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Introduction to Quantum Machines

A quantum machine is a device whose degrees of freedom are intrinsically quantum
mechanical. Of course, every machine is made of atoms and its microscopic degrees
of freedom (the electrons and nuclei) are intrinsically quantum. Atomic physicists
have developed remarkable optical techniques to control these microscopic degrees
of freedom. In these notes we will take the condensed matter physics perspective: by
degrees of freedom we mean collective variables that are sufficiently ‘macroscopic’ that
we can couple to them and control them with externally applied electrical signals or
forces. We will extensively study the currents and voltages in superconducting circuits
as ‘macroscopic’ quantum degrees of freedom. Another modern example of growing
importance would be the center of mass position of a movable mirror acting as a
mechanical oscillator coupled to the radiation pressure of light in an optomechanical
system.

While we do not yet fully understand the properties and capabilities of quantum
machines, there is great hope (and some mathematical proof) that such devices will
have novel capabilities that are impossible to realize on classical hardware. You might
think that quantum machines have already been built. For example, the laser and the
transistor would seem to rely on quantum physics for their operation. It is clear that
the frequency of a laser cannot be computed without the quantum theory that predicts
the excitation energies of the atoms in the laser. Similarly the optimal bias voltage
of a bipolar transistor depends on the electronic band gap energy of the material
from which it is made. Nevertheless, it is only the particular values of the operating
parameters of these machines that are determined by quantum physics. Once we know
the values of these parameters, we see that these are classical machines because their
degrees of freedom are purely classical. Indeed the light output from a laser is special
because it is exactly like the RF output of the classical oscillator that powers a radio
station’s antenna. Similarly, the currents and voltages in an ordinary transistor circuit
need not be treated as non-commuting quantum operators in order to understand
the operation of the circuit. Its degrees of freedom are, for all intents and purposes,
classical.

These lectures are devoted to understanding the basic components of quantum ma-
chines that can be constructed from superconducting electrical circuits. These circuits
can be used to create resonators which store individual microwave photons and to
create superconducting quantum bits. Both of these circuit elements are intrinsically
quantum mechanical. They have quantized energy levels with spacing much greater
than temperature (for low enough temperatures!) and they can be placed into quan-
tum superpositions of different energy states. To properly predict their properties, the
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currents and voltages in such circuits must be represented by non-commuting quantum
operators.

The beauty of electrical circuits is that they can be constructed in a modular
manner combining together a few different building blocks in simple ways. The wires
connecting these building blocks have to be capable of carrying quantum signals
(Schoelkopf and Girvin, 2008; Devoret and Schoelkopf, 2013), but are still relatively
simple and the problem of spatial mode matching that occurs in optical circuits is
largely eliminated (becoming simply a question of impedance matching). Furthermore,
with modern lithographic techniques, parallel fabrication of complex structures is rel-
atively straightforward lending hope that (someday) it will be possible to scale up to
processors with large numbers of qubits.

We will study different qubit designs and their relative merits. We will also learn
how to control and read out the quantum states of qubits and cavities, and how
to entangle their different quantum degrees of freedom. In recent decades, we have
come to understand that superposition and entanglement are features of quantum
physics which can be used as resources to make powerful quantum computers to process
information in ways that are impossible classically. What else we can do with quantum
machines is not yet fully understood. The people who invented the laser had no idea
that it would be used to play music, communicate over optical fiber, and perform
eye surgery. We expect that similar surprises and unexpected applications will be
developed once quantum hardware becomes routine enough to play with.
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Quantum Electrical Circuits

2.1 Introduction

Quantum electrodynamics is the theory of interaction between electrons (and atoms)
with electromagnetic fields. These lecture notes discuss the closely related problem of
quantization of electrical circuits (Devoret, 1997; Schoelkopf and Girvin, 2008). Exper-
imental progress over the last decade in creating and controlling quantum coherence
in superconducting electrical circuits has been truly remarkable. The quantum elec-
trodynamics of superconducting microwave circuits has been dubbed ‘circuit QED’
by analogy to cavity QED in quantum optics. These lecture notes will describe the
quantum optics approach to microwave circuits with superconducting qubits playing
the role of artificial atoms whose properties can be engineered. Despite being large
enough to be visible to the naked eye, these artificial atoms have a very simple dis-
crete set of quantized energy levels which are nearly as well understood (Nigg et al.,
2012) as those of the prototypical single-electron atom, hydrogen. Furthermore it has
proven possible to put these atoms into coherent superpositions of different quantum
states so that they can act as quantum bits. Through clever engineering, the coherence
times of such superposition states has risen more than four orders of magnitude from
nanoseconds for the first superconducting qubit created in 1999 (Nakamura et al.,
1999) up to ∼ 30 − 150 microseconds today (Paik et al., 2011; Rigetti et al., 2012;
Chang et al., 2013; Barends et al., ). Recent experiments with the fluxonium qubit
design (Manucharyan et al., 2009b) have achieved T1 times exceeding 1 millisecond
(Geerlings et al., 2013). ‘Schoelkopf’s Law’ for the exponential growth of coherence
time is illustrated in Fig. (2.1).

Simple quantum machines have already been built using superconducting circuits
which can manipulate and measure the states of individual qubits (Nakamura et al.,
1999; Mooij et al., 1999; Vion et al., 2002) as well as individual microwave quanta
(Houck et al., 2007; Hofheinz et al., 2008; Hofheinz et al., 2009; Johnson et al., 2010;
Mariantoni et al., 2011a; Wang et al., 2011), entangle two (Ansmann et al., 2009; Chow
et al., 2010) and three qubits (Neeley et al., 2010; DiCarlo et al., 2010), run simple
quantum algorithms (DiCarlo et al., 2009; Mariantoni et al., 2011b) and perform rudi-
mentary quantum error correction (Reed et al., 2012). Future improved qubit designs,
microwave circuit designs, and materials improvements should allow this trend to con-
tinue unabated. In addition to being a potentially powerful engineering architecture
for building a quantum computer, circuit QED opens up for us a novel new regime to
study ultra-strong coupling between ‘atoms’ and individual microwave photons (De-
voret et al., 2007). The concept of the photon is a subtle one, but hopefully these notes
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Fig. 2.1 “Schoelkopf’s Law” plot illustrating the exponential growth for superconducting

(charge-) qubit coherence times. Recent experiments (Geerlings et al., 2013) with the ‘fluxo-

nium’ qubit design have achieved T1 times exceeding one millisecond.

will convince the reader that microwaves, despite their name, really are particles. We
will accordingly begin our study with a review of the quantization of electromagnetic
fields in circuits and cavities.

The quantization of electrical circuits has been thoroughly addressed in the Les
Houches lecture notes of my colleague, Michel Devoret (Devoret, 1997), to which I
direct the interested reader. The circuit elements that are available to the quantum
engineer include those familiar to classical engineers: resistors, capacitors, and induc-
tors. Resistors cause unwanted dissipation and we will attempt to avoid them. See
however further discussion in the Appendix (B) of spontaneous emission into trans-
mission lines which act effectively as fixed impedances. Dissipation into a cold resistor
can in fact be useful for qubit reset(Reed et al., 2010b) to the ground state since reset
requires removal of entropy to a cold bath.

In addition to these standard circuit elements, there is one special element in su-
perconducting circuits, the Josephson tunnel junction. We will be learning more about
superconductivity and Josephson junctions later, but for now we simply note the fol-
lowing. With capacitors and inductors we can build simple LC harmonic oscillators.
If we can eliminate all resistors then the harmonic oscillations will be undamped. The
use of superconducting circuits takes us a long way towards this goal of zero dissipa-
tion, about which more later. The essential feature of (ordinary) superconductivity is
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that electrons of opposite spin pair up and condense into a special ground state with
a substantial excitation gap 2∆ needed to break one of the pairs and create an excited
state. This pair excitation gap is essential to the ability of current to flow in a super-
conductor without dissipation.1 A closely related advantage of the excitation gap is
that it dramatically reduces the number of effective degrees of freedom in the circuit,
allowing us to construct artificial ‘atoms’ that behave like simple single-electron atoms
even though they are made up of 109 − 1012 aluminum atoms. The extremely power-
ful force of the Coulomb interactions also plays an essential role in limiting the low
energy degrees of freedom in circuits. When the Coulomb interaction is unscreened,
the gapless collective motion of currents is lifted up to the plasma frequency which is
orders of magnitude higher than any relevant frequency scale for the circuits we will
consider. (This effect of the long-range Coulomb force occurs in both normal metals
and superconductors.) In the presence of screening due to ground planes or shields, the
plasma oscillations are ‘acoustic modes’ with a linear dispersion and velocity close to
the speed of light in vacuum.2 When quantized, these will be our propagating photons.

