fluctuation based mech&rasisito the same pair-
ing state symmetry as the Gutzwiller-approximation for ttdemodel. This consistent
result is not so surprising in view of the fact that the intti@n term in thet-J-model is
in its structure also a spin fluctuation type of interactibloreover the approach (227)
leads to the same mathematical structure for both cases.r@sult is especially satis-
factory as the experiments confirm this shape of the painteyaction.

Testing the Pairing Symmetry

The pairing symmetry has been one of the most important quest the early 1990s
also from the experimental point of view. The presence o ltodes constitute one
important characteristic feature of tg_,»-wave state. These nodes can be approached
by a number of ways. However, the nodes alone do not give ttire gricture of the pair
wave function. It is also important to establish the phasectire.

Line nodes

The probably first indication for line nodes came from expemts which probe the
low-energy (temperature) quasiparticle spectrum. The=e the NMR-YT; measure-
ments which noted &3-powerlaw behavior fof — 0 [60]. Moreover a -linear behav-
ior has been seen in the low-temperature London penetrdépth [61]. Both results
are compatible with line nodes. The fact that h&es extremely high made it naturally
easier to address these powerlaws experimentally than $h atiwer unconventional su-
perconductors.
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FIGURE 19. The angular dependence of the gap structure obtain by aagtdved photoemission
spectroscopy in BSrnCaCyOg, 5 [64].

Evidence of line nodes came also from quasiparticle tungedpectroscopy, in par-
ticular, scanning tunneling microscopy which measureduhaeling conductivity as a
function of the applied voltage omaxis facing surfaces [62]. The conductivity gives a
picture of the local density of state at given enekgy: —eV with V as the voltage. The
characteristic V-shape of a quasiparticle spectrum wité tiodes was observed.

These experiments indicating line nodes could not decigkelier on the position of
the line nodes. Here the tremendous improvement of the ymesglution of the angle
resolved photoemission spectroscopy played a crucial[68le64, 65]. This technique
allowed to observe for the first time a superconducting gapeifrermi surface and even
to map out its angular dependence. The results clearly showdes along the (11)-
direction compatible with thel._,.-wave state (Fig.19 [65]. In this case too the large
energy scale of the superconducting gap is essential faplikervation of the angular
structure of the gap. No similar measurements for othermverttional superconductors
have been possibile so far.

Phase sensitive tests - interference and frustration

The above tests provide strong experimental evidence éat, th, .-wave state. How-
ever, they do not address the real symmetry aspect of thimgaitate. The important
point lies in the property that a 9@otation around the-axis leads to a sign change
of Y(Kk) = cosky — cosky. The above measurements do not give a direct access to this
phase information.

Information on the phase of the order parameter can, howegabtained from the
Josephson effect, the coherent tunneling of Cooper paiveelea two superconductors
linked by a tunneling contact. The tunneling current degemithe phase of the order



parameter on the two sides of the contact interface:

| =l¢csin(@— @) (234)

wherel is the maximal current (Josephson coupling) gnglare the phases of the order
parameter (gap function/ pair wave function) on the sidedlZamespectively. This stan-
dard formula is simple and unproblematic for conventionglesconductors. However,

in the case of unconventional superconductors geomepacésof the interface start to
play a role. For thel._,»-wave phase the phase of the order parameter is differemg alo
thex- and along thg'-dyrectlon The phase difference for the two directiong.ig hus,
having contacts on two interfaces, andy-oriented, then the their current-phase rela-
tion would be shifted byt. This property has been used to probe this symmetry feature
through an interference experiment.

