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— Lecture 1: What is entanglement entropy?

— Lecture 1: What we know about entanglement in many-body quantum
systems—using entanglement as a computational tool to determine prop-
erties of a given system

— Lecture 2: Computing entanglement

— Lecture 2: Relationship between entanglement and computational com-
plexity

1 What is Entanglement Entropy?

We will NOT discuss entanglement of mixed states....this is a mess and one
could spend many lectures on it! We will talk about pure states. Any pure
state that is not a product is entangled.

We write a state of a bipartite system as:

|ψ〉 =
∑
ij

ψij |i〉|j〉. (1)

Recall SVD from White’s lecture: can pick orthonormal basis |αL〉, |αR〉 for left
and right such that

|ψ〉 =
∑
α

λα|αL〉|αR〉. (2)

Rank λα in order so that λ1 ≥ λ2 ≥ ...

Given sequence of λα, we extract an entropy:

S = −
∑
α

λ2
α ln(λ2

α). (3)
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Express this through reduced density matrix:

ρL =
∑
α

λ2
α|αL〉〈αL|. (4)

S(ρ) = −Tr(ρ ln(ρ)). (5)

This is called the von Neumann entropy.

More generally define Renyi entropies:

Sα(ρ) =
1

1 − α
Tr(ρα). (6)

Some comments:

— S1(ρ) = S (check by taking a limit as α → 1).

— Sorry about using α both as a subscript in λα and in Sα. This is the
standard notation (so you just have to get used to it) and it is unfortunate
that α is re-used. The two different alphas means very different things.

— The various Renyi entropies are ways to take the sequence of numbers λα

and extract useful information. Sα is more sensitive to the largest Schmidt
coefficients for α > 1 and more sensitive to the small ones (the tail of the
distribution) for α < 1.

1.1 Some useful inequalities

Monotonicity If α > β then Sα ≤ Sβ . This implies that Sα is bounded by the
log of the number of states (since S0 is just the log of the rank of the density
matrix).

Subadditivity Let A and B be subsystems of a large system. Then:

S(ρAB) ≤ S(ρA) + S(ρB). (7)

Strong Subadditivity Let A,B,C be subsystems of a large system. Then:

S(ρAB) + S(ρBC) − S(ρB) − S(ρABC) ≥ 0. (8)

Note: the last two only hold for the von Neumann entropy (S1). Also, we will
use strong subadditivity when talking about topological entropy later.
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2 Entanglement in Quantum Many-Body Sys-
tems

2.1 Toy Model in Valence Bond State

Consider a “valence bond solid state”. Ovals denote spins in a singlet.

Region A in dashed line. Entropy is log(2) times number of bonds cut.

H =
∑

<i,j>

�Si · �Sj (9)

Results: entropy proportional to area. This is called an “area law” and is
prototypical behavior for a gapped system. Area law in 1D means entropy is
system size independent.

2.2 Free Systems in 1d

Define 1-particle density matrix:

ρij = 〈ψ†
i ψj〉. (10)
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Let pα denote the eigenvalues of reduced ρij on region A. Entropy of many-body
state:

S(ρA) = −
∑
α

(
log(pα)pα + log(1 − pα)(1 − pα)). (11)

Easy to compute numerically. We find that for a free fermi chain,

H =
∑

i

ψ†
i ψi+1 + h.c., (12)

that S(ρA) scales logarithmically. If we take chain of length L, let A denote half
the chain, then we get

SOBC(ρA) = (1/6) log(L) (13)

SPBC(ρA) = (1/3) log(L) (14)

for open and periodic boundary conditions respectively.

2.3 Heuristic Arguments

Heuristic argument for the log by counting modes.

A B

A B

In 1d, we get
1 + 1 + 1 + ... ∼ log(L) (15)

In 2d, we get
L + L/2 + L/4 + ... ∼ L (16)
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2.4 Conformal Field Theory

Consider two copies of the free fermion system (spin-up and down):

H =
∑

i

∑
σ=↑,↓

ψ†
i,σψi+1,σ + h.c. (17)

Entropy is doubled compared to previous result:

SOBC(ρA) = (2/6) log(L) (18)

In general, n copies give an entropy n times as large.

We write
SOBC(ρA) =

c

6
log(L), (19)

SPBC(ρA) =
c

6
log(L), (20)

where c is called the “central charge”. It measures number of gapless modes.

c = n for n free fermions (or for a fermion ladder system with n different ky

values).

Interestingly, there exist nontrivial systems with fractional central charge. For
example, the Ising model has c = 1/2.

For Renyi entropies we find

SOBC =
c

12
(1 +

1
α

) log(L). (21)

Perturbed CFT: open a gap, entropy ∼ log(ξ), where ξ is the correlation length.

2.5 Free Fermions in D > 1

Free fermions for D > 1 gives S ∼ L log(L) if they have a fermi surface and
S ∼ L if they are gapped or have a Dirac cone.

You can see the S ∼ L log(L) behavior by considering a ladder as a model 2d
system. Note that this violates an area law. So, some gapless systems in 2d
have an area law (recall heuristic argument) and some do not.
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2.6 Subleading corrections and topological entanglement
entropy

For a gapped system in 2d, there can be additive corrections to the entropy
depending on the number of corners and on the topology of the region A:

S = const × L − c1 × (number of corners) − c2 × (number of surfaces). (22)

The corner term may depend on the angle of the corner, but is the same for a
90 degree or 270 degree corner.

The second constant is called the topological entanglement entropy and one
typically writes

c2 = log(D). (23)

It can be measured by considering a sum and difference of entropies.

A

B B

C

Compute:
Stopo = SAB + SBC − SABC − SB ≥ 0. (24)

One can check that the area terms (in L) cancel as do the corner terms. The
result is 2c2.

Note, we use strong subadditivity to show that c2 is positive. We can similarly
show that c1 is positive.
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3 Computing Entanglement

Exact Diagonalization: Compute the wavefunction, then compute the reduced
density matrix ρA on A, then diagonalize ρA and get entropy from its eigenval-
ues. Note: always choose A to be the smaller subsystem and use the fact that
S(ρA) = S(ρB) in a pure state or else the memory costs can become too much.

DMRG: the DMRG wavefunction truncates the smallest Schmidt cooefficients.
So, it can accurately compute Sα for α which is not too small. For example, it
will get S0 (the log of the rank) completely wrong.

3.1 The Replica Trick

Compute Renyi entropies Sα for integer α = 2, 3, ... by computing Tr(ρα
A). This

can be done in Field Theory or in QMC.

We can consider modified boundary conditions in imaginary time (periodic with
period β for sites in B and with period αβ for sites in A) to compute this.

Also, we can study expectation value of a Swap operator (for α = 2) or a
Permute operator (for α ≥ 3). Consider two copies of the systme. Let SwapA

swap the state in region A. Then,

Tr(ρ2
A) = 〈ψ0 ⊗ ψ0|SwapA|ψ0 ⊗ ψ0〉. (25)

4 Entanglement And Computational Complex-
ity

4.1 Truncation Error

Let us look at error in truncating a general bipartite state to a state of Schmidt
rank k. The closest state we can find is

Ψk =
k∑

α=1

λα|αL〉|αR〉. (26)
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The norm-squared truncation error

|Ψ − Ψk|2 =
∑

α≥k+1

|λ2
α| ≡ ε(k). (27)

If we know something about the Renyi entropy we can estimate the truncation
error. We have for any 0 ≤ α ≤ 1

log(ε(k)) ≤ 1 − α

α

(
Sα(ρ) − log(

k

1 − α
)
)
. (28)

Proof: consider distribution that maximizes error for given entropy (this is
obtained by picking a certain λ2

1, then picking λ2 = λ3 = ...λn for some n and
choosing constants λ1, n that maximize the error).

4.2 Matrix Product State Truncation Error

In fact, we can prove an error in approximating a state with given ε(k) across
every cut by a matrix product state. The error is at most twice the sum of ε(D)
across each cut. Proof: apply projectors in sequence.

4.3 Complexity

DMRG: complexity scales polynomially with bond dimension. Bond dimension
needs to scale exponentially with entropy. Entropy scales logarithmically with
system size for a system descibed by conformal field theory. So: such gapless
systems can be simulated with polynomial cost (in system size). But, see next
section for more pessimistic cases!

4.4 Rigourous Results

Rigourous results on possible entanglement:

In 1d, a gap does imply an area law (not yet proven in 2d). This implies that
gapped systems in 1d are in “NP” (see Nayak’s lectures on complexity classes)
since there is an efficient representation of the ground state. However, finding
that representation may be very hard. It has been proven also that there are
Hamiltonians with exact matrix product states ground states of polynomial
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bond dimension for which finding the MPS is NP-hard (however, it has not yet
been shown for Hamiltonians with a gap that finding the MPS can be NP-hard).

Entropy can diverge more rapidly than the conformal field theory prediction of
log(1/(gap)) however.

There exist so-called “QMA-complete” Hamiltonians such that determining
their ground state energy to an accuracy which is only polynomially small is a
very hard problem. (This is a quantum analogue of NP, and is hard even for a
quantum computer). This holds even in one dimension.
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5 Some Interesting Examples From the Litera-
ture

5.1 Measurement of Central Charge of a System

A. Feiguin et. al., Phys. Rev. Lett. 98, 160409 (2007).

The authors were studying a one dimensional model consisting of interacting
anyons. They wished to identify the effective field theory of the model and
compare it so numerical results. Variety of techniques used, including exact
diagonalization (to compute spectra) and DMRG. DMRG used to compute en-
tanglement entropy of half of the system with the rest, and fit to the forms

SPBC =
c

3
c log(L), (29)

SOBC =
c

6
c log(L), (30)

The fits gave c = .701, matching the field theory c = 7/10.
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More recently, Sheng, Motrunich, Fisher were studying a ladder system, again
facing the same problem. Various values of c obtained at different parameter
values. Note oscillation (due to presence of VBS order in VBS-3 case).
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In this case, fit is done by considering entropy of subsystem of size x in length
L = 2 chain, fitting to form

S(x,L) =
c

3
log(

L

π
sin(

xπ

L
)) + const. (31)
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5.2 Determining a Topological Phase Transition

The Kitaev toric code is an interesting model with a nontrivial topological en-
tanglement entropy. Hamma et. al. wanted to study the stability of the model
to disorder and to perturbation. They considered a random model with a pa-
rameter τ that drove from the “trivial” phase to the “topologically ordered”
phase using exact diagonalization. They detected the existence of a phase tran-
sition with other methods (such as energy as a function of τ), but then confirmed
the topological character of the phase using topological entanglment entropy:
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However, this was a very small system (32 sites) so the regions A,B,C were not
very big:
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5.3 Area Laws in Two Dimensions

Kallin, MBH, Gonzalez, and Melko, wanted to study the entanglement entropy
in a 2d system and check the area law prediction from heuristic calculation. See
below. Ladder calculations of SvN are from DMRG. Free fermi clearly shows
area law in contrast.

Geometry used was an N -by-4N system, and entropy of an N -by-2N subsystem
was computed (or, in some plots, we consider and N -by-100 subsystem). This
way, region A had an even number of spins, reducing even-odd oscillations.
Entropy was divided by N to check the area law.
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