2.2 Plasma Oscillations

Because the powerful effect of long-range Coulomb interactions plays a crucial role in
simplifying the spectrum of quantum electrical circuits, let us begin our analysis by
reviewing the plasma oscillations in a bulk metal. Throughout this work we will use SI
units. We will consider infinitesimal density fluctuations δn around the mean electron
number density n. In the ‘jellium’ model the mean charge density is canceled by the
ionic background so the net charge density is

ρ(~r) = −e δn. (2.1)

The current flowing (to zeroth order in δn) is

~J(~r, t) = −en~v(~r, t), (2.2)

where the local electron mean velocity field obeys Newton’s law

∂

∂t
~v =

−e
m

~E, (2.3)

where m is the electron (effective) mass. This in turn yields

∂

∂t
~J =

ne2

m
~E. (2.4)

Taking the divergence of both sides of this equation and applying Gauss’s law

1There do exist gapless superconductors (e.g. d-wave materials like YBCO) which can carry a dc
current without dissipation, but at the microwave frequencies of interest for qubits, the lack of a gap
implies significant dissipation.

2Flat metallic surfaces and long wires exhibit so-called surface plasmons which are gapless and
have approximately linear dispersion relations due to electrodynamic retardation effects. The purpose
of the ground shield surrounding the central wire in a coaxial cable is to prevent radiation losses when
the cable is bent into a curve.
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~∇ · ~E =
ρ

ǫ0
, (2.5)

and the continuity equation

~∇ · ~J +
∂

∂t
ρ = 0, (2.6)

yields
∂2

∂t2
ρ = −ω2

pρ (2.7)

where the so-called ‘plasma frequency’ is given by3

ω2
p ≡ ne2

mǫ0
. (2.8)

Electromagnetic waves cannot propagate in a plasma at frequencies below the plasma
frequency (Jackson, 1999). In the earth’s ionosphere, the typical plasma frequency
is in the range of 10’s of MHz and varies between night and day, thereby affecting
short-wave radio reception. In the typical metals we will be concerned with (e.g.,
aluminum), the valence electron density is sufficiently high that the plasma frequency
is in the ultraviolet region of the optical spectrum. Hence aluminum (whose plasma
frequency ωp/(2π) ∼ 3.6×1015Hz corresponds to a photon energy of ∼ 15 eV) is highly
reflective in the visible. Essentially, the electrons are so dense and so agile that they
screen out any electric fields almost perfectly over a very short screening distance. For
frequencies far below the plasma frequency, Maxwell’s equations yield

~∇× ~∇× ~E ≈ −λ−2p
~E, (2.9)

where the London penetration depth, λL, of the electromagnetic fields is

λL =
c

ωp
=

1√
4πnre

, (2.10)

where the classical radius of the electron is given by

re =
e2

4πǫ0

1

mc2
≈ 2.818× 10−15m. (2.11)

For Al, Eq. 2.10 yields4 λL ∼ 14nm We will be dealing with GHz frequency scales
many orders of magnitude below the plasma frequency and centimeter wavelength
scales relative to which the penetration depth is effectively zero.

3We neglect here the various details of the band structure of Al as well as the possibility that the
core electrons in the atoms of the metal contribute a dielectric constant ǫ 6= 1 seen by the valence
electrons whose dynamics create the plasma oscillations of the metal.

4The measured value of the London penetration depth in Al (at zero frequency) is somewhat
larger, λL ∼ 51.5nm. The difference is presumably due to variation in the core electron dielectric
constant with frequency which has been neglected in our model. It should also be noted that in dirty
superconductors, the reduction in the superfluid stiffness causes the penetration depth to increase.
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Exercise 2.1 Derive Eq. 2.9 in the limit of low frequencies and show that it leads to expo-
nential decay of transverse electromagnetic waves with decay length λp.

The above simplified5 jellium model yields a plasma mode which is completely
dispersionless–the mode frequency is independent of wave vector q. The frequency of
the bulk collective plasma mode is vastly higher than any microwave frequency that
we will be dealing with. From the point of view of quantum mechanics, the amount
of energy required to create a bulk plasmon is so large that we can consider these
degrees of freedom to be frozen into their quantum mechanical ground state. Hence
they can be ignored. The approximations leading to Eq. (2.2) breakdown at short
distances due to the granularity of the electron charge. At very large wave vectors
approaching the Fermi wave vector, the jellium continuous charge picture breaks down
and the plasma oscillation frequency rises and the mode becomes ‘Landau-damped’
due to the collective charge oscillation mode decaying into single-particle excitations
(Pines, 1963). Conversely for extremely small wave vectors, there is a cutoff associated
with the finite size of any sample. This we can take into account by considering the
capacitance matrix between different lumps of metal in the circuit we are trying to
quantize. In certain circumstances, the capacitance matrix is such that there do exist
collective charge oscillation modes which are down in the microwave range. These will
be the important modes which we will quantize. Here the superconductivity is vital
for gapping the single-particle excitations so that the collective charge modes are both
simple and extremely weakly damped.

2.3 Quantum LC Oscillator

The circuit element with the simplest dynamics is the LC oscillator illustrated schemat-
ically in Fig. (2.2a). Now that we understand that supercurrents can flow essentially
without dissipation and that the great strength of the Coulomb interaction lifts den-
sity fluctuations up to optical frequencies, we can understand that the LC oscillator
has, to a very good approximation, only a single low-energy degree of freedom, namely
uniform divergenceless current flow in the wire of the inductor which does not build
up charge anywhere except on the plates of the capacitor. This is a very good approx-
imation in the ‘lumped element’ limit where the physical size of the LC oscillator is
much smaller than than the wavelength of electromagnetic waves at the frequency of
the oscillator, λ = 2πc/Ω. [This caveat is associated with the unstated assumption
in our discussion of plasma oscillations that we neglected electrodynamic retardation
effects. That is, we effectively assumed c = ∞.] In terms of the capacitor charge q and
the inductor current I the Lagrangian is readily written

L =
1

2
LI2 − 1

2

q2

C
. (2.12)

Using charge conservation, I = +q̇, this can be cast into the more familiar form

5A more careful treatment would have included the change in the Fermi energy as the density
oscillates. The resulting Fermi pressure gradients produce a positive quadratic dispersion of the plasma
mode with increasing wave vector.
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L =
L

2
q̇2 − 1

2C
q2. (2.13)

Remarkably, we have reduced a complex circuit containing an enormous number of
electrons to a system with a single degree of freedom q with ‘mass’ L and ‘spring
constant’ 1/C). This is possible only because all but this one degree of freedom are
effectively gapped out by a combination of superconductivity (which gaps out the
single-particle excitations) and the long-range Coulomb force (which gaps out the
collective plasmon (density fluctuation) degrees of freedom). All that is left is the rigid
collective motion of the incompressible electron fluid sloshing back and forth, charging
and discharging the capacitor.

Eq. (2.13) yields the Euler-Lagrange equation of motion

q̈ = −Ω2q, (2.14)

where the natural oscillation frequency is

Ω =
1√
LC

. (2.15)

The momentum conjugate to the charge is the flux through the inductor

Φ =
δL
δq̇

= Lq̇ = LI. (2.16)

Thus the Hamiltonian can be written

H = Φq̇ − L =
Φ2

2L
+

1

2C
q2. (2.17)

Hamilton’s equations of motion then give the current through the inductor and the
voltage at the node connecting the inductor and the capacitor

q̇ =
∂H

∂Φ
=

Φ

L
= I (2.18)

Φ̇ = −∂H
∂q

= − q

C
= V. (2.19)

In the usual way, the coordinate and its conjugate momentum can be promoted to
quantum operators obeying the canonical commutation relation

[Φ̂, q̂] = −i~ (2.20)

and we can write the Hamiltonian

H =
~Ω

2

{
â†â+ ââ†

}
= ~Ω

{
â†â+

1

2

}
, (2.21)

in terms of raising and lowering operators
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Fig. 2.2 Simple LC electrical oscillator analogous to a mass and spring mechanical oscillator.

