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Building blocks of cells — 4 types of macromolecules made of simple
repeat units:

proteins

DNA

Polysaccharides

lipids

Figure 1.1 Physical Biology of the Cell (© Garland Science 2009)



Distribution of macromolecules in E. coli bacterium

Substance % of total dry weight Number of molecules

Macromolecule

Protein 55.0 2.4 x 109
RNA 20.4
23S RNA 10.6 19,000
16S RNA 5.5 19,000
5S RNA 0.4 19,000
Transfer RNA (4S) 2.9 200,000
Messenger RNA 0.8 1,400
Phospholipid 9.1 22 x 106
Lipopolysaccharide 3.4 1.2 x 106
DNA 3.1 2
Murein 2.5 1
Glycogen 2.5 4,360
Total macromolecules 96.1

Small molecules

Metabolites, building blocks, etc. 2.9
Inorganic ions 1.0
Total small molecules 3.9

Table 2.1 Physical Biology of the Cell (© Garland Science 2009)



Language of DNA and proteins:
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Figure 1.2 Physical Biology of the Cell (© Garland Science 2009)



Nucleotides:
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Figure 1.3a Physical Biology of the Cell (© Garland Science 2009)



Chemical structure of DNA

Conclusions at a glance:
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Figure 1.3b Physical Biology of the Cell (© Garland Science 2009)

1. Each strand has a direction (3’ to 5”)
2. GC bp more stable than AT bp — 3 h-bonds instead of 2!

3. Bases turn inwards — how do proteins recognize sequence?



Standard B form of DNA

0.34 nm
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The grooves allow
access to proteins
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Figure 1.3c Physical Biology of the Cell (© Garland Science 2009)



Rosetta stone - translating bp code to aa sequence
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Figure 1.4 Physical Biology of the Cell (© Garland Science 2009)



Models of DNA — what 1s the question?

5' ..TCAAGTCCGAT.. 3'
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Figure 1.5 Physical Biology of the Cell (© Garland Science 2009)



Models of proteins:
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Figure 1.6 Physical Biology of the Cell (© Garland Science 2009)



Models of membranes
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Figure 1.7 Physical Biology of the Cell (© Garland Science 2009)



Models of Bacteria
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Figure 1.8 Physical Biology of the Cell (© Garland Science 2009)



Pictures are nice - but quantitative data requires quantitative models!

The toolbox of physics and chemistry:

Simple tools (we understand them well):

* Harmonic oscillator

* Ideal gas

* Two level systems (Ising model)

* Diffusion and random walks

* Polymer physics

 DH and PB models of charges in solution
* Elasticity of rods and plates

* Low Reynolds number hydrodynamics

* Rate equations

* Newton’s equations (MD simulations)



Complex tools (we do not understand them well enough):

* Non-linear dynamics (attractors)

* Reaction-diffusion equations

* Many body systems of complex elements
* Quantum chemustry of large molecules

* Topology



Example — simple applications of harmonic oscillator:

beam bending \___\/
(e.g., AFM cantilever)

cell membrane fluctuating

< \\
bead pulled to center )
of an optical trap

molecules in an
energy landscape

DNA polymer wriggling
in solution

flagellum beating on
a swimming sperm

genetic network changing
expression levels over time

Figure 1.12b Physical Biology of the Cell (© Garland Science 2009)



Choice of model requires knowing the order of magnitude of some
characteristic numbers!

Examples:

1. Is inertia important for bacterial propulsion?
Estimate the Reynolds number of E. coli’s motion in water
Size: L=1um, velocity: V=10um/s, kinematic viscosity: v=0.01cm? /s

V-L

v

Re= =10

Inertia 1s 1rrelevant — velocity 1s proportional to the force
and responds instantaneously to it!
(Aristotle beats Newton for bacteria)



2. Confinement of DNA:

Estimate the radius of gyration of the lambda phage DNA:

Kuhn segment length of DNA: a=100nm;
Length of DNA: L=5-10*bp - 0.3nm =1.5-10*nm

DNA radius of gyration in solution
R=(a‘L/6)">=125 nm

Radius of capsid: 27nm

. 125°
Confinement ratio: 3

100 fold confinement (by volume) —
DNA will rapidly spread when capsid is
removed




What 1s the volume fraction occupied by DNA?

Volume per bp of DNA =Inm’

_ _ 1:Nbp
Packing ratio: vy, p4.= W5
3

Confining radii: 1, 4,=270m;
r =2.5um;

+0.25um;
=5um

nuc]em

sperm head Chucleus

genome | 5x10%bp | 5x10%bp | 10° bp | 10° bp
& | 0.6 | 0. | 002 | 0.002

Virus bacteria
( lambda phage)

Figure 10.13 Physical Biology of the Cell (© Garland Science 2009) Sperm Cell SomatiC Cell



How 1s the highly confined state of DNA maintained?

Viruses: crystal-like density and arrangement

* need motors for packing

* No proteins inside to balance electrostatic repulsion —
Wigner crystal —type stabilization by walls

(R)

capsid

hexagonally- — ) ,_:_
ordered —
DNA

portal complex

Figure 10.15 Physical Biology of the Cell (© Garland Science 2009)



Bacteria: single DNA 1s packed —without confining walls-
in < 10% of bacterial volume — need attractions!

1. DNA 1s packaged by about a dozen of nucleoid-associated
proteins that bend and twist it

HU, high concentration

\ H-NS

P
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2. Topology: bacterial DNA 1is circular —
conserved linking number Lk = # of turns of double helix

Native linking number of DNA:

- lengthof DNA _ N,
Lko - — -

helix repeat length (3.4nm) 10.4

Topology-changing enzymes (gyrases, topoisomerases) can cut one
DNA strand, overwind (Lk > Lk,) or unwind (Lk < Lk,) 1t, and glue it

together again.

Bacterial DNA 1s typically underwound
Lk -Lk,
Ik, 0.06

(this destabilizes the double helix — promotes
recognition and reactivity of exposed bases?)



Linking number can be decomposed into twist and writhe:
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Plasmids form right-handed (-) supercoils
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Eukaryotic (human) cells: 46 DNA molecules inside nucleus

| Fig.83 |

_ 3 - .
Chromatin vs. Chromosomes ;. 3e

LM

Chromosomes

© 2010 Pearson Education, Inc

Chromosomes are segregated during mitosis— what about interphase chromatin?



Spaghetti soup “model” of chromatin?

Problem — numerous inter-chain entanglements for N > Ne (Ne=200)
-like a polymer melt!

Even a single DNA molecule confined in a nucleus (R5/R >10)

nucleus
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Fig. 2. Trivial knot probabilities for compact conformations of size 4 x 4 ¥ 4 to 14 x 14 %
14. Inset shows the probabilities of the non-trivial knots 31 (trefoil), 4; (figure-eight), 5;
(star), 5a.

Lua et al, 2004



Solution I: entanglements and knots can be removed by topo 11
Sikorav and Janninck, C. R. Acad. Sci. Paris t. 316, serie II, p. 751, 1993

Solution II: DNA molecules are organized in crumpled globules
and Segr egated 1n Space Grosberg et al, Europhys. Lett. 23, 373, 1993

Crumpled (unknotted) globule: d~=3
Equilibrium (knotted) globule: d=2 "okl

Cross-section view

HiC experiments agree with crumpled/fractal globule:
R(s)=consts!’? i et

Lieberman et al, Science 326, 289 (2009)



Chromatin territories:

Figure 8.8 Physical Biology of the Cell (© Garland Science 2009)

Segregation vs interpenetration?
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1. Structural attachments (e.g. nuclear lamina, nucleoli)
2. Intrachromosomal contacts maintained by tethering

3. Interchromatin domain (ICD)

4. Intrachromosomal channel

5. Chromatin loop extends out of its territory into the ICD
6. Rare interchromosomal interactions

B. Interchromosomal network model
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1. Structural attachments (e.g. nuclear lamina, nucleoli
2. Intrachromosomal contacts maintained by tethering
3. Intrachromosomal mixing by constrained diffusion
4. Interchromosomal contacts maintained by tethering
5. Interchromosomal mixing by constrained diffusion
6. Chromatin loop extends deeper into another territory



Small scale organization of chromatin
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Figure 8.7 Physical Biology of the Cell (© Garland Science 2009)

Nucleosome chain— 147bp DNA wrapped around histone octamer
with 50 bp linker

Number of nucleosomes in genome = m =107

Histone octamer: cylinder of r=3.5nm and h=6nm

Volume fraction of nucleosomes in nucleus:

Very dilute!
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Figure 2.1 Physical Biology of the Cell (© Garland Science 2009)
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Figure 2.4a Physical Biology of the Cell (© Garland Science 200
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Figure 2.4b Physical Biology of the Cell (© Garland Science 2009)
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Figure 2.5b Physical Biology of the Cell (© Garland Science 2009)
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Figure 2.5¢ Physical Biology of the Cell (© Garland Science 2009)






cryo-electron microscopy




image reconstruction
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Figure 2.7 (part 2) Physical Biology of the Cell (© Garland Science 2009)
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Figure 2.9 Physical Biology of the Cell (© Garland Science 2009)
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Figure 2.11 Physical Biology of the Cell (© Garland Science 2009)
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Figure 2.12 Physical Biology of the Cell (© Garland Science 2009)
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Figure 2.12c Physical Biology of the Cell (© Garland Science 2009)
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Figure 2.14 Physical Biology of the Cell (© Garland Science 2009)
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Figure 2.15b Physical Biology of the Cell (© Garland Science 2009)
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Figure 2.20 Physical Biology of the Cell (© Garland Science 2009)
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Figure 2.29 Physical Biology of the Cell (© Garland Science 2009)
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Figure 2.32 Physical Biology of the Cell (© Garland Science 2009)
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Figure 2.34 Physical Biology of the Cell (© Garland Science 2009)
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Figure 2.36 Physical Biology of the Cell (© Garland Science 2009)
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Table 1.1 Rules of thumb for
biological estimates

E. coli

Yeast

Organelles

Water

DNA

Amino acids
and proteins

Lipid bilayers

Quantity of interest

Cell volume

Cell mass

Cell cycle time
Cell surface area
Genome length
Swimming speed

Volume of cell
Mass of cell
Diameter of cell
Cell cycle time

Genome length

Diameter of nucleus
Length of mitochondrion
Diameter of transport vesicles

Volume of molecule
Density of water
Viscosity of water

Hydrophobic embedding energy

Length per base pair
Volume per base pair
Charge density
Persistence length

Radius of “average” protein
Volume of “average” protein
Mass of “average” amino acid
Mass of “average” protein

Protein concentration in cytoplasm
Characteristic force of protein motor
Characteristic speed of protein motor
Diffusion constant of “average” protein

Thickness of lipid bilayer
Area per molecule

Mass of lipid molecule

Table 1.1 Physical Biology of the Cell (© Garland Science 2009)

Symbol

VE. coli
ME_ coli
tE. coli
AE. coli'
Ni.pcoh
VE. coli

Vyeast
Myeast
d yeast
tyeast
szast
Anucleus
/mito

d vesicle

VHZ (0]
p
N

zEhydr

lbp
Vip
ADNA
p

Fprotein
Vprotein
Maa
Mprotein
Cprotein
Fmotor
Vmotor

Dprotein
d
Alipid

Miipid

Rule of thumb

=] um3
~1pg
~3000s

~6 um?

~5 x 10® bp
~20 um/s

~60 pm?3
~60 pg
~5pum
~200 min
~107 bp

~5um
~2 um
~50nm

~10~2 nm3

1 g/cm3

~| centipoise
(10~2 g/(cms))

25 cal/(mol A2)

~1/3 nm
~1 nm3
2e/0.34nm
50nm

~2nm
~25nm3
~100Da
230,000 Da
~300 mg/mL
~5pN
~200nm/s
~100pum2/s

~5nm
~ 1 pnm?
2

~800Da



