
2.-TÉMmation
Goal * Systems that are far from eqm and

have emergent phenomena as some
control parameter is varied .

* Non - egm systems form patterns in
space and time .

* Egm systems can also form
patterns .
↳ Electrons in capmte superconductors.

↳ Spontaneously break translational
symmetry → charge order
" stripe " phases

.

* Non - egm fluid systems .
↳ sun spots
↳ Miso soup } convection .



Fundamental question .
NY Es Ea

€-7bn.

E > Ecl_n
System spontaneously breaks continuous translational
invariance → discrete translational invariance

.

Here : thermal convection : Rayleigh- Bernard
convection CRBC)

*Fluid heated from below in a gravitational
field

.

* When does a pattern form ? i. e.
the

phase diagram .



* Describe this pattern and its spatial
and temporal fluctuations and
correlations ?

* Amazingly : the outcome is a description
very close to

Landau and Ginzburg-
Landau theory ! Scaling, animality
and over the same eguahms that
we've seen in egm . stat . mech.

2. Formulate the model
.

Fluid is viscous

☒↑ᵗnon - zero coefficient
of thermal expansion z=o •

HOT Tt DT Te
cartoon picture .

Bottom : parcel of fluid = hot .

↓rise
←

density
tower

← expand
1
Fool → ʰd¥¥y → descend



Q/ Overall : how does the fluid self -organise
into rising and falling currents ?

A1
*

| Large-scale↑ circulation
.É⇒

cellular
sine

.

*

cnn.am

rolls

⇔. ⇔

cells
.

up



What state occurs depends on boundary
conditions 0 < DT ( OTC
-

uniform state stable
←heatmned from

in
my plane . bottom to top platebut may vary

in

simply by conduction .

2-
. Fluid stationary, but

a current of heat
in É - direction.

☐To < OT pattern forms .
QI How do we formulate this. ?

A/ Conservation laws and Symmetries
constitutive relations e.g. 9=9 IT , P)
eg . egn of state .

Conservation laws : mass
momentum

Energy balance .



Let's look at the density 1g=JC1-xlT=
☒ 9 (F) = g-
F is some

mfeÉatempake⊕
*

suchas the bottom plate .
* ✗ = coefficient of thermal expansion .
Q/ What facts compete with temperature -
induced buoyancy ?

A/*
Thermal conductivity , k . If K large,
then no hot spots

* Viscosity . stop fluid from rising .

massconservation.FI+ 91--0
1- = 9 I

Assume that variation in 9 small
,
so that

approximately the fluid is incompressible
I - K --0



Consouatmofmanentnmi

=-÷]/☒⑨=E]0
E-¥ .

↳ ¥ = ¥ + ↳ I

⇐nor awake •"""

q§IF = ¥ p ni .DE

So far : NewtonI
But we neglected * Gravitation

REF "¥n
- linear * Viscosity.

g(%+1_ - IP + 51*+2Ñu
Viscosity : paradises velocity gradients. So
we need a term that is built from derivatives



of 1 .

But must be rotationally covariant
and must be a vector . → lowestorder in

spatial gradientseffective coax - grained { paydescription of
system .

Linear in re → linear response
theory .

Next temperature field , obey the diffusion
equation . But we must remember
that the fluid is allowed to
move

.

f- (I , t ) is some property i

9¥ = ¥ + ᵈ±
. 8¥dt

= @ +
+ 4. 1) F

Now F = T CE , t ) .



Heat diffusion equation is

d-T +⇐ ◦ I)T = KITT ⊕
-

advection

couples motion of
fluid ≈ ,

to the

temperature T .

Strategy * Construct steady dates of
the equations and their

boundary conditions.
* Linear stability analysis .

↳ when do patterns first form?Landau

theory
1-≤To ← {

* Non - linear stability analysis
↳

"

Landau theory
"

↳ Description close to

onset of patterns.
" Phase
modes

" ← {* Behaviour well away from
Tata

onset of patterns



Steadyslate
DE --0

kd;÷ = 0 ⇒ Tl⇒ = To (E)
= Te - ¥0T
÷

Temp. at lower plate .