In panel a) the position coordinate of the mass is taken to be q, the charge accumulated on the

capacitor by the current I flowing through the inductor, and the flux Φ through the inductor

is the momentum. The sign convention for the charge is such that q̇ = I and therefore the

inductance L is analogous to the mass. The role of the spring constant is played by 1/C

and the potential energy of the capacitor is (q − qq)
2/2C, where q0 is the offset charge of

the capacitor (the equivalent of the equilibrium length of the spring). Hamilton’s equation

for the time rate of change of the momentum is Φ̇ = −(q − q0)/C. In panel b) the position

coordinate is now taken to be φ, the time integral of the voltage V across the capacitor

(i.e., the node flux) and the conjugate momentum is Q, the charge on the capacitor resulting

from the electrochemical potential difference between the two plates. The role of the mass is

played by C and the spring constant is now 1/L, with the energy of the inductor given by

(φ−φ0)
2/2L, where φ0 is the external flux in the loop of the circuit (including the coil of the

inductor). Hamilton’s equation for the time rate of change of position is φ̇ = Q/C. Note the

important sign change in the denition of charge: Q = q0 − q, needed to make the Hamilton

equations of motion correct in each case. The classical Poisson brackets and the quantum

canonical commutation relations between position and momentum are maintained between

the two cases: [q̂, Φ̂] = [φ̂, Q] = +i~.

â = +i
1√

2L~Ω
Φ̂ +

1√
2C~Ω

q̂ (2.22)

â† = −i 1√
2L~Ω

Φ̂ +
1√

2C~Ω
q̂ (2.23)

which obey the usual relation
[â, â†] = 1. (2.24)

In the above discussion we chose the charge q on the capacitor as the natural
coordinate of the harmonic oscillator and found that the inductor flux Φ was the
momentum conjugate to this flux. In the picture we interpret the capacitance C as the
inverse of the ‘spring constant,’ and the inductance L as the ‘mass.’ This seems natural
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from our intuitive view of the capacitance as storing the potential energy and the
inductor storing the kinetic energy (actually the kinetic energy of the electrons makes
only a small contribution (called the ‘kinetic inductance’) to the total inductance.
It is primarily the energy stored in the magnetic field created by the current which
dominates the inductance in most situations.)

When dealing with Josephson junctions we will start with this same representation
but then find that they act as non-linear inductors and so it will be more convenient
to take the node flux (defined below) to be the coordinate rather than the momentum.
In order to get used to this alternative representation, we will practice here on the LC
oscillator. Following Devoret (Devoret, 1997) let us define the node flux at the point
shown in Fig. (2.2b) by

φ(t) =

∫ t

dτV (τ), (2.25)

so that V (t) = φ̇. Then the potential energy stored on the capacitor is

U =
1

2
Cφ̇2 (2.26)

and now looks like the kinetic energy with this choice of coordinate. Similarly, us-
ing Faraday’s law and the sign convention for the direction of the current defined in
Fig. (2.2b) we have

V = Lİ = φ̇ (2.27)

and thus see that the node flux variable φ really is the physical magnetic flux Φ winding
through the inductor (ignoring any possible external flux applied through the loop of
the circuit or the inductor). Hence the kinetic energy stored in the inductor is

T =
1

2L
φ2, (2.28)

which now looks like the potential energy. With this choice of coordinate the La-
grangian becomes

L =
1

2
Cφ̇2 − 1

2L
φ2, (2.29)

and the momentum conjugate to the flux

Q =
δL
δφ̇

= Cφ̇ (2.30)

is now the charge as defined with the sign convention in Fig. (2.2b). Notice the crucial
minus sign relative to the previous result. This is necessary to maintain the sign of
the commutation relation when we interchange the momentum and coordinate. To
reiterate: when the charge is the coordinate and the flux is the conjugate momentum,
the commutation relation is:

[q̂, Φ̂] = +i~, (2.31)

whereas when the flux is the coordinate and the charge is the conjugate momentum,
the commutation relation is:

[φ̂, Q̂] = +i~. (2.32)

Since we have chosen a convention in which Φ̂ = φ̂, we require Q̂ = −q̂.
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Just to be completely explicit, we now repeat the derivation of the Hamiltonian and
its quantization for this new choice which we will be using throughout the remainder
of these notes. Thus the Hamiltonian can be written

H = Qφ̇− L =
1

2C
Q2 +

φ2

2L
. (2.33)

Hamilton’s equations of motion are then

φ̇ = +
∂H

∂Q
= +

Q

C
(2.34)

Q̇ = −∂H
∂φ

= −φ

L
. (2.35)

Again in the usual way, the coordinate and its conjugate momentum can be pro-
moted to quantum operators obeying the canonical commutation relation (but note
the important position reversal from Eq. (2.20))

[Q̂, φ̂] = −i~ (2.36)

and we can write the Hamiltonian

H =
~Ω

2

{
â†â+ ââ†

}
= ~Ω

{
â†â+

1

2

}
, (2.37)

in terms of raising and lowering operators

â = +i
1√

2C~Ω
Q̂ +

1√
2L~Ω

φ̂ (2.38)

â† = −i 1√
2C~Ω

Q̂ +
1√

2L~Ω
φ̂ (2.39)

which obey the usual relation
[â, â†] = 1. (2.40)

The charge and flux operators can be expressed in terms of the raising and lowering
operators as

Q̂ = −iQZPF

(
â− â†

)
(2.41)

φ̂ = ΦZPF

(
â+ â†

)
, (2.42)

where

QZPF =

√
C~Ω

2
=

√
~

2Z
(2.43)

ΦZPF =

√
L~Ω

2
=

√
~Z

2
, (2.44)

where Z is the characteristic impedance of the oscillator
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Z =

√
L

C
. (2.45)

Notice that the notation has been chosen such that the quantum ground state uncer-
tainties in charge and flux are given by

〈0|Q̂2|0〉 = Q2
ZPF (2.46)

〈0|φ̂2|0〉 = Φ2
ZPF. (2.47)

Exercise 2.2 There is a certain arbitrariness in the choice of phase factors that enter in
definition of the raising and lowering operators in Eq. (2.42). We have chosen a convention in
which the flux is related to the real part of â and the charge is related to the imaginary part
of â. Consider the unitary transformation U = eiθn̂, where n̂ = a†a is the photon number
operator. What does this transformation do to the Fock state |n〉? How do the raising and
lowering operators transform under the action of U? What happens to the expressions for
charge and flux under the transformation of U when θ = π/2?

Using the superconducting resistance quantum

RQ ≡ h

(2e)2
≈ 6, 453.20Ohms, (2.48)

we can define a dimensionless characteristic impedance

z ≡ Z/RQ, (2.49)

to obtain

QZPF = (2e)

√
1

4πz
(2.50a)

ΦZPF = Φ0

√
z

4π
, (2.50b)

where

Φ0 ≡ h

2e
(2.51)

is the superconducting flux quantum. Notice that the usual uncertainty product is
obeyed.

QZPFΦZPF =
~

2
. (2.52)

The voltage is an important physical variable and the voltage operator is given by

V̂ =
dφ̂

dt
=
i

~
[H, φ̂]

=
1

C
Q̂ = −i

√
~Ω

2C

(
â− â†

)
= −iVZPF

(
â− â†

)
, (2.53)

where
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VZPF = ΩΦZPF = ΩΦ0

√
z

4π
. (2.54)

The superconducting flux quantum in convenient units is given by

Φ0 ≈ 2.06783367µV/GHz (2.55)

which tells us that the vacuum fluctuations of the voltage across the capacitor in a
typical 10 GHz, Z = 100 Ohm impedance resonator circuit will be on the scale of
∼ (1/3)µV. Correspondingly the vacuum fluctuations of the current are on the scale
of ∼ 3nA. It is remarkable that the quantum fluctuations of currents and voltages in
these microwave circuits have the same scales as are routinely measured in the audio
range with standard laboratory instruments.

How do we interpret the excitation quanta of this harmonic oscillator? We can
think of these as excitations of the collective motion of the electrons in the wire, or we
can think of them as photons of the electromagnetic field. Because this is a lumped
element resonator (as opposed to a cavity or other distributed resonator), the electric
field appears between the capacitor plates and the magnetic field appears in a separate
place, namely within the coil of the inductor. Nevertheless it is perfectly acceptable
to think of these excitations as photons. The coordinate of the oscillator is the flux in
the coil (or in the first choice we made, the charge on the capacitor plates which is
equivalent to the electric field in the gap between the plates.

One does not normally think about photons in the context of first quantization,
but this is also useful for building up intuition and for thinking about things like the
full probability distribution of electric field measurement results. The wave function
of the vacuum state is a gaussian in the coordinate φ as shown in Fig. (2.3)

Ψ0(φ) =
1

[2πΦ2
ZPF]

1/4
e
− 1

4
φ2

Φ2
ZPF . (2.56)

If in the vacuum state we make a precise measurement of the flux, the resulting value
will be random and have a gaussian probability distribution given by

P (φ) = |Ψ0(φ)|2. (2.57)

Hence the most probable value of the flux is zero. On the other hand, in the one-photon
state

Ψ1(φ) =
φ

ΦZPF

1

[2πΦ2
ZPF]

1/4
e
− 1

4
φ2

Φ2
ZPF (2.58)

zero flux would never be measured because the wave function vanishes at φ = 0.
The measured flux is still zero on average. This is true for any (odd) photon Fock
state (number eigenstate) from simple parity considerations. On the other hand, if the
photon number is uncertain, for example in the coherent superposition state

Ψ+ =
1√
2
(Ψ0 +Ψ1) , (2.59)

then the centroid of the probability distribution is displaced away from zero as shown
in Fig. (2.3) and the average value of the flux will be non-zero. A similar conclusion
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is readily reached within the second quantized formulation of Eq. (2.42) by noticing
that the flux and charge operators are purely off-diagonal in the photon number basis.

Fig. 2.3 LC oscillator wave function amplitude (left panel) and probability density (right

panel) plotted vs. the coordinate φ. Solid: ground state, Ψ0; Long-Dashed: first excited state,

Ψ1; Short-dashed: linear combination of the ground and first excited states, 1√
2
(Ψ0 + ψ1).

Such superpositions of zero and one-photon states cannot be achieved by simply
weakly driving the oscillator as this produces a coherent superposition of all pho-
ton number states (to be described further below). However they have been achieved
experimentally (Houck et al., 2007; Hofheinz et al., 2008; Hofheinz et al., 2009) by
applying control pulses to a qubit to put it into a superposition of the ground state
|g〉 and the excited state |e〉

|ψinitial〉 = α|g〉+ β|e〉. (2.60)

Allowing the qubit to spontaneously decay (if it is excited) leaves the qubit in the
ground state and the electromagnetic field in a superposition of zero and one photon
with coefficients α and β inherited from the qubit

|ψfinal〉 = |g〉 [α|0〉+ β|1〉] . (2.61)

This operation maps a stationary qubit onto a ‘flying qubit’ (the photon) and is
an essential step towards communicating quantum information via photons. In the
experiment of Houck et al. (Houck et al., 2007) the photons could be sent into a
square law detector to measure the photon number, or into a homodyne detector to
measure either quadrature of the electric field (equivalent to measuring Q̂ or φ̂ in
Eq. (2.42). The experiment directly showed that the one photon Fock state had zero
electric field on average and that the phase of the electric field for superposition states
was determined by the phase imposed initially upon the qubit superposition state. We
tend to think of spontaneous emission as an incoherent process but the above results
show that this is not entirely correct. What we really mean by incoherent is that the
decay of an atom which starts purely in the excited state yields a photon state which
varies randomly from shot to shot and which vanishes only on average.

In the UCSB experiments (Hofheinz et al., 2008; Hofheinz et al., 2009), complex
superpositions of resonator Fock states were engineered and then measured via the
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their effect on the state of the qubit, rather than by homodyne measurement of the
photon state.

2.3.1 Driven LC Oscillators

Before continuing, it is useful to return to the classical circuit analysis and think about
how we should include a driving force on the oscillator. Returning to Fig. (2.2), let
us consider adding a signal source to the circuit at the node labelled φ as shown in
Fig. (2.4a). The first question we have to answer is whether we should use a voltage
source or a current source. Ideally, the former has zero impedance and the latter has
infinite impedance. A voltage source set to zero drive amplitude would short the φ
node to ground and ruin the oscillator. Conversely, a current source set to zero drive
amplitude would have no effect on the oscillator at all since the voltage oscillations
would not be damped by the infinite impedance of the current source. Thus we should
use a current source which will minimize the damping. [Generically resonators will
be driven through a coupling capacitor or antenna structure connected to a ∼ 50Ω
transmission lines which will introduce some damping.] For the moment we will assume
the drive is classical. (More on the meaning of classical further below.)

a) 

L C

f

Q+

Q-
b ( )I t L

C

F Q+

Q-

b ( )V t

b) 
f

Fig. 2.4 (a) Parallel LC oscillator driven at the node φ by a classical external current source

with infinite impedance. (b) Series LC oscillator driven at the node φ by a classical external

voltage source with zero impedance.

Consider the following modification of the Lagrangian in Eq. (2.29)

L =
1

2
Cφ̇2 − 1

2L
φ2 + Ibφ, (2.62)

where Ib(t) is the (classical) time-dependent bias current delivered by the source. We
can think of the third term as a Lagrange multiplier which enforces current conserva-
tion. From the Euler-Lagrange equation of motion

− d

dt

δL
δφ̇

+
δL
δφ

= 0 (2.63)
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we obtain

Q̇+
φ

L
= Ib(t), (2.64)

which is simply the equation for current conservation at the φ node. Converting the
Lagrangian to the classical Hamiltonian yields

H =
Q2

2C
+
φ2

2L
− Ib(t)φ, (2.65)

we see that the bias current acts as a force conjugate to the coordinate φ. We can view
the current conservation equation above as Hamilton’s equation of motion giving the
time rate of change of the momentum in terms of the sum of the oscillator spring force
plus the external force

Q̇ = −φ

L
+ Ib(t). (2.66)

So far we have only considered the parallel LC resonator. We turn now to the series
resonator illustrated in Fig. (2.4b). Clearly there can be no oscillations unless the node
φ is connected to ground so that current can flow. This means that the series resonator
should be driven by a zero impedance voltage source instead of a current source. The
Lagrangian for this system is

L =
1

2
C[Φ̇− φ̇]2 − Φ2

2L
, (2.67)

from which it follows that the Hamiltonian is

H =
Q2

2C
+

Φ2

2L
+ Vb(t)Q, (2.68)

where φ̇ = Vb(t) is fixed by the bias voltage. In this case, the external control parameter
is the voltage rather than the drive current and the internal variable being controlled
is the charge rather than the flux.

Exercise 2.3 Rederive the Lagrangian and the Hamiltonian for the series resonator shown in
Fig. (2.4b) except with the capacitor and inductor interchanged so that the external voltage
source is attached to the inductor rather than the capacitor. The physics should be identical
to the previous case, but the mathematical expressions will look rather different. Can you
find a change of coordinates that maps the problem back to the previous form?

2.3.2 Coherent States

Now that we understand the classically driven quantum harmonic oscillator, we are in a
position to study coherent states of oscillation. A simple way to achieve a superposition
of different number states in a quantum oscillator is to drive it with a classical external
driving force so that the ground state is displaced and mapped to a so-called ‘coherent
state’

Ψ0(φ) −→ Ψ∆(φ) = Ψ0(φ−∆)). (2.69)

Coherent states are discussed below and in further detail in Appendix E. In addition
to having coherent states displaced in position, one can also have them displaced
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in momentum. These simply correspond to being in different parts of the classical
oscillation cycle. We also discuss below what it means to have a ‘classical’ drive.

Using the Taylor series expansion to all orders we can write the unitary transfor-
mation that displaces the state as

Ψ∆(φ) = e−∆
∂
∂φΨ0(φ) (2.70)

= e−
i
~
∆Q̂Ψ0(φ), (2.71)

which illustrates the fact that the momentum Q̂ is the generator of displacements of
its conjugate coordinate φ. The unitary displacement operator may be written as

Uα = e−
i
~
∆Q̂ = e−α(â−â

†), (2.72)

where the dimensionless displacement parameter is

α ≡ ∆QZPF

~
=

∆

2ΦZPF
. (2.73)

Now using the Feynman disentangling theorem (Mahan, 2000) derived in Appendix
D, this can be normal ordered

Uα = e+αâ†

e−αâe−
1
2
|α|2 . (2.74)

Taking advantage of the fact that â|0〉 = 0, we see that in second-quantized notation
the coherent state becomes

|α〉 = e−
1
2
|α|2 eαâ

† |0〉 (2.75)

Exercise 2.4 Since Uα is unitary, it must be that 〈α|α〉 = 1. Verify this by direct calculation
from Eq. (2.75).

Coherent states have some very nice properties. For example, because they are
special coherent superpositions of all possible photon numbers, they are eigenstates of
the photon destruction operator

â|α〉 = α|α〉. (2.76)

You can destroy a photon and still be in the same state! Curiously coherent states
are not eigenstates of â†. It is clear that â†|α〉 has no amplitude for zero photons and
hence is linearly independent of |α〉 (and therefore not an eigenstate). One can reach
the same conclusion by noting that â and â† do not commute.

[â, â†]|α〉 = |α〉 6= 0. (2.77)

On the other hand, it is true that the mean phonon number is given by

N̄ = 〈α|â†â|α〉 = |α|2. (2.78)

The phonon number distribution in a coherent state is given by the standard Poisson
distribution

Pn = |〈n|α〉|2 =
N̄n

n!
e−N̄ . (2.79)
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Exercise 2.5 Derive Eq. (2.76) and Eq. (2.79).

Because â† is a raising operator for the energy, the coherent state has a very simple
time evolution even though it is itself not an energy eigenstate. The displacement
parameter α becomes complex and its phase increases linearly in time. That is, the
real and imaginary parts of α simply vary sinusoidally in time indicating that the
displacement alternates between position and momentum:

|α(t)〉 = |e−iΩtα(0)〉 = e−
1
2
|α|2 eαe

−iΩtâ† |0〉. (2.80)

This corresponds in the classical limit to the circular motion in phase space of the
simple harmonic oscillator.

Rather than working with φ̂ and Q̂, we will find it convenient to work with the
dimensionless quadrature amplitudes

X̂ ≡ 1

2

[
â+ â†

]
(2.81)

Ŷ ≡ −i1
2

[
â− â†

]
. (2.82)

These hermitian operators are effectively the real and imaginary parts of the â. Like
φ̂ and Q̂, they are canonically conjugate with the following commutator

[X̂, Ŷ ] = +
i

2
(2.83)

and for coherent states obey

〈α|X̂ |α〉 = Realα(t) (2.84)

〈α|Ŷ |α〉 = Imagα(t) (2.85)

〈α|[X̂ − 〈X̂〉]2|α〉 = 〈0|[∆X̂ ]2|0〉 = 1

4
(2.86)

〈α|[Ŷ − 〈Ŷ 〉]2|α〉 = 〈0|[∆Ŷ ]2|0〉 = 1

4
. (2.87)

The last two equations show that there are quantum fluctuations in X̂ and Ŷ (as
there must be since they do not commute with each other). The resulting uncertainties
in the measured values of these quantities play a central in understanding quantum
noise (Clerk et al., 2010). The energy of the oscillator (in units of ~Ω) is

ǫ̂ = X̂2 + Ŷ 2 = N̂ +
1

2
, (2.88)

so the number operator is simply

N̂ = X̂2 + Ŷ 2 − 1

2
. (2.89)

To understand the fluctuations in photon number, let us consider a coherent state
with amplitude α =

√
N̄ which is real. As illustrated in Fig. (2.5), fluctuations in X̂
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lead to photon number fluctuations (fluctuations in the length of the phasor) while
fluctuations in Ŷ lead to fluctuations in the phase of the coherent state as measured
in homodyne detection (Clerk et al., 2010). As we have seen, the coherent state is
nothing more than a displaced vacuum state

|α〉 = Uα|0〉. (2.90)

Instead of actively displacing the physical system, we can equivalently leave the system
alone and displace the coordinate system, transforming all operators according to the
usual rule

ã = U †αâUα = â+ α (2.91)

ã† = U †αâ
†Uα = â† + α∗. (2.92)

Note that the analog of Eq. (2.76) is

ã|0〉 = α|0〉. (2.93)

We commonly refer to α as the classical amplitude of the motion and if |α| ≫ 1
it dominates over the quantum fluctuations around the classical value of the ampli-
tude. As mentioned earlier, weakly coupling a system to an oscillator mode in a large
amplitude coherent state produces what is effectively a classical drive with negligible
quantum fluctuations. For example we might apply a force F̂ to an oscillator whose
coordinate is ŷ = yZPF(b̂+ b̂†) via the coupling

V̂ = −F̂ ŷ. (2.94)

For the case in which the force is supplied by linear coupling to a second ‘drive’
oscillator whose position operator is x̂ = xZPF(â + â†), the Hamiltonian would have
the generic form

H = ωRb̂
†b̂+ ωdâ

†â+ g(â+ â†)(b̂ + b̂†). (2.95)

Changing to a frame rotating with the drive oscillator via the unitary transformation

Û = e+iωdtâ
†â (2.96)

the Hamiltonian becomes

H1 = UHU † + U [−i d
dt
, U †] = ωRb̂

†b̂+ g
(
e−iωdtâ+ e−iωdtâ†

)
(b̂+ b̂†). (2.97)

If the drive oscillator is initially placed in a high amplitude coherent state it is conve-
nient to make the displacement transformation in Eq. (2.92) to obtain the transformed
coupling Hamiltonian

H2 = ωRb̂
†b̂+ g

(
e−iωdtα+ e−iωdtα∗

)
(b̂+ b̂†) +HQ. (2.98)

We see in the first two terms that the system oscillator is quantum and subject to a
classical drive. The last term describes the quantum fluctuations associated with the
drive

HQ = g
(
e−iωdtâ+ e−iωdtâ†

)
(b̂+ b̂†). (2.99)

Because (initially at least) the drive oscillator is now in the ground state (in the new
frame), the quantum fluctuations of the drive are small compared to the classical part,
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if (in the original frame) the drive amplitude corresponds to a state with many quanta:
n̄ = |α|2 ≫ 1. This will continue to remain true over time provided that that the drive
strength g|α| and the detuning ωd−ωR are such that the number of quanta transferred
from the drive to the system via the action of HQ remains much smaller than n̄.

A good example of this physics is provided by a two-port resonator with one weakly
coupled port and one strongly coupled port. The damping of the resonator will be
controlled by the port strongly coupled to the environment since most photons will
escape through that port. If the system is continuously driven at the weakly coupled
port, most photons from the drive line will be reflected, so a relatively large coherent
drive from a microwave signal generator is required to excite the resonator cavity. This
corresponds to the limit described above of small g and large α for which the classical
approximation is valid. All we require is that the power in the incoming drive wave be
mostly reflected so that it greatly exceeds the power emitted by the driven resonator
from its strongly coupled port. In the theory of parametric amplifiers, this is known
as the ‘stiff pump’ limit. No matter what the driven system does, the pump amplitude
stays fixed and essentially classical.

Exercise 2.6 Derive Eqs. (2.91-2.92) by differentiating with respect to α and solving the
resulting differential equation.

Exercise 2.7 Solve the Heisenberg equation of motion for b̂ using the Hamiltoninan in
Eq. (2.98) but neglecting the quantum fluctuation term HQ. Show that this classical drive
applied to an oscillator initially in a coherent state (including possibly the vacuum state)
always leaves the system in a coherent state.

Exercise 2.8 Show by direct computation that for the Bose-Einstein number distribution
for a thermal photon state

〈〈[N̂ − N̄ ]2〉〉 = N̄(N̄ + 1). (2.100)

If you are familiar with Wick’s theorem, use that to achieve the same result.

Exercise 2.9 X̂2 and Ŷ 2 are clearly Hermitian operators with non-negative eigenvalues.
How then can you explain the fact that

〈0|X̂2Ŷ 2|0〉 = −
1

16
(2.101)

is negative? Similarly how can

〈0|X̂Ŷ |0〉 =
i

4
(2.102)

be complex?
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Fig. 2.5 Quantum fluctuations of amplitude and phase quadratures in a coherent state |α〉.

Writing the X quadrature amplitude as

X̂ = α+∆X̂, (2.103)

we see that ∆X̂ has the same statistical properties in the coherent state |α〉 as X̂ does
in the vacuum state. The number fluctuations are therefore given by the usual Poisson
distribution result derived above

〈α|[N̂ − N̄ ]2|α〉 = 〈α|
[
2α∆X̂ +∆X̂

2
+∆Ŷ

2 − 1

2

]2
|α〉 = N̄ . (2.104)

Essentially the above results mean that a coherent laser or microwave beam is as
classical as possible. The fluctuations come only from the fact that the photon detection
events are discrete and the photons are sprinkled randomly throughout the beam in
an uncorrelated manner. A thermal beam has larger fluctuations because the photons
tend to bunch together (Clerk et al., 2010).

Fluctuations in the quadrature orthogonal to α cause uncertainty in a measurement
of the phase of the coherent state. For the case of α real and in the limit |α| ≫ 1, we
have6

∆θ̂ ≈ ∆Ŷ

α
(2.105)

and

〈α|(∆θ̂)2|α〉 = 1

4N̄
. (2.106)

6The ‘phase’ operator defined here does not have the angular periodicity of a phase and is only
valid for small angles.
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Thus we arrive at the fundamental number-phase uncertainty relation

〈α|(∆θ̂)2|α〉1/2〈α|(∆N̂ )2|α〉1/2 ≥ 1

2
. (2.107)

Coherent states are minimum uncertainty gaussian states which satisfy this relation
as an equality. Other non-gaussian states satisfy this relation only as an inequality.

From the equation of motion of the free oscillator we see that the quadrature
amplitudes obey

X̂(t) = cos(Ωt)X̂(0) + sin(Ωt)Ŷ (0) (2.108)

Ŷ (t) = cos(Ωt)Ŷ (0)− sin(Ωt)X̂(0) (2.109)

In Appendix B we study photons traveling in transmission lines and we again find that
the traveling modes are also harmonic oscillators. The above results provide the first
hint that the sinΩt and cosΩt quadratures of a quantum electrical signal are canoni-
cally conjugate and hence cannot be simultaneously measured with perfect accuracy.
Equivalently even the vacuum contains noise which will appear in any measurement
in which one attempts to measure both quadratures of the signal. Eq. (2.87) tells us
that this uncertainty gives a vacuum ‘noise energy’ (noise power per unit measurement
bandwidth) of half a photon (Clerk et al., 2010).

Exercise 2.10 Think through the above statement about noise energy at the classical level.
Consider a noise source which is white (i.e., with constant spectral density S) over some large
interval. Passing this noise through a filter which transmits a small bandwidth B centered
on frequency ω will yield a power of P = SB. The wider the bandpass the more power. Thus
we see that the spectral density is power per unit bandwidth which has units of energy. For a
quantum thermal source feeding a photomultiplier (which measures â†â), this is S = ~ωN̄ and
we say that ‘the noise energy is N̄ photons.’ A photomultiplier feed by vacuum noise has zero
output. However listening to the vacuum noise power through a phase preserving amplifier
or (equivalently) using a heterodyne detector which measures the power in the quadrature

amplitudes 〈X̂2 + Ŷ 2〉 = 1
2
yields a noise energy of half a photon (Clerk et al., 2010).

2.4 Coupled LC Resonators

Having thoroughly analyzed the simple LC oscillator, it is a useful exercise to consider
how to quantize a pair of LC oscillators connected by a coupling capacitor as shown
in Fig. (2.6). This will teach us how to handle slightly more complex circuits and will
set the stage for understanding the coupling of a qubit to a microwave resonator.

Choosing the fluxes Φ1 and Φ2 as the coordinates of the two oscillators, the La-
grangian can be written

L =
1

2
C1Φ̇

2
1 +

1

2
C2Φ̇

2
2 +

1

2
C0[Φ̇1 − Φ̇2]

2 − 1

2L1
Φ2

1 −
1

2L2
Φ2

2 (2.110)

It is convenient to use a matrix notation

L1

2
Φ̇CΦ̇− 1

2
ΦL−1Φ, (2.111)



Coupled LC Resonators 23

1L 1C

1

2L 2C

2

0C

Fig. 2.6 A pair of LC oscillators connected by coupling capacitor C0.

where the capacitance matrix is

C ≡
(
C1 + C0 −C0

−C0 C2 + C0

)
, (2.112)

and the inverse inductance matrix is

L−1 ≡
( 1

L1
0

0 1
L2

)
. (2.113)

At this point there are two ways to proceed, which are described below.

METHOD I: FIND THE HAMILTONIAN, THEN DIAGONALIZE. In the first
method we will use the given coordinates to find the canonical momenta and from
there construct the Hamiltonian which will contain a coupling between the two oscil-
lators.

The canonical momenta are given by

Qi ≡
δL
δΦ̇i

= CijΦ̇j , (2.114)

where we employ the Einstein summation convention for repeated indices. In terms of
the inverse of the capacitance matrix we have

Φ̇ = C−1Q. (2.115)

The Hamiltonian H = QiΦ̇i − L now takes the canonical form
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H =
1

2
QC−1Q+

1

2
ΦL−1Φ. (2.116)

The inverse of the capacitance matrix is

C−1 =
1

C1C2 + C0C1 + C0C2

(
C2 + C0 +C0

+C0 C1 + C0

)
, (2.117)

It is useful to define two frequencies and a coupling constant:

ω2
j =≡ 1

Lj

(
C−1

)
jj
, (2.118)

and

β ≡ C0√
(C1 + c0)(C2 + C0)

, (2.119)

which yields

C−1 =

(
L1ω

2
1 +β

√
L1L2ω1ω2

β
√
L1L2ω1ω2 L2ω

2
2

)
. (2.120)

We can now write the Hamiltonian H = H0 + V in terms of two oscillators with
masses Lj and coupled through their momenta

H0 =
1

2
L1ω

2
1Q

2
1 +

1

2L1
Φ2

1 +
1

2
L2ω

2
1Q

2
2 +

1

2L2
Φ2

2 (2.121)

V = β
√
L1L2ω1ω2Q1Q2. (2.122)

We quantize as usual by converting to operators with the canonical commutation
relation

[Q̂i, Φ̂j ] = −i~δij. (2.123)

Defining creation and annihilation operators in the usual way we have

H0 =

2∑

j=1

~ωj

(
â†j âj +

1

2

)
(2.124)

V = −β~√ω1ω2(â1 − â†1)(â2 − â†2), (2.125)

which can be diagonalized via a Bogoljubov transformation.

Exercise 2.11 Find the Bogoljubov transformation which diagonalizes H0+V defined above.

METHOD II: DIAGONALIZE THE LAGRANGIAN, THEN THE HAMILTONIAN.

The first method used the original coordinates and found their canonical momenta
and from there constructed the (non-diagonal) Hamiltonian. In the second method,
we will find the normal mode coordinates which diagonalize the Lagrangian. In terms
of these, the Hamiltonian will be automatically diagonal.
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When we try to diagonalize the Lagrangian in Eq. (2.111), we are faced with the
problem that the capacitance and inductance matrices do not commute and hence
cannot be simultaneously diagonalized by a unitary transformation. We can cure this
problem by making a similarity transformation which maps L−1 to the identity matrix.
We simply choose scaled coordinates

ψj =
1√
Lj

Φj . (2.126)

In terms of these the Lagrangian becomes

L =
1

2
ψ̇iAij ψ̇j −

1

2
ψiδijψj (2.127)

where

A ≡
(

1
Ω2

1

− β
Ω1Ω2

− β
Ω1Ω2

1
Ω2

2

)
, (2.128)

where we define frequencies (different from the previous method)

1

Ω2
1

≡ L1(C1 + C0) (2.129)

1

Ω2
2

≡ L2(C2 + C0). (2.130)

Since A commutes with the identity matrix, we can now proceed as usual to per-
form a rotation among the coordinates to diagonalize the Lagrangian. Let S be the
orthogonal transformation that diagonalizes A. The normal modes and eigenvalues are
then given by

ψ̃ = Sψ (2.131)

Ã =

(
1
Ω̃2

1

0

0 1
Ω̃2

2

)
= SAST. (2.132)

Exercise 2.12 Find the normal modes and eigenfrequencies above. Hint: Write A = Ā +
Zσz +Xσx and think of it as a spin problem which has eigenvalues

ǫ± = Ā±
√

X2 + Z2 (2.133)

and eigenfunctions which follow from

S =

(

+cos θ
2
+sin θ

2

− sin θ
2
+cos θ

2

)

, (2.134)

where tan θ = X/Z.



26 Quantum Electrical Circuits

2.5 Modes of Transmission Lines Resonators

The above lengthy discussion of the simple harmonic oscillator has laid the very impor-
tant groundwork for our next topic which is the quantum modes of transmission lines.
We will start with finite length transmission lines which have discrete electromagnetic
resonances, each of which will turn out to be an independent simple harmonic oscil-
lator. Then we will move on to the semi-infinite transmission line and discover that
it can act like a dissipative bath even though every one of its electrical elements is
non-dissipative.

Our finite length transmission line could be a length of ordinary coaxial cable or its
2D equivalent, the coplanar waveguide (CPW), which consists of a superconducting
wire evaporated on an insulating substrate and having superconducting ground planes
adjacent to it on the same surface as shown in Fig. (2.7). Such a system exhibits
many standing wave resonances and we will soon see that each resonance is an inde-
pendent harmonic oscillator equivalent to the simple LC oscillator just discussed. The
discretized equivalent circuit for the CPW resonator is also shown in Fig. (2.7). In our
initial analysis we will neglect the presence of the qubit and neglect the capacitors C0

at each end which couple the resonator to the external transmission lines. We can thus
assume in this first example open-circuit boundary conditions for which the current
(but not the voltage) vanishes at the ends of the resonator.

Fig. 2.7 Schematic illustration of a typical coplanar waveguide (CPW) resonator used in

circuit QED together with its discretized lumped-element equivalent circuit. The qubit lies

between the center pin and the adjacent ground plane and is located at an antinode of the

electric field, shown in this case for the full-wave resonance of the CPW. From (Blais et al.,

2004).

It is convenient to define a flux variable analogous to that used above but now
dependent on position (Devoret, 1997)
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Φ(x, t) ≡
∫ t

−∞
dτ V (x, τ), (2.135)

where V (x, t) = ∂tΦ(x, t) is the local voltage on the transmission line at position x
and time t. The inductance and capacitance per unit length are ℓ and c respectively.
Each segment of the line of length dx has inductance ℓ dx and the voltage drop along
it is −dx ∂x∂tΦ(x, t). The flux through this inductance is thus −dx ∂xΦ(x, t) and the
local value of the current is given by the constitutive equation

I(x, t) = −1

ℓ
∂xΦ(x, t). (2.136)

The Lagrangian for a system of length L (L is not to be confused with some discrete
inductance)

Lg ≡
∫ L

0

dxL(x, t) =
∫ L

0

dx

[
c

2
(∂tΦ)

2 − 1

2ℓ
(∂xΦ)

2

]
, (2.137)

The Euler-Lagrange equation for this Lagrangian is simply the wave equation

v2p∂
2
xΦ− ∂2tΦ = 0. (2.138)

The momentum conjugate to Φ(x) is simply the charge density

q(x, t) ≡ δLg

δ∂tΦ
= c∂tΦ = cV (x, t) (2.139)

and so the Hamiltonian is given by

H =

∫ L

0

dx

{
1

2c
q2 +

1

2ℓ
(∂xΦ)

2

}
. (2.140)

Let us next proceed to consider the classical normal mode solutions of Eq. (2.138).
If we assume a sinusoidal time-dependence with angular frequency ω,

Φ(x, t) = e−iωtφ(x), (2.141)

we arrive at the Schrödinger like eigenvalue problem

−∂2xφ(x) = k2φ(x), (2.142)

where k = ω/vp and the mode wave velocity is vp = 1√
ℓc
. The open-circuit (zero-

current) boundary conditions tell us that the eigenfunctions have vanishing derivative
at the boundaries. We choose a particular normalization for eigenfunctions which will
keep the equations looking as close to those of the single harmonic oscillator as possible

φn(x) =
√
2 cos(knx), (2.143)

where n ǫ {0, 1, 2, 3, . . .}, kn = nπ
L . Because for these boundary conditions the operator

∂2x is self-adjoint, and because the eigenvalues are non-degenerate, the eigenfunctions
have two helpful properties
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∫ L

0

dxφn(x)φm(x) = Lδnm (2.144)

∫ L

0

dx [∂xφn(x)][∂xφm(x)] = Lk2nδnm. (2.145)

From this it follows that the Lagrangian can be diagonalized using these (spatial)
normal modes as a basis. Let us parameterize the field Φ(x, t) by

Φ(x, t) =

∞∑

n=0

ξn(t)φn(x), (2.146)

where the ξn are arbitrary (i.e. not necessarily sinusoidal) functions of time. Substi-
tuting into the Eq. (2.137) and using Eqs. (2.144-2.145)

Lg =
1

2
Lc

∞∑

n=0

[∂tξn]
2 − ω2

nξ
2
n (2.147)

we see that each normal mode becomes an independent simple harmonic oscillator.
The momentum conjugate to the normal mode amplitude ξn is

qn =
δLg

δ∂tξn
= Lc∂tξn, (2.148)

so the Hamiltonian is

H =
1

2

∞∑

n=0

{
1

Lc
q2n + Lcω2

nξ
2
n

}
, (2.149)

which we can quantize as before. Before doing so, let us note that the n = 0 mode is a
‘free particle’ rather than a harmonic oscillator because its spring constant vanishes.
This mode simply corresponds to a uniform net charge distributed evenly along the
transmission line. For a free particle the momentum (in this case charge) is a constant
and the coordinate (flux) increases linearly with time. In most situations the total
charge is indeed simply a constant of the motion (and typically vanishes) and we can
ignore the zero mode altogether. We will assume this is the case henceforth.

We end up with a set of independent normal modes with coordinate ξn and conju-
gate momentum qn which when quantized can be expressed in terms of mode raising
and lowering operators in a manner analogous to Eq. (2.42)

ξ̂n =

√
~

2ωnLc
(ân + â†n) (2.150)

q̂n = −i
√

~ωnLc

2
(ân − â†n) (2.151)

where the ladder operators of the different modes obey

[ân, â
†
m] = δnm. (2.152)

Note that, just as in the single mode case in Eq. (2.42), there is a certain arbitrariness
in the choice of the phase of the destruction operators (which can be independently
varied for each separate mode).
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If we are coupling a qubit to a resonator at some particular position x, we need to
be able to express the flux and charge density operators at that point in terms of the
normal mode operators. Eq. (2.146) is readily extended to the quantum operators

Φ̂(x) =

∞∑

n

φn(x)ξ̂n, (2.153)

as is Eq. (2.139)

q̂(x) =
1

L

∞∑

n

φn(x)q̂n. (2.154)

Similarly, the analog of Eq. (2.53) for the voltage operator at point x is given by

V̂ (x) =
1

c
q̂(x) =

1

L

∞∑

n=0

φn(x)q̂n = −i
∞∑

n=0

√
~ωn

2Lc
(ân − â†n)φn(x). (2.155)

The total capacitance to ground of the resonator, Lc, enters this expression in a way
that is similar to lumped element oscillator expression in Eq. (2.53). (Recall that L is
the length of the resonator, not the inductance.)

Notice that the flux and charge density operators obey the following commutation
relation

[q̂(x), Φ̂(x′)] = −i~ 1
L

∞∑

n

φn(x)φn(x
′). (2.156)

Using the completeness relation (and recalling that the factor of L appears because
we did not normalize the eigenfunctions to unity) we end up with the standard field
theoretic relation

[q̂(x′), Φ̂(x)] = −i~δ(x− x′). (2.157)

Expressing the quantum Hamiltonian in Eq. (2.140) in terms of these operators, we
have simply

Ĥ =

∫ L

0

dx

{
1

2c
q̂2 +

1

2ℓ
(∂xΦ̂)

2

}
. (2.158)

As a ‘sanity check’ let us look at the Hamilton equations of motion. Using commutation
relation in Eq. (2.157) and its extension to

[q̂(x′), ∂xΦ̂(x)] = −i~∂xδ(x− x′). (2.159)

we arrive at

∂tΦ̂(y) =
i

~
[Ĥ, Φ̂(y)] =

1

c
q̂(y) (2.160)

∂tq̂(y) =
i

~
[Ĥ, q̂(y)] =

1

ℓ
∂2yΦ̂(y). (2.161)

and hence the quantum version of the wave equation in Eq. (2.138)

v2p∂
2
xΦ̂(x) − ∂2t Φ̂(x) = 0. (2.162)

When we studied coherent states of a single oscillator we found that they were
simply the vacuum state displaced in either position (flux) and/or momentum (charge).
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For a multi-mode resonator one can coherently displace a linear combination of the
of the normal modes. The familiar problem of solving the time evolution of a plucked
string is a good classical analog. Suppose that we wish to displace the resonator degrees
of freedom so that the local displacement obeys

〈Φ̂(x)〉 = ∆(x), (2.163)

where ∆ is some specified function. The analog of Eq. (2.72) is simply

U∆ = e−
i
~

∫
L
0

dx∆(x)q̂(x). (2.164)

a form which is familiar from the theory of the Luttinger liquid (Kane and Fisher,
1992b; Kane and Fisher, 1992a). Using Eq. (2.154) this can be understood in terms of
coherent displacement of each of the normal modes

U∆ = e−
i
~

∑
n ∆nq̂n =

∏

n

e−
i
~
∆nq̂n . (2.165)

Exercise 2.13 In analogy with Eqs. (2.91-2.92) show that

U†
∆Φ̂(y)U∆ = Φ̂(y) + ∆(y). (2.166)

Hint: It may be useful to scale ∆(x) by an overall factor θ and differentiate with respect to
θ.

2.6 ‘Black Box’ Quantization of Linear Circuits

We have so far studied a single LC oscillator and found that its quantum excitation
energy ~Ω is given directly by its classical frequency Ω. We also found in Eq. (2.50)
that the characteristic impedance Z =

√
L/C determines the size of the zero-point

fluctuations in flux and charge. The typical circuit that we will study is more complex
than a single LC oscillator and might even be a ‘black box’ whose properties we need
to determine. Suppose that we have such a black box and we have access to one port
of this structure as shown in Fig. (2.8a). The only thing we know (or assume) is that
all the elements inside the black box are linear and purely reactive; i.e., the black box
is a network of inductors and capacitors. It might for example be a transmission line
resonator such as we studied above. We may ultimately want to connect a qubit or
some measurement apparatus to the port of the black box. In order to predict the
quantum properties we need to know each of the normal modes of the box and the
size of their zero-point fluctuations as seen at the port. Some modes may be localized
inside the box and have very little amplitude at the port. Others may be more strongly
coupled to the port.

Since the black box is linear, we can probe it by applying a sinusoidal drive and
measuring the response. The are two ways to do this. First, one can hook up a current
source which forces current

I(t) = i[ω]ejωt + i∗[ω]e−jωt (2.167)
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Fig. 2.8 a) One-port black box containing an arbitrary reactive network. b) Lumped element

LC resonator. c) Imaginary part of the admittance of the LC resonator in (b) vs. dimension-

less frequency showing that the admittance passes through zero with positive slope at the

resonance frequency. d) Imaginary part of the admittance of a multi-resonance circuit with a

capacitor in the input line similar to (a). Notice that the slope of the admittance at each of

the zeros is different, corresponding to different characteristic impedances of the resonances.

through the circuit.7 The linear response of the circuit is determined by measuring the
resulting voltage at the input port

V (t) = v[ω]ejωt + v∗[ω]e−jωt (2.168)

The linear response coefficient that relates the voltage response to the drive current is
known as the impedance

v[ω] = Z[ω]i[ω]. (2.169)

Because the box contains only reactive elements (assumed finite in number) the impedance
is purely imaginary. The poles of Z[ω] determine the eigenfrequencies of the circuit
for which natural oscillations can occur without external input (when the input port
is open circuited). Note that this is consistent with the fact that an ideal current

7To avoid confusion with the current i we follow the electrical engineering convention of using
j = −

√
−1. In addition to avoid confusion between some function of time and its Fourier transform,

we will use the convention that Fourier transformed quantities have the frequency argument in square
brackets.
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source has infinite internal impedance and hence drives the circuit while effectively
keeping the input port open-circuited. The circuit presented in Fig. (2.9a) is a natural
representation of an arbitrary frequency-dependent impedance8. It is important to un-
derstand that in general, the circuit elements used in this mathematical representation
have no direct correspondence with any of the physical elements in the actual circuit.
Note that if there is a pole in the impedance at zero frequency, it corresponds to the

‘free-particle’ Hamiltonian of a capacitor, H = Q̂2

2C in series with the input (not shown
in Fig. (2.9a).

a) 

b) 

1L 2L 3L NL

1C 2C 3C NC

1L 2L 3L NL

NC3C2C1C

Fig. 2.9 a) Natural representation of an arbitrary impedance (assuming for simplicity that

the impedance vanishes at zero frequency). The jth pole of the impedance occurs at the

frequency of the jth collective mode ωj = 1/
√

LjCj and can be detected by using an in-

finite-impedance current source to inject RF current into the input port and measuring the

resulting RF voltage across across the port. b) Natural representation of an arbitrary admit-

tance (assuming for simplicity that the admittance vanishes at zero frequency). The poles of

the admittance determine the natural oscillation frequencies of the circuit when its input is

shorted. These can be detected by using a zero-impedance RF voltage source to put a drive

voltage across the input port and measuring the resulting RF current that flows into the port.

8Note that this particular representation has the property that there is a dc connection through
all the inductors to ground. Hence the impedance vanishes at zero frequency. If this is not the case for
the physical circuit, then we must include a series capacitor in the input line. This would be necessary
for example to represent the impedance of the circuit shown in Fig. (2.8a).
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The second way to measure the linear response is to attach a zero-impedance
voltage source to the input and measure the resulting current response. The linear
response coefficient that relates the current response to the voltage drive is known as
the admittance

i[ω] = Y [ω]v[ω] (2.170)

which is simply the inverse of the impedance

Y [ω] = Z−1[ω]. (2.171)

The circuit presented in Fig. (2.9b) is a natural representation of an arbitrary frequency-
dependent admittance. The poles of the admittance determine the natural oscillation
frequencies of the circuit when its input port is short-circuited. Again, this is consistent
with the excitation of these modes, this time using a zero-impedance voltage source.
To reiterate, the poles of the admittance (zeros of the impedance) correspond to ef-
fective series LC resonances which would occur if the input port were short-circuited.
These can be important but for the particular case where nothing is hooked up to the
external port, these poles do not correspond to active degrees of freedom. An inductor
and capacitor in series cannot oscillate on their own at non-zero frequencies unless the
circuit is closed at the input port. Finally, we note that according to Foster’s theorem
(Foster, 1924), the (imaginary) admittance of a reactive circuit always passes through
zero with positive slope so therefore each zero must be separated from the next by a
pole as shown in Fig. (2.8d).

Physically, poles of response functions are the most natural thing to consider. How-
ever in numerical simulations, zeros are sometimes mathematically easier for a com-
puter to handle than poles. Hence it can be convenient to work with the impedance
representation in Fig. (2.9a) but numerically ascertain the zero-crossings of the admit-
tance rather than the poles of the impedance.

As an example, suppose that the black box contains a single parallel LC oscillator
as shown in Fig. (2.8b). Then the admittance is simply

Y [ω] = jωC +
1

jωL
=

+j

Z0

(
ω

ωR
− ωR

ω

)
, (2.172)

where Z0 ≡
√

L
C is the characteristic impedance of the resonance. Note that this

is indeed purely imaginary and further that it passes through zero at the resonance
frequency Ω = 1√

LC
as shown in Fig. (2.8c). The admittance is zero because the

inductor and capacitor have opposite admittances at the resonance frequency. But
this is precisely the condition for self-sustaining oscillation where the currents in the
inductor and capacitor are opposite to each other and no external input is needed.

It turns out that knowing the admittance (or impedance) of the box port as a
function of frequency completely characterizes the classical and the quantum properties
of the black box, as long as it contains only linear elements(Manucharyan et al., 2007).
We have already seen a hint of this in Eqs. (2.43-2.44) where we learned that the
characteristic impedance of a resonance determines the zero-point fluctuations of the
charge and flux degrees of freedom. Of course, knowing the frequency of an oscillator
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we can immediately write down the quantum Hamiltonian (neglecting the zero-point
energy)

H0 = ~Ωâ†â. (2.173)

This is not enough however. If we couple an external circuit to our black box we
need to know the matrix elements of the coupling Hamiltonian. For this we need
to know how to express the charge and flux in terms of a and a† and hence must
know the characteristic impedance of the resonance. Happily, the slope with which
the admittance passes through zero determines the characteristic impedance of the
resonance

Ω

(
∂Y

∂ω

)

Ω

=
2j

Z0
, (2.174)

so that

Z0 =
2j

Ω
(
∂Y
∂ω

)
Ω

. (2.175)

Using Eqs. (2.43-2.44) we can then find any physical quantity we desire.
To see the generality of this result, consider the example of the lumped element

circuit in Fig. (2.10). If L1 +L2 = L then this has the same bare resonance frequency
Ω but clearly will have a different coupling to the port. Use of Eq. (2.44) yields

Φ2
ZPF =

~ΩL

2

(
L1

L1 + L2

)2

, (2.176)

which is just what we expect from the transformer turns ratio.

1L

C

I
Q

Q
2L

Fig. 2.10 Single port black box containing a simple LC oscillator with the port connected

to an inductive divider with L1 + L2 = L.

Let us suppose for example that we couple to our black box through an inductor
Lc as shown in Fig. (2.11). The coupling Hamiltonian is
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H1 =
1

2Lc

(
Φ̂− Φ̂in

)2
. (2.177)

The operator Φ̂in is either a classical control field or is a quantum operator for whatever
system we hook up to our black box. Now that we know impedance of the resonance,
we know how to express Φ̂ using Eq. (2.44) so that we have

H1 =
1

2Lc

(
ΦZPF(â+ â†)− Φ̂in

)2
. (2.178)

The case of capacitive rather than inductive coupling is more complex as can be
seen from the example of two capacitively coupled oscillators shown in Fig. (2.6) which
we discussed earlier. We found that it was easy to write down the Lagrangian, but
finding the Hamiltonian required inverting the capacitance matrix for the entire sys-
tem. Hence if we are going to use the flux variable at the input port as the coordinate,
it is usually easiest to proceed by treating the coupling capacitor as being inside the
black box.

cL
in

Fig. 2.11 Coupling to a blackbox via an inductor.

The extension of these results to the case of a multi-mode black box Hamiltonian
is simply

H0 =
∑

m

Ωmâ
†
mâm, (2.179)

where the summation is over the different modes and the flux operator at the port of
the black box is simply

Φ̂ =
∑

m

Φ
(m)
ZPF

(
âm + â†m

)
. (2.180)

This is simply a statement that the voltage across the input port is the sum of the
voltages across each of the resonator elements in series as shown in Fig. