Swimming in Sand, part 3

Daniel I. Goldman School of Physics Georgia Institute of Technology Boulder Summer School on Hydrodynamics July 25-27

Lectures on the mechanics of interaction with granular media including biological & physics experiments, numerical, theoretical and physical robot models

Topics in the lectures

(revised)

- General principles in terrestrial locomotion
- Intro to granular media
- Drag, lift and flow fields during localized intrusion in granular media
- Modeling approaches: DEM & RFT
- Sandfish biological experiments
- Sandfish modeling: robot
- Sandfish modeling: DEM
- Biological tests of model predictions
- RFT modeling of sand-swimming

Swimming in Sand

Papers:

Maladen et al, Science, 2009 Maladen et al, Robotics: Science & Systems conference 2010 (Best paper award) Maladen et al, J. Royal Society Interface, 2011 Maladen et al, International Journal of Robotic Research, 2011 Maladen et al, ICRA, 2011

Pdfs and links to movies here:

http://crablab.gatech.edu/pages/publications/index.htm

The sandfish lizard

Sandfish (*Scincus scincus*)

•Native to Sahara desert

•Adaptations for living in sand: countersunk jaw, fringe toes, smooth scales, flattened sidewalls

•One of ~10 species classified *subarenaceous*: "swims" within sand

Swimming without use of limbs

1 mm

Nematode *(C. elegans*) in fluid Hang Lu, Georgia Tech

1 cm

Kinematics during steady swimming

Single period sinusoidal wave, traveling head to tail

n=11 animals mass=16.2 ± 4 g

Swimming kinematics

y

Swimming speed vs frequency & wave efficiency

Swimming by the sandfish inspired robot

10 cm Robot on the surface

Submerge robot to a depth of 4 cm in closely packed bed

Robot sub-surface Real time

Integrating WM with DEM simulation

Particles above the robot rendered transparent

10 cm

Box dimensions: 108cm x 40cm x 15cm Number of particles: 3e5 Particle size : 0.6cm

Sandfish scale simulation

Maladen, Ding, Umbanhowar, Goldman, J. Royal Soc. Interface, 2011

50 segment "sandfish" model

Motors controlled to generate sandfish's traveling sinusoidal wave *kinematics*.

$$\beta(i,t) = \tan^{-1} \left[\frac{2\pi A}{\lambda} \cos\left(\frac{2\pi}{l} x_{i+1} + 2\pi f t\right) \right]$$

$$\leftarrow \tan^{-1} \left[\frac{2\pi A}{5 \, \mathrm{gm}} \cos\left(\frac{2\pi}{Pp} x_i + 2\pi f t\right) \right]$$

~10⁵, 3 mm "glass" particles

Simulate granular medium: Discrete Element Method

(e.g, see book by Rappaport)

Specify particle-particle/particle-intruder interaction rule

Simulate granular medium: Discrete Element Method

(e.g, see book by Rappaport)

Specify particle-particle/particle-intruder interaction rule

Anesthetize animal, tilt platform until it slides down, obtain μ_{pb}

50:50 mix of 3.0,3.4 mm "glass spheres) Animal-particle friction = 0.27

Simulated sand-swimming

Trajectories of body markers

Speed vs frequency and η

Swimming in 3 mm glass particles, in experiment and simulation

Variation of amplitude-> optimal swimming in sand

Hypothesis: animal utilizes swimming kinematics which maximize escape into the sand \rightarrow a template!

Localized fluid

Redder particles \rightarrow higher speed

Resistive forces during swimming

Motor activation (torque) pattern

A/λ=0.2

Torque is frequency independent--> Frictional fluid

Minimum mechanical cost of transport

Power

At f=2.5 Hz, total power developed in the 15 gram swimmer is ~1 W.

Top is 5 cm below surface

1W/0.015 kg= 60 W/kg

Vertebrate muscle is capable of ~100 W/kg:

--Swoap et al, JEB, 1993 measured 154 W/kg at ~40 C in hind limb of desert iguana

--Carroll & Wainwright, Comp. Bio & Phys, 2006, max of 330 W/kg in epaxial musculature in a bass

so simulation is reasonable in this regard

Power generation and dissipation on the body

Top is 5 cm below surface

Internal actuation generates kinematics

Motor driven

Muscle driven

Can we use the model to predict how the sandfish "turns on" its muscles to move its body?

Trunk musculature in a lizard

Muscle activity recordings during subsuface swimming

Musculature

Steinmetz, Goldman, In prep, 2011

Implantation sites

Apparatus

Swimming Muscle Activation (EMG)

Steinmetz, Goldman, In prep, 2011

Slowed x10

Intensity=EMG burst area/EMG duration

Control: Intensity is recorded when animal is not moving

Speed independence

Steinmetz, Goldman, In prep, 2011

Biological support for frictional fluid picture

Numerical Simulation Predicts an Increase in Motor Torque with Depth

Intensity increases with depth

Activation timing of the wave

Slowed x5

1 cm

Emergent Activation Pattern with Simple Model

Timing is similar between experiment and simulation

Theory of sand-swimming

- **Goal**: gain analytic understanding using tools developed for small organisms swimming in fluids *Resistive Force Theory*
- Simplify: no taper, flat head (in simulation η=0.45 for flat head, η=0.57 for tapered head, difference of ~20%)

Resistive force modeling

$$\delta F_x = F_{\perp}(\psi) \sin \theta - F_{\parallel}(\psi) \cos \theta$$
$$\int_0^t (\frac{F_{\perp}(\psi)}{area} \sin \theta - \frac{F_{\parallel}(\psi)}{area} \cos \theta) \sqrt{1 + \tan^2 \theta} b dx + \overline{F}_{head} = 0$$

(after Gray and Hancock, 1954, Taylor 1952

 Assume square cross-section swimming at constant speed at fixed depth with waveform:

$$y = A\sin\frac{2\pi}{\lambda}(x + v_w t)$$
 $\tan \theta = \frac{dy}{dx} = \frac{2A\pi}{\lambda}\cos\frac{2\pi}{\lambda}(x + v_w t)$

$$v_y = \frac{dy}{dt} = \frac{2A\pi v_w}{\lambda} \cos \frac{2\pi}{\lambda} (x + v_w t) \qquad \psi = \tan^{-1} \left(\frac{v_y}{v_x} \right) - \theta.$$

- Non-inertial movement (net thrust=net drag)
- Head drag = flat plate (or for taper use 30% flat plate, Schiffer, 2001)
 - Insert force laws to solve for $\eta = v_x / v_w$ for given A, λ and obtain $v_x = \eta v_w = \eta \lambda f$

Resistive force modeling

(after Gray and Hancock, 1954)

In low Re fluids, for long narrow element

C_⊥: C_{||} ≈ 2:1

Granular resistive forces

Obtain empirical drag laws for F_{\perp} and F_{\parallel}

- Drag rod in simulation of 3 mm "glass" particles while varying φ
- Use simulation to resolve forces on all surfaces
- Average in space and time during steady state, divide by area to find surface stresses

Granular resistive forces

Empirical granular resistive force laws

$$F_{\perp} = C_S \sin \beta_0$$

$$F_{\parallel} = [C_F \cos \psi + C_L (1 - \sin \psi)]$$

$$\tan \beta_0 = \gamma \sin \psi$$

Independent of speed

Resistive forces in DEM and RFT

Square body, no taper, 3 mm particles

Resistive force modeling

• Assume square cross-section swimming at constant speed at fixed depth with waveform:

$$y = A\sin\frac{2\pi}{\lambda}(x + v_w t)$$
 $\tan \theta = \frac{dy}{dx} = \frac{2A\pi}{\lambda}\cos\frac{2\pi}{\lambda}(x + v_w t)$

$$v_y = \frac{dy}{dt} = \frac{2A\pi v_w}{\lambda} \cos \frac{2\pi}{\lambda} (x + v_w t) \qquad \psi = \tan^{-1} \left(\frac{v_y}{v_x} \right) - \theta.$$

- Non-inertial movement (net thrust=net drag)
- Head drag = flat plate (or for taper use 30% flat plate, Schiffer, 2001)

Insert force laws to solve for

$$\eta = v_x / v_w$$
 for given A, λ and
obtain $v_x = \eta v_w = \eta \lambda f$

RFT solution

Range=from 30% flat plate drag on head to flat plate head

Granular resistive forces

Empirical granular resistive force laws

$$F_{\perp} = C_S \sin \beta_0$$

$$F_{\parallel} = [C_F \cos \psi + C_L (1 - \sin \psi)]$$

$$\tan \beta_0 = \gamma \sin \psi$$

Independent of speed

Wave efficiencies of undulatory swimmers

(see Alexander, Vogel, Gray & Hancock, Lighthill, etc..)

Maladen, et. al (2009), Hu (2010), Jung(2010), Gray and Lissman (1964), Gray and Hancock (1955), Gillis (1996), Fish (1984)

RFT captures form of η vs A/ λ

Gray=Analytic solutions (head drag neglected)

Competition of effects leads to maximum

Body lengths/cycle=

RFT captures functional form & location of optimum

Sandfish simulation in loose packed 3 mm glass beads

RFT force approximation is good at intermediate A/ λ but not good instantaneously at small A/ λ

 $A/\lambda = 0.06$ $A/\lambda = 0.22$

Green=RFT (using steady state drag) Black=DEM (measured instantaneously)

Why thrust is over-estimated in RFT

Examine *transient* response in rod drag

10 cm long rod, 4 cm deep

Force buildup occurs over a characteristic length

Analytic approximations

Gray=Analytic solutions (head drag neglected)

Direction of motion of segments

Blue arrows are velocity of each element

$$\delta F_x = F_{\perp}(\psi) \sin \theta - F_{\parallel}(\psi) \cos \theta$$

1 2

3

$$\delta F_x = F_{\perp}(\psi) \sin \theta - F_{\parallel}(\psi) \cos \theta$$

Why is η independent of ϕ ?

Force laws for 0.3 mm particles

OR... Localized fluid achieves same state

Initial

Final

Initial low ¢ state

Initial high φ state

"wake" achieves similar φ

RFT over-estimates η

Hypothesis scale thrust (but not drag) by 50%

Summary

- Yielding terrestrial substrates---solid and fluid-like response to stress
 - many open locomotion questions
- Volume fraction qualitatively affects drag force: LP \rightarrow fluid-like, CP \rightarrow fracturing solid
- Granular lift forces are sensitive to shape dependent and can be approximated by summing plate elements
- Sandfish lizard swims within granular media ("frictional fluid") of different preparations using similar body undulation kinematics
 - Template for swimming in sand?
- DEM, robot and RFT models capture mechanics of sand-swimming:

− v_x vs f, $\eta \approx 0.5$, optimality condition A/ λ =0.2

- RFT systematically deviates from DEM model
 - Ding et al, in prep, will show that instantaneous force=average drag force is not a good approximation