%-) = g- ( I - ✗ (Tok ) -I ))
Hydrostatic pressure :

|O=-dP→-%G)gJdz

→-
NextGen : * small perturbations about

this simple steady state .
* e.g. susceptibility .

Analogue of X > > O T > To M = 0

Xp < O T < To M=0



or V14 ) ✗V14)
redabilised

/ .¥÷:↓¥%
T >Tc ✗

+
< 0

✗ + > 0 t < Tc
Linear stability Linear instability
of 4=0 solution of 4=0

solution TCIT >

Tc-2://nstatih-tyoftheum-fonnstale.GE
* Uniform steady state that

conducts heat by diffusion
and no spatial patterns are

present .
* Perturbation : what happens ?

Small perturbation ⇒ linearise
the non - limo eshs of motion .



* In Landau theory : measure susceptibility
of the trivial 4=0 slate

.

Terminology
Time evolution of a small perturbation
grows → state about which we perturb
is hiwlye .

If the perturbation does notgrow , then we
say state is linearly stable -

t
state

may
be non- linearlyhigher orders

←[unstablein perturbation
theory .
A state that is linearly unstable : perturbation
will grow

until huge enough that
the linear perturbation theory is not
valid

.

Linear approx . breaks

down
. Higher order non - linear ties

can restart i dise the solution .



LEX ] = Er, 42 + ±
,

4

↳ ro so 4=0 unstable

Evolver to 4 = ±⇒"2
Retwntoanvech-on.T-T.CZ) + T

, Take eqm of motion
g. = go G) + 9

,
and expand to

p
= Po (t ) + P , } first order in perturbation.I = Q + Is

9
,

= - ✗ g- T,

I -◦ 4- ,
=D

% G) 2+1 , = - IP
,
+2T¥ , +5,9

,

/ZT,tW,ddT_=kTT⊕#
k=(u,v,#



Next : review the general formalism .

Suppose that we have a field 4 (Iit)

2- 4 ( xx ) =
N { 412,4}
"

"
some space -dependent
non - linear operator on
4

, 2×-4 ,
etc

.

steady state Xo (E) = 2+4--0
N {401×-1}--0

✗ = % (E) + 4
,
(Est)

2+4,1%+7 = N { % +4 CETI}
= N{to } + %-{%} * HAD

HÉ
+01*9



stability : Y
,
= A exp / ik .

>≤ tweet)
:

i.

dispersion
relation

satisfies : w (E) X ,
= LX

,
WCK)t

Growth rate of the perturbation a- e
w CK ) c- eigenvalue spectrum of tired

operator L .

N-numkerofscenarios.tk
I:Rlwc⇔
Any Fourier component will decrease in

amplitude → to (E) is lireoly stable .

I : Kwch) > 0k.dk/skzalRlw)
→ exponential

- -- -- o growth
growing made i9



4 will grow until the neglect of 014,2 ) is
no longer justified ,

and the pattern may form
predominantly around the fastest growing
mode

,
and be restabilised by non-linearity

TI.IR/wca-D#
Marginal mode with Cock) =0 ⇒

cannot neglect 0 ( ti) ⇒ non - liner stability .

@ in) band of unstable wavevectors

t.i.in#.iii~E--EcESEc
New threshold of instability ,

E ≥ E.

1k ,
- Kaka ko

Emergent state will have apattern whose

wavelength 7 = Hk .



A random initial condition will amplify
modes K → ko g where w ( ko) is Max

will be selected
.

Basic idea : simple ,
but execution comte

technical
.

Net : apply this formalism to connection
.

Multiple steps , goal is to write the

system of equations in terms of one
variable

.

stept.Egnah-mforw-I-K.deKi = +70h
,
+9 , 9-]

(2+-00) 1×1 ,
= - ✗ IT

,
× ?
I

v? P
,

= - ✗ g- T,
% ± 9-



Take another Ix !

(2- - v0) Ty ,
= ✗ 1) IT,

- GET,]÷
'

1×(1×4) = III. 1.) -%
,

9- = ( o , o ,
- g)

> (2- - v0 ')ñw,=✗g[%¥++É+¥)
= ✗g2I?⃝ ⊕

2,5=-2, + dj

:*: ::::::and so getan egn

(IIIT) Ti = -m ᵈ¥



µ-*☐)(2--Ñ)ñwgd¥zwI
* 6th order PDE for Wi !
* Rotationally covariant in X-Y plane .

slepI Eigenvalues
Method : separation of variables .

W
, CE ,
t) = f- (x , g) e°ᵗ

Insist that 2Iftx.gr#-afy-
Remember that the bani idea of operation
of variables is

(function of e) = ( function of × ,y)
=) Both LHS and RHS must

be constant



@ (D
'

-④-⑤ [KID'-☒ -☒ (D
'

-⑤W

⊕= ✗ gdj÷⑤W
D = ddz ⇒ we have an ODE for W .

The eigenvalues come from the boundary conditions.
Require perturbations vanish on boundaries .

U
,
= V

,
= W

,
= 2- = 0 2- =D

3¥ =2¥y =0 2- = 0 2- =D

⇒ 1%41=0 2--0 , 2- =D .

from Indi = 0
IT --0 at boundary !

@ (Dii)-w)(A-a)W - O
at 2-=D 2- =D

☐4W - (2K + Who)DʰW=0 at a-=0,z=d .



step3i-simph-fyboundwyconditi.nl
des: understand basic structure by making a

caricature with Mighty different boundary
conditions

.

W = 0

2W = 0

DYW = 0 } 2-= 0 2- =D
.

Sm : W ( t) = sin [%-) n -4,41 .

satify the b. c. 's and ④ as long as :

④+ Vai )(tka*)a* + ✗ g aʰ=O

af = a' + n¥
a-

Solve for w :

w=-↓±(v+k)a¥±0{ ±,lv+Ña*4+(ʳgÉTÉÉka
w ≥ 0 as we vary k=n¥ and a

,

which is the physical wavenumber .



For instability we need w > 0 ⇒ Freed the

+ sign in

front of
r .

For this to happen

✗§÷④ > at (a' + 1%1%3
↑
↑

The smallest value for DT to give instability
is when RHS has its minimum value

.

n = 1
.

What about a ? a = ac = ding
⇒ ✗ g

OF d
'

↳
> 271¥ = Re
-
Pure number = Ra = Rayleigh number.

Destabilise uniform state in multiple ways .



Increase 6T Decrease V

Tai? → d k
'lire

-
Increase LHS and eventually
came uniform state to
become destabilised

.

Note: Increasing ? or K stabilisers system .

g-
'

- "
"

- preventsprevent
hotspots

easy givingconvection
buoyancy .

flow

lnsuwimay:* Pattern form Ra exceeds a
threshold

-

Ra = 1708 expt .
this is not1::::Iturbulence * Depends on V

,
K
.

Prandtl
number Pr = V / K

.

Next what are the patterns we get ?What is the phase diagram ? - -

Are patterns stable ?



Simple erplaratrin for the Rc ~ dis behaviour
.

① We need the blob of ᵈyheat to not have the

temperature difference
0T not diffuse away

¥ For d

during the time to
of convecting the distance
d.

tdiffnsim = d) K where k - heat
diffusion
coefficientso Tdiffnñn ⇐ to for

convection to occur
.

① What is the time to ? If the blob moves

with a velocity v, then

to = % .

③ For the blob to more ata constant velocity V,
the forces on it must balance out

.

The buoyancy fore uploads is
FB = ✗Coffie of) ✗ DT ✗ g.

= ✗$ R) 0T g. ( R -_ radiusof
The drag force opposing buoyancy is

hotblob)
Stokes drag , i. e. proportional to velocity
Fs = 61T Rn v



Equating

FB = Fs

⇒ ✗ (gro) OT g =
61T Ryv

⇒ v = ✗go-9R ⊕
④ Calculate to . 6+2
Then to = 6ñnd_ . ⊕

✗ got g R2

⑤ Require to
⇐ Tdiffnsion

.

:;⇒ñ ⇐ ÷ ⊕

This yields
⑤ ⇐ ✗%¥rI=%%☐

⑥ The blob is essentially a structure whose dimensions
are R (d) .

So then we get OCD# K ✗8%,-
The explanation of the d

'

is really d R' with
R ~ d.



2.2.linearstab.li/yAnalgsi--TrasimTwfub-na
In the care of turbulent convection ,

the supercritical

instability of the laminar state is separated from
turbulence by a series of instabilities to

different types of pattern .

li)Pipefl a
→ I

Pressure gradient 9¥ < 0 centerline Uc

± = f-%) Uc I
1¥ = → 4¥

stability about this solution : stable up to Re--107

Belief that smooth pipes are braly stable .
2 Hall & Ozcakir : Roughness of

scale c- ⇒ Rice
-%

/ log c-1- %
C =0( 30)



Iii ) Plane ConeHe Flow - - - ---

-

Linearly stable ( Romanov 1973)←

→

but expt → turbulence Re > 350

ciiijplarepoisenillefth
←¥1zhPressure drivers flow.
⇒Linear instability : Rc = 5772 = Uch /u

→ discovered by Heisenberg!
BI : turbulence occurs at Rc ~ 1500

,
expt.

Conclusions * Finite amplitude instabilities .

Critical amplitude of disturbance
C-en

l /Re (Hof)
PRL 2003

* we need to systematically
study sub

- critical transitions !



Magilton * Neutral stability curve .
* Dimensional analysis

↓
Complete Similarity
Incomplete Similarity
Intermediate asymptotes of

1ˢᵗ & 2ⁿᵈ Kind .

* types of Patterns
* stability .

stability criterion was Rcw can
w n

unstable

✓ Ra-_ Ii Rac

::÷÷wave vector
in Guy)



Ne want to reduce the number of

parameters that we need to consider

for the phase diagram .

Boussinesqapproximation-gldttu.eu=
- Ip + gq + goin

¥ !

ignore
the temperature

temperature dependent

dependence .

Dimension full form of equations for Raleigh - Berard
convection in the Boussinesg approximation .

g- (0++11) 1 = - Ip +181
- g-gcl - act-TDE=

I - I = 0 incompressibility .

(2-+1.1)-1 = KT'T
-

advection : couples temperature and
velocity field .



4.Dimevionala-nays.rs -

Basic idea :* reduce the parameter space of a
problem .

* useful °o° it can allow us to
relate different versions of a
problem at different scales .

↳ example : airplane ,
car

,

helicopter design using
scale models and

scaled density working
fluids

.

* Sometimes people mistake dimensional

analysis as including looking at
limiting behaviour

.

EET : Dimensionless function can not depend
on dimensionfull quantities. It can

only depend on dimensionless quantities



É:_ Xix ,, - - - em a aaartity x

x = F (×, ki - - - k③

Identify dimensionless groups of variables made

up from combination of { Xi}

IT = x ,

"
x? ¥3 . . . aim XP

IT
,
= xp! ✗fix ,ñ . . . ✗mam
II = xiixki.fi . - - . } nequations .÷

DA ⇒ IT = f- (IT ,# its ,1Tn) n< M

Buckingham 's 1T theorem → how
many

dimensionless
( 1913) groups .

No unique way to
constructor choose the 1T¥

Second step is the one everyone
tries :

For some physical reason one of there

variables might be very small IT, K1



Tend to expect : n - l variables
.

IT = f- ( o ,EÉiTn) + OH ,)

/ im

#→ o
f- (17/1%-11) = f- (0,113 . . _)

Intermediate asymptotes of font kind , complete
similarity .

In
many problems,

this limit process doesn't

exist
.

E. g. f-Hiltz .
-%) =# gki.mn

Suppose ✗
,

>0 ⇒

11m

IT -so
f = 0

Suppose a
,
so ⇒

11in IT
,
→of = •

In asymptotic limit
IT , -10 f ~ IT,✗ ' g(IT, - - Itn)

Incomplete similarity or Intermediate asymptotes of2ⁿᵈkind



This clan of problems includes secondorder

phone transitions
, many problems in EM ,

mechanics
,
QM

,
_
_ _

_ .

Typically in there cars . the statement is that

IT ¥oÑ9(¥ii¥¥
✗
i Pi , P2 , Pg - - - Pu cannot be

determined by dimensional analysis
⇒ compute there exponents by urdestndirg
the problem at least in the asymptotic
limit

.

Ex : statistical mechanics

M It , H) = MEP § (¥)
t = ¥-1 Scaling law for magnetization

in terms of external field 14
and reduced temperature.



This functional form is observed only very close
to the critical point t → 0 1-1-70 .

Suggests a connection between critical

point phenomena and asymptotic analysis!
All of asymptote analysis - singular
perturbation theory ( boundary layer theory ,
WKB analysis .

matched asymptotic expansions
,

multiple scales analysis , reductive
perturbation theory) are unified by RG .
--

Ne application of DA to connection
.

-0 will denote the dimensionless formof 0 .

b-= EE e = DE

I = ¥ I T =
I. I
§g✗d3

p = 5T€I Veri#



Substitute into the differential equation .

Pr (2- I + I. II)= - IF +FI +TÉ

ZEF + E. IF = Ra ñz +72=1

?⃝ I = O

Ra = g9% crayfish#)
↳ driving
force

p
,

Elative stagepf< dissipative IepᵈTandi%
.

From now on
,
work in dimensionless variables

and drop the
-

.

5.Phasediagram.co#x-wcq) → neutral stability are
* What are some ofthe pattern

forming states ?



↑Re - -1--1--1#stable
q

stability avg.us we
É.ir )

Neutral stability curve :

R( we D; RH) = 0

Control
- -
-

-

-

-

-

-

-

R value Rn satisfies this
parameter

egn . n = neutralA- Ra
at fixed Pr .

For & ,
R) < Rn ( q) fluid is

linearly stable
.

Ro = smallest rate of control parameter
where instability occurs at some
critical ware number % .



Q/ If the spatially uniform state is unstable , what
does it eventually become one the non-linearties

have •stabilised the system ?

A/ Had to answer !
Next : write down some simple non-linear

study states thatare not

spatially uniform.

(a) Stripes .

-

I (e) = A a- G) [ e
"
%"

+ c. c.)
Roll patterns in the x-direction .

(b)Squarest(E) = Any G) [ei%
" iqy
+ e + c.c)

t.DE/-horhombicstate.teiEc(xcosOu-lI)--Au-qfzjf.eiE(✗ "so+ going
- y

Sino)t§



a- (E) = A a-qlt) 4 cos@F) cos@it]

2 ,
= qaco SO {~

=

E* Sind .

(d) Hexagons
a- (E)= Aya){e¥E+%)

HE- r%)
+ e

+ a. c- }
+ Ay
,
(z) e.

i % + i Ey
+C-C-

∅
,
= 0 on IT

:c
many other

trial dates can be envisioned
.

Q / Which of these possible states will be
observed ?

A/ Any state that is linearly unstable
will not be observed

⇒ Need to understand linear stability
about these spatially extended states.



These instabilities of patterns are called

secondary instabilities
.

1st 2ⁿᵈ
uniform → pattern→ different

pattern on

dynamical
slate

Let's suppose that we have a primary instability
of uniform stole to a pattern

Hq = Kay ( It it]

is)

¥ id 7¥ velocity profits
Interested in It coordinate pattern .

4- = Yg + 81
% = 1 , Cee ,z-jei-QEWC.it , _Q)tei ÷

I wave
wave vector vectorof
of pattern perturbation



Basic state is periodic ,
all we need to do

is consider first Brillouin Zone
.

E D= 1 stripe pattern.

-

% < Qas ¥
Many possibilities :

= Q

is on zone boundary .

1914 1 21 long-wavelength

IQ ) is incommensurate with 19,1
For

neutral

I !÷÷!÷÷ii¥¥÷%i¥¥i÷
:*
.

curve

Eokans stable÷÷É÷÷÷÷
Busse Balloon



Common instabilities of stripe patterns ordering with

E- = @e) 0,0)
Eckaus instability : Qy=0 Qak %

' " " " " "stripes

Period modulating inhabiting . →✗

Zig-zag instability . Qx=0 Qy ⇐ %

- . } } } } - - -

*



wednesdaymayl9202.IS
.Nm-hwthemyforpattendynam
God : How do various patters equilibrate - compete?

Non-linear stabilisation of the patterns.

strategy * bifurcation theory for one -degree of
freedom

* couple the order parameter at
different point - in space by some
trickery using the linear stability
analysis .

Dynamical system :
in = flu , E)

Assume for control parameter c- < Ee
u = 0 is a stable solution , steady date .

f-( 0 , E) -0 C-< Go

Near c-
c expand flu , e) - in the spirit of

Landau theory.
flu) = at bn +Cui +did + . - - =

We know that u -0 Ts a solution of in =D
⇒ a = 0

.



Next
,
we know that for C- > c-

e ,
we have an

instability to a periodic state .

⇒ b must change sign at c-c.
b so c- < Ee

b > 0 c- > c-a

⇒ b = + ◦ ( ce -e.5)

bo > 0
.

Next
, suppose there is a symmetry which

requires that the results areinvariant under
u → -u

.

⇒ c = 0

⇒ In vicinity of ⇐ :

in = r u + did + 0 (us)
r = b◦ ( c- - to) d Z 0

steady states : Cd so)

u = O r < O

u = 0 ± ( rid 1)
"
-

r > o



If d > 0 : u = 0 (r > 0 )

all

supercritical
.

" second order/_>r continuous

transition
"

sub -critical
.

" first order
transition"

Q/Spatsaloctenion?

A) ± CI , t) orders along É direction.

I ✗ A- e

" ""
+ c. c.

Every component of I will have an amplitude
and a phase .



UCI ,t) = IAI exp@qxtio) + c- c.

=

↓
Physicalsignificance of

× ∅ is that it generates

↑x→ Galilean transformations

maxima .

Shift in origin K → x + Xo

This adds a term qxo to ∅
Phase invariance = translational invariance

.

⇒ Equation governing the complex
amplitude AÉY must be invariant

under phone rotations if original system
-

is

translationally invariant ⇒ global 014
symmetry .

It AlEt) = r A + d A LAP ⊕
=

+ gradient terms.
RG

way to derive the equation for the pattern

amplitude : Chen
,
NG

, Ono PRE ( 19961



there use a heuristic method that uses only the

dispersion relation from liver stability analysis
about a uniform state

.

Consider is the system with rolls 11 It

¥" ' "
amplitude obeys

a µ
" amplitude equation

"

l-ñiiiiT ⊕
U

, obeys
{

e

Boassinesq
" orators

a 11



Consider the form of the dispersion relation ,
wlaz) : w → 2¢

q → II

knowing WCÉ → ante down a liveoised

PDE for small

r-y perturbations.

wcq) = I
- I [ r - 545%5+04-q§

[ w] = T
- t

'

-

'

a temporal
'

-

' spatial ↑scale
[ q] = [

1 scale

strategy * use the uniform dispersion relation

* take pattern with wavenumber of
* modulate by / At eiQ%iQyy

of = & ,
0 ) → q=(%+Qx > Qy)

* Plug into w (E) .



Twcae) = r - 5[✓(q+QxJ+Qy- -4J
± r - 5{¥ + Qx}

-

⊕
UGC,y,t) = A lay,t)ei%✗ +

c. e.

= A ◦
ew (E)te i (Qxk +Qyy) ei%✗+,,

Make identification
dispersion

wcq) = It relation④
Qa = - i 2x

↑Qy = - i 2g

¢%A=rA+5(2iÉj)A#=

Put all the terms together :

|T%A=rA+dAlAP+F(2✗_Iqdy✓-
(Newell - Whitehead - Segel)



Note : N - W - S egn is not symmetric in (x ,y)
U O

* o we are expressly interested in rolls
along g.→ breaks rotational invariance

.

* Therein a rotationally covariant form of
this amplitude equation .

[Gunaratne , Swinney , Qi)
( Graham ,

RG)

Nexfp%pÉ$.es of the amplitude equation .

scaligpropertiesoftheamph-tudeeguatim.AM
terms must be of

"

comparable order
"
in

tens of C- - E) .

Balance of the various terms :
Ted

+
A ~ C- - c-c) A

52
,

_

A ~ C- -E) A

92
Tidy

" A ~ (c- - a) A



We can estimate that

2. A ~ C- - c-e)
"
2 A

2g A ~ C- - c-c)
"14 A

Phare variations in x obey a diffusion
equation .

Phare variations along y obey a
•
+
A ~ 2,4 A ← bending beam

equation
°o° rolls along y direction have emergent
stiffness or rigidity .

Origin : energy bent team ~@native}
God: look at space - time scalingw Ee .

Next : rescale to geta universal egn .

TAA = rA+dAlAPt5(2, - Éq2yJ A
Dimensions of time :

T

space : }
A : C /d)

"
~



Rescale

✗ = G- x
y =;j Y '

T = Et

TE = ( /d)% A

µI=I-EEFkiÉ7
Universal egn withno adjustable parameters.
This is analogous to Cross - Pitaeuskii egr +

time - dependent Ginzburg- Landau egns.
Spatial variations transverse to rolls relax with
a character's)x length scale Oct ) in ✗

1-e- 0 ( 9 / r ") in physical coordinates



Remember r ~ E - E
-⇒ 58£) ~@E)

' 12

TE diverges rear
pointof instability.

Spatial variations along the rolls have a
characteristic length scale

of;÷⇒ ⇐⇒
- ""

Time scale relaxation 0 (%)
1- e [ C-

- )
.

Order parameter scale 0 (
r

' /2)

Divergence of there space and time scales
near the critical point at the onset of
convection - MFT of critical

phenomena !
Comments * Very hard to constrain expts . enough

to see thermal fluctuation connections

* Has been done : Wu
,
Ahrters

,
Cannell

PRL 4995) .



7
. Emergent Patterns Below Threshold .

-

* Behaviour near Ec

* What about c- ⇒ c-
a well into the

patterned phone?

Gue * Amplitude of pattern is saturated

by non-linearity
A = constant

.

* Only remaining degrees of freedomare
the phone degrees of freedom .

Exactly analogous to what we saw in egm .

Summarises phase dynamics.

NewC Phase dynamics are diffusive

2+0 = D
, , 2×20 + 13250

D. = ¥1;;: I≥ :(Had



k = q
-

qc wavenumber of the patters.

[ Remember : C- ⇒ Ec ]
AW

t:
C- 2£

Well
away from € , dynamics is described

by an equation describing the space-time
variation of

" local wavenumber "

fee : Cross + Newell
.

-



§2cahig.

There are two stylized facts that were
known

about critical phenomena in the early 1960 's
.

nM ⁿH
1-1=0

Et◦¥:¥÷÷÷i.

order -pÉvameter scaling
' Breakdown of tired

M = Mo 4T¥ / P 1-→TE ① response theory . ②
M ~ H

"
F-Tob-= -1¥

,

h = HIKBI
not M ~ Hlkyt (Carrie)

Widom and kadanoff realised that together there
results are equivalent to

Mct
,
h) = Itf Fm ( Mto) to

where 0 is a new exponent that we'll shortly calculate

Q / What is the function Fm and the exponent 0 ?

A/ • For ① to hold
,
we need fmlz ) = court for 2--0

• For large 2-
,
i.e . h -1-0 t-00 we need to

recover ② which means b- must somehow cancel

out
.
This can only happen if Fm (2) uz

'/£

as z→ 6 .



Then TB - ° /£
= OCD ⇒p8

⇒fmct.hj-tBFn.ch/t#-fMCt,h
) is ostensibly a function of two variables hit ,

but near the critical point is actually a function
of a " similarity

"
or

"scaling
" variable h/GPS

.

We can test this as follows . Take sets of date

for t = ti ,
tr

.

try ,
.
. _

h=h
, ,
hz

,

- - - - -

and

plot @ lti , hi)} .

as

¥
f-

-

-
-

-

- ii.
" hit"

T>I

→ |BacktoslideI



§ 3 .

Predator- Prey Model

ipÉ
density density .

Ñ =

p
AB - d. A
/

AtB→ At A

- A →ᵈ ∅

is = b. B -

p
AB - B →b B+B

We can easily calculate steady dates and phone
portrait .

A- = 0 ⇒ A ( PB - d) =O A:O @ B¥
B. ( b - p A) = 0 B*=O or A*=¥

'

B = 0 ⇒
coexistence
→

81*9 : (A*,B*) = (0,0) ;A(YB*)=(b/p,
L# A-* = O

,
B → • as

ebtast-oo.li#ihty:A--A*s-8AewtB--B*+8Bewt
( o.o) unstable (b1p,d1p) → w = ± iwo

(0,0) unstable Wo = bdM

There oscillations about the coexistence fixed point
describe a

"center "

B



The phare space is obtained from .

ᵈd- =
^:/pj = ftp.B-dp#g--AlPB--d)B(b-pA)

⇒ §dA_ .
@ -pA) = B-d)

◦
A

⇒ bln Alt) - p Alt ) - bln Alo) =pBlt) - dln Blt)
+ PAID

+ dln BIO)
- p Blo)

⇒ bln Act ) + dln Blt) - plaits + BAD

= bln Alo) + dln Blo) - p ( Ato)+Blot)

So [ (f) = blnAct ] +dlnBlt) - p /Act) +BIH)

= Cco ] i. e. a armored integral
of the motion .

This model predicts periodic oscillations , with
trajectory ( amplitude /phase) determined by Cco] .

However
,
this solution is un physical because it is

structurally unstable
.

3.2finikcarryingcapaa.LI
The FP A- = O

,
B = Boebt is an physical

became in reality there is a finite amount of
food for the prey .

So B is bounded



above by what is called "

ca-rrying-apaa.ly
"
.

We model this as

⑤ = b B ( 1- B/k-AB.

⇔¥!:¥o
.

Extinction

A-
*
= O B

't
= K Predator death

. Prey saturate.

A-*
= C- ¥ )pb_ ; B't = dlp Coexistence

stability
Extinction ; unstable

.

Prey saturation : stable pepo = dlk

Coexistence : p > p
,

and linearly stable with
• = -

:# ( I ±✓t"¥l")
Summery No persistent population The phone portrait

.
Cycles .

has stable spiral# B
To see what has gone wrong , go back to

individual
level model .



OY How did ecologists deal with
this embarrassment ?

A/ Let's charge the physical picture .
The predation torn PAB only
applies if the concentration of predator
and

prey is
small

.

But
suppose prey

concentration is large .

Predator
does not need to look far to find a preyto
eat

.
In other words

, prey concentration is
not

a limiting factor . So

p AB → 2*+7-3
where C is a constant .

For Bac
, pAB is recovered

.

For B ⇒ C
p AB → p A indef of B.

This

Ñ = E¥%- - DA
Bi = bB( 1- Blk ) - PcB_☐

This non-linear system does have limit cycles.

Backtoslidest