We consider the configuration as given in Fig.20 where a attimeal superconductor
is coupled to al,._y.-wave superconductor on two orthogonal faces. This is a&pi
SQUID (Superconducting QUantum Interference Device) wlibe flux gives via an
Aharanov-Bohm-type effect for the Cooper pairs a periodierference pattern of the
maximal current as a function of the magnetic flux threadireg@QUID-loop. The total
current through this device consists of the contributidrtte two junctions 1 and 2:

. . . O}
| =114+ 12 =l Sing1+ leesSin(¢p2+ a) with ¢1—¢2:2na (235)
0

with @9 = hc/2e is the superconducting magnetic flux quantum. The secomd ter
involves a phase shift which is 1T in the present situation. It is easy to calculate the
maximal current assumirlgy = I = I¢.

|max(q3) =l

® a
cos<ncDo + 2) ‘ . (236)
While the standard SQUIDa(= 0) shows a maximum foi = n®g, the configuration
with the d-wave superconductora(= m) is shifted by half a flux quantum with a
maximum for® = (n/2+ 1)®q (see Fig.21. This type of experiments have indeed
been performed in the specified configuration with ¥8asO; by several groups with
a positive result giving an even stronger support for thdizagon of d,._».-wave
symmetry in the cuprate superconductors [70, 71, 72, 66].

Another related experiment addresses the phase frust&ﬁ&l:t in a superconducting
loop where at-shift like this is buildt in. We assume that the superconithgdoop does
not allow any flux to leak out so that enclosed flux is definedngyfollowing condition

0= 7{d§< (p——A)_ZnnJrza. 27%) (237)

where the sum runs overall Josephson junction in the loomraddnotes the phase shift
(0, ) (n: integer). Note that these phase shifts are not gauge indepé However,
the sum does not change under any gauge transformation iof &imy superconducting
segments along the loop. One always fifygs; = rY, either withn’ an even or an odd
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FIGURE 20. Set up for a SQUID phase sensitive probe usindreave and a conventionalwave
superconductor which has Josephson contact along tworndicpsar faces [69, 66].
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FIGURE 21. Interference pattern of a SQUID: Standard pattern (uppeepat-shifted pattern (lower
panel).

integer, i.e. "even” and "odd” is invariant under gauge sfanmation. This leads to the
following flux quantization:

don even

= L (238)
(ON) <n+ 5) odd

In case of an even number gfshifts we have the standard flux quantization in terms of
an integer number of flux quanta. In contrast, for an odd numbr-shifts we encounter
a "half-integer” flux quantization. A particular consequerof the latter case is that there
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FIGURE 22. Loop with four segments whose phase shiftate,.

FIGURE 23. Magnetic field distribution measured by a scanning SQUID rasicope for four
YBap;CuzO7 loops on a tricrystal substrate (white lines indicate trargboundaries). Three loops have
no frustration (1,2 and 3) and the center loop 4 is frustratéere is no magnetic flux in the loops 1, 2
and 3, but half a flux quantun®g/2 in the loop 4 [73, 13].

is no zero-flux situation. We call such a loop frustrated¢sithere is no situation in
which the phase is a constant throughout the loop. The SQU®P in Fig.20 has an
odd number oft-shifts and would carry half-integer flux quanta.

Tsuei and co-workers created small loops of this kind by gngwiny YBa,CuzO7-
loop (diameter~ 60 um) on top of tricrystalline substrate [73]. In this way aad/at a
loop consisting of three differently oriented film segmeiitse geometry was chosen in
a way that the loop would be frustrated. Indeed the measurai¢he magnetic flux in
the superconducting phase showed that there is a halfentegntization in this loop,
while reference loops showed standard flux quantizatioes&lexperiments have been



FIGURE 24. Andreev scattering with a specularly scattering surfadee €lectron and hole path
connect two momentum direction where the gap function hassige sign.

repeated for other cuprate superconductors with the sasuét Bnd are viewed as the
most beautiful phase sensitive test fbwave pairing in these materials [13].

Other phase sensitive test based on scattering states

Interestingly potential scattering leads to an additiqgni@nomenon which can be
used to obtain information about the phase structure ofaireyave function. Ordinary
potential scattering from impurities and lattice defestgenerally destructive for uncon-
ventional pairing. The reason lies in the destructive fietence effects, if Cooper pairs
are scattered between momenta for which the pair wave fumttas different phase.
Thus one would expect that actually the disorder intringithe doped cuprates would
be an obstacle fod-wave pairing. Surprisingly the doping which introducesadder
between the copper-oxide planes has little effectoi®©nly impurities implanted in the
plane acts detrimental to superconductivity, such as thevifmrities replacing Cu.

On the level of quasiparticles potential scattering geesrdocalized low-energy
states. This is particularly impressive near surfaces aitlormal vector (11). Specular
surface scattering in the cooper-oxide plane connects €quar states with momenta
for which the pair wave functions has opposite sign (Fig.X43 low-energy (subgap)
electron is scattered at the surface back into the condensailfers a so-called Andreev
reflection resulting in a hole which retraces the trajectifrghe electron. In this was the
hole returns back to the condensate and releases via Anefféestion an electron which
takes again the path of the original electron. This corredpdo a closed trajectory of a
"particle” and hence constitutes a bound state at the sirfacan be shown on general
grounds (e.g. by Bohr-Sommerfeld quantization) that suafphase shift yields yields
to bound quasiparticle states at zero-energy. Since aisstd this kind suffering ar-
phase shift through scattering have zero energy, this gseso a large density of states



atE = 0. Such states have been successfully observed by inplasgauticle tunneling
experiments and represent a further strong support fat-thiave symmetry [74, 75, 76].

Also the scattering at an impurities generates similar apldgpund states localized
around the scattering center. The typical features fat-arave pairing state have been
observed by STM spectroscopy [77]

The evidence fod-wave pairing is overwhelming. While the spin fluctuatiordan
RVB-based descriptions provide a pairing mechanism whael$ to the proper pairing
symmetry, still many questions on the cuprate supercondsiotmain open, in particu-
lar, in the context of the pseudogap phase of the underdeggairof the phase diagram
(Fig.16).

THE SPIN TRIPLET SUPERCONDUCTIIVITY OF SRRUO,

The discovery of high-temperature superconductivity ingitwo-dimensional copper-
oxide compounds has a initiated the search for other tiansitetal oxide superconduc-
tors of similar structure. In 1994 the team of Maeno and Bedreported the discovery
of superconductivity in SRuQ, which has a layered perovskite structure likeCaOy
[22]. In constrast to the cuprates,BuQ, is a low-temperature superconductor with
Tc ~ 1.5K. In most respects this materials is different from theratgs. It is in stochio-
metric composition metallic and displays Fermi liquid baba at temperature below
~ 40K. The conductivity is very different in the basal plane anshglthez-axis even a
very low temperature, showing that also this material hasg@unced two-dimensional
behavior. The Fermi liquid parameters indicate strongetation effects very similar
(even on a quantitative level) to the quantum lig8ide. The analogy witfHe led to
the proposal that the superconductivity inBu0, would be also based on tlueld-
parity spin tripletpairing. Over the years strong evidence has accumulatedifiylag
the superconducting phase as a so-called chiral p-wawe stéitne reversal symmetry

breaking stated (k) = 2(ky = iky) [23, 24].

Electronic structure

The electronic structure is dominated by thiet4,-orbitals of the Ru-ions which form
in each plane a square lattice. There are 4 electrons pesiBufa, which disperse via
r-hybridization with the p-orbitals of the O-ions. The result are three essentialty-tw
dimensional bands. The- and 3-band are derived from the two orbite), and d,
which each on their own would give a one-dimensional baneirTimybridization via
next-nearest-neighbor hopping leads to two two-dimeradiBarmi surface a hole- and
an electron-like pockey andf3, respectively. The corresponding Hamiltonian has the

form
— T e, +ect co.+g:(ch co.+cl c.
Q%”O,B_Z {skyc_k.lsckl €Cp . Cro T Ok <CRlka2 C‘k’zsckl)} (239)

k,s



FIGURE 25. Fermi surfaces of SRuQ, measured by ARPES. We distinguish hole-like pocleets
and electron-like sheef$ andy. The sheetsr and result from the hybridization of the two crossing
one-dimensional bands (dashed white lines) [79].

with g = —2tcosk — u and O; = 4t’ sinky sinky (indicesdy, — Ci1s andd,y — Cst).
The third bandy-band, is decoupled due different parity with respect toréfection
z— —zas itis derived frontyy. The corresponding Hamiltonian is

. N
Iy = Z € CraCka (240)
k

with & = —2t(cosky + cosky) — 4t" coskycosky — i’ including next-nearest-neighbor
hopping @iy — ci,). The charge distribution is 2 : 1 between the/3)- and they-
bands. The resulting Fermi surface agree surprisingly wifi the Fermi surfaces ob-
served in detailed de Haas-van Alphen experiments [78] &REES [79] measurements
(Fig.25).

Possible spin triplet superconducting phases
We now consider the possible superconducting phases isytbiism from a symmetry

point of view. We pose the preconditions that the Coopesgainsist of electrons in the
same Ru@-plane of the tetragonal crystal lattice and that spintacbupling is now



weak. Under these restricting conditions we find the folluyvépin singlet states.
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Note that the two-dimensiond&g-representation does not provide a state. The basis
functions have the fornik«kz, kykz) and are not inplane pairing states as the presence of
thekz-component shows. The spin triplet gap functions are giyen b

[T d® [ %
Awi | Bo(Rk+9K) | O |
Aau | Bo(Rk — k) | O |
Buu | Ao(Rke— k) | +2 |
Bou | Ao(RK, + ko) | £2 |
Eu | DoZ(kxEiky) il\

For all states we have also given teeomponent of the total angular momentum
(as defined for a cylindrically symmetric system). We havesemn the time reversal
symmetry breaking state fdf,, since it maximizes the weak coupling condensation
energy among the possible combinations in this repregentat

Interestingly all the spin triplet state listed have a degate weak-coupling conden-
sation energy, as this depends only on the quasiparticte gap

Ap = 1d(K)| = Doy /K +K2 (241)

This degeneracy would be lifted for example by spin-orbitglong. For the spin sin-
glet case there is no such a problem, since the gap functiosseps very distinct

anisotropies.



Experimental identification of pairing symmetry

As mentioned earlier there is convincing evidence for sgpldt pairing with the

symmetry J(R) = 2(kg £ iky). A first proof for unconventional superconductivity is
provided by the sensitivity of th&; to non-magnetic impurities [80]. The transition
temperature is suppressed with increasing impurity canaton. The threshold mean
free path of the conduction electrons needs to be longer riiaghly 100 nm which
corresponds approximately to the zero-temperature cobeidength.

A rather direct test for triplet pairing is the measurementhe spin susceptibility
which is possible in the superconducting phase via the NMiRyinshift. Early on
experiments showed that the spin susceptibility staystaahgor magnetic fields in
the basal plane indicating @-vector parallel to the-axis [81]. In another experiment,
the muon zero-field relaxation rate displays an pronouncadirtuous increase of the
intrinsic magnetic field spread pointing towards a time rsaksymmetry breaking
superconducting phase [44]. From our classification welss#teunder the restriction to
inplane pairing there is no spin singlet pairing phase witkbn time reversal symmetry.
On the other hand, both experiments are consistent with@taeh in selectingd (k) =
Z(kx E£iky).

There is further experimental evidence for this pairingesteery recently a first phase
sensitive test of the SQUID-type has been reported [82]Johtrast to the case discussed
for thed,._,.-wave spin singlet superconductor, the conditions heress intuitive. A
first problem which has to be settled is the Josephson efédatden a spin singlet and
a spin triplet superconductor, since the SQUID device dnstanctions between the
triplet and a conventional superconductor. There are tvabactes to be overcome. The
pair wave functions in the two superconductors do not matt¢he parity of their orbital
part and also not in the spin part. The first pointis solvedufh the fact that an interface
naturally breaks parity. The second requires magnetieallie tunneling, i.e. spin flip
processes in tunneling. This appears automatically wherivib superconductors are
different in spin-orbit coupling, so that the matching aéaton spinor wavefunctions
removes spin conservation in tunneling. Symmetry conatders lead to the following
expression for the coupling:

JOIm{w(k)*d(k)-{rxk})

KFS (242)

where i is the normal vector of the interface on the spin triplet sapeductor side.

We see that there is only coupling in the basal planed"qrz. The orbital and spin
part have no independent selection rules anymore, but baltotal angular momentum

J - i perpendicular to the junction. For the gap functidfik) = 2(nyky + nyk,) with

the normal vectorii || x we find the thes-wave order parameter couples to the
component. In this way - fi = 0 is realized for the Cooper pairs on both sides. The
SQUID device follow the basic design proposed by Geshkended co-workers [68]

as shown in Fig.26. The-wave superconductor is attached on two opposite sides so
that i has opposite sign. In this way there is a phase shift wf the SQUID loop and,

analogously to thd-wave SQUID of the cuprate superconductors, we expect aathif
the interference pattern by half of a flux quantum. This effexs indeed been observed
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FIGURE 26. SQUID setup with a diametral junction configuration follogiGeshkenbein et al. [68].

recently by Nelson et al. [82].

The order parameter af (k) = 2(ky + iky) has two complex components. This has
various consequences. For example the mixed phase is ioflddyy the nature of the
order parameter. The vortex lattice has square coordmédidields along the-axis, in
contrast to the triangular form in the standard case. Thespredicted by Agterberg [83]
and subsequently experimentally verified by Riseman eB4]. [Additionally the field
distribution in the mixed phase, measured by muon spin atilax, shows peculiarities
which are characteristic for a two-component order parani8b].

Thermodynamic measurements do not allow to make a cleanstgit about the order
parameter symmetry so far. Many data seem to point towardesepwith line nodes
[23]. However, the situations is more complicated due topitesence of several bands
which make the data analysis rather complex [86, 87].

Microscopic origin of the chiral p-wave state

The microscopic origin of the interaction yielding spirptat pairing is unclear. On
the one hand, one may argue thatR810, would be close to a ferromagnetic phase.
The Ruddelson-Popper series of compounds {#Ru,03,.1, Wheren is the number
of RuOy-layers per unit cell, goes towards ferromagnetism witwgng n. The infinite-
layer compound SrRufls ferromagnetic witiic = 165K. From this viewpoint a mech-
anism based on ferromagnetic spin fluctuations seems todygpaaling proposal. How-
ever, neutron scattering data do not support this idea.eRathong spin fluctuations at
an incommensurate wave vector have been observed [88] wdadily can be identified
with a nesting vector associated with the3 bands, a reminiscent of their quasi-one-
dimensional nature [89, 104] (see Fig.27). Thus spin fluaina as a pairing mechanism
do not provide a clear-cut picture. Theoretical studiesistierefore a wide spread of
possible pairing mechanisms [90, 91, 92, 93, 94, 95, 96, 97].

There is another important issue concerning the stabifityhe chiral p-wave state
connected with the degeneracy within the weak-couplingt liinis spin-orbit coupling



n

FIGURE 27. Static spin susceptibility () for the two subsystems: (a) tlwe 3-band with pronounced
peak byQic ~ (rr/3,1/3,0) due to nesting features; (b) tlyeband with softer features [104].

which is most relevant for lifting this degeneracy, althbuighas been shown that certain
higher-order feedback effects favor actually the chiravave state [98, 99]. The effect
of spin-orbit coupling discussed on the level of the Cooparspcan be discussed by
using a phenomenological approach. Introducing the geaetar parameter

dk)= S Y Aullk (243)
U=XY,Zi=XYy

we find the following second order term in the Ginzburg-Landieee energy in the
absence of spin-orbit coupling

R =a/ (T -To)tr(ATA) (244)

i.e. any spin-triplet state has the saiae Eventually, the fourth order terms determine
the combinations of spin and orbital components in orderdgimize the condensation
energy. The feedback effects modify the fourth order tef®8s 99]. Spin-orbit coupling
for a tetragonal material can be cast into following potrbr the Cooper pairs

. oL Sdj = —igj d

V=aL -S+alL,S with (245)

Likj =i&jik

(& - total antisymmetric tensor). From this we derive the fallog second order term:

(AR VAR ges = Fo=—0a S {ALAY—ALAL}  (246)
v

with a = a; + ay. These additional terms split tig.

To(a) = To(0) — 2 (1% - 1) . (247)



The T, depends on the total angular momentiyand ona. The sign ofa determines
whether the states with, = +2 or J, = 0 have the highesk.. Annoyingly the chiral
p-wave state cannot be stabilized in this way [100, 95, 10]L, 96

On the microscopic level we can introduce spin-orbit cauplon the Ru-ion acting
only within the 4-tyg-orbitals:

m,n,| K,s¢g

This added to the tight-binding Hamiltonian (239,240) k#al a modified band struc-
ture. Examining this Hamiltonian we find that starting oatfrthe independent orbitals
(dyz, dzx, dyy) We can obtain in lowest order perturbation in the spintocbupling and
the interorbital hybridization that the degeneracy istliftoy a spin dependent Cooper
pair scattering between the orbitals andd,x with the matrix element proportional to

Mt (k2 { da (k) x d2(K)}) g (249)

whered; and d are the gap functions associated with the orlui{alandd,y, respec-

tively. Obviously thed-vectors have to lie in the-y-plane in order to reach a finite
matrix element. It is easy to verify that the possible statabilized are characterized by
J;=0o0r+2 depending on the sign af. This is in agreement with the phenomenological
analysis above [101].

In order to stabilize the chirgl-wave state an additional indirect spin anisotropy has
to enter via the pairing interaction [102, 104, 95, 101].sThieans that interactions
involving spin densities have to play a certain role in th&ipg mechanism in order
to pin the orientation of thel-vector additionally. The spin fluctuation mechanism, for
example, involves the anisotropies of the dynamical spstaptibility resulting from
spin-orbit coupling in the multi-band systems (248). Traistsusceptibility shows very
clear properties in this respect:

Xz2(4) < X+-(g) for g—0

Xz2(4) < x+-(d) for g= Qic

where Qic ~ (11/3,1/3,0) is the wave vector of the (dominant) incommensurate spin
correlation [104, 105]. The small-q contribution is inpéapolarized and the incom-
mensurate fluctuations areaxis polarized [106]. The former favors, of course, inglan
equal-spin pairing for the spin triplet channel, since thrak-q scattering is favorable
for odd-parity pairing[102]. The-axis polarization on the other hand, is essential for
certain spin fluctuation based mechanisms combining thetesicy aroundQ;c and
special nesting feartures of the Fermi surface to obtainad@ane equal-spin pairing
state [91, 93]. While this aspect suggests that spin fluctosiare involved in the pairing
mechanism, it is not clear whether they are necessarilydherthnt part. In addition the
view on the spin dynamics alone neglects contributions fvenex corrections (renor-
malized coupling matrx elements) which are possibily intgotfor the selection of the
pairing state as well [90, 95].

(250)



We have two competing trends due to spin-orbit coupling.hd &-B-bands are
dominating the superconductivity, then likely the statédwd L 2 will be stabilized. On
the other hand, a dominatingband would entirely be determined by the contributions
of the anisotropic spin fluctuations stabilizing a statehwdt || Z corresponding to the
chiral p-wave phase. Therefore, yaband dominating the superconducting instability
while the a-B-bands are only passively involved, provides good conudiétito favor
the chiral p-wave state over the others [103, 95]. This ideas of the damiyp-band
receives strong support from the analysis of various thdgmamic measurements such
as the specific heat [87, 107], the London penetration d4j, [L09] etc. These results
suggest that ther-B-bands only contribute at rather low temperature noticablthe
superconductivity. This aspect makes the search for gamtapies, even with nodal
features, very challenging [107].

The fact that there are obviously two trends to lift the degaay among the different
spin triplet states hints that the energy scales involvederend are rather small despite
the rather strong spin orbit couplind (~ 1000K). There are several renormalizing
steps which reduce finally the magnitude of effect on the @oqgair energy. For
example the matrix element (249) is reduced through thetlfettcontributions to the
k average come from the region at the Fermi level where the twa$ cross. Also the
contribution of the anisotropy of the spin susceptibilignoonly result in a fraction of
Te. Consequently the anisotropy pinning of tHevector is likely weak. Indeed recent
Knight shift measurement for fields along th@xis suggest that for fields of several
hundreds of Oe the may have flipped into basal plane [110].

The inhomogeneous 3-Kelvin phase

Finally we would like to briefly review a quite unexpected fimglin SLRUO,. Inves-
tigating Ru-SsRuQy eutectic samples it was found that an inhomogeneous superco
ducting phase appears at higher temperature than the hodkcanductivity, roughly
aroundT* ~ 3K. This inhomogeneous phase was then called "3K-phasdavwBe *
superconductivity nucleates on islands which eventualiygogether to form the uni-
form bulk phase as the temperature reaches 1.5K. The signature of the phase is the
gradual drop of the resistance fiy< T < T*[111]. The Ru-SfRuOy eutectic consists
of manyum-size Ru-metal inclusions in the otherwise purgR&10,. The experimental
evidence points towards the nucleation of supercondtgtithe interface between Ru
and SpRuQy in a way that in a tiny layer the conditions for Cooper pairisignproved
[112]. The nucleation of such a filamentary form of supercmtidity has been con-
firmed by measurments of the upper critical field. For filaragnsuperconductors the
temperature dependence of the upper critical field has amnexyia < 1 in

Heo(T) O (T*=T)7 (251)

wherea has been fitted to the value 0.7. This means a clear deviabanthe standard
bulk Hez which has a linear dependence [113, 114].

A fascinating aspect of this eutectic system is that theeated order parameter has
a p-wave component whose lobes lie parallel to the interfabés §orresponds to time



reversal symmetry conserving phase, so that the bulk transs not merely a perco-
lation transition as in inhomogeneous conventional sup®tactors. This transition is
time reversal symmetry breaking in order to arrive at theatlp-wave phase. The study
of the structure of the inhomogeneous phase shows thatahgition to the bulk phase
may be even more complex. The inhomogeneous phase viewedeawark of super-
conducting islands weakly coupled among each other, wisichtiinsically frustrated
due to the internal phase structure. Thus, the evolutiohe&tiperconducting phase as
the temperature is lowered could lead through regimes wspetaneous supercurrents
are flowing in the frustrated network, rather similar to thesfrated loops discussed in
the context of phase sensitive test fbwave superconductivity [112]. For such a phase
there is so far only indirect evidence by the observation ti critical currents in the
3-K phase are not invariant under the operation- —J [115]. This indicates that in
the complex network of superconducting islands the timensal symmetry has been
broken.

It is a lucky coincidence that SRuQ, provides us with this highly complex inhomo-
geneous phase besides much other exciting physics of amsrtional superconduc-
tor. While a great deal of the properties of this supercotafutas been understood by
now there are still many questions. In particular, the pgirmechanism and its connec-
tion to the magnetic properties have not been put into apanesit form. SIRuQ, will
in any case serve in future as an exemplary system for disguesconventional su-
perconductivity as many of the generic non-trivial aspactsrealized here. As a Fermi
gquid phase it constitutes also the electronic analog efrttost intriguing superfluid,

He.

CONCLUSION

In this lecture we have covered a few of the essential pariesoribe and understand
unconventional superconductivity. This field is quicklydmping due to impressive
progress in the production of high-quality materials dgmecent years. High quality
is mandatory to find unconventional superconductivitycsianisotropic Cooper pairs
are easily destroyed by scattering at defects in the samjhesng the unconventional
superconductors we do not only find those with the higigbtt many with fascinating
and puzzling properties making them despite most Tgsva most attractive subject of
research. Many of the new superconductors require from @xteend our views and
ideas of superconductivity.

Finally I would like to recommend for further reading severeviews and books
which go in many parts much deeper than it was possible inl¢lsisire. Among the
books to recommend are V.P. Mineev and K.V. Samokhitrpduction to Unconven-
tional SuperconductivityGordon and Breach, Science Publisher, 1999), K.H. Benne-
mann and J.B. Kettersoiihe Physics of Superconductors, Vol. | (Springer, 2003).
A review on recent developments for the heavy Fermion sapehactor UP$, not men-
tioned in the lecture, is R. Joynt and L. Taillefer (Rev. MBtiys. 74, 235 (2002)).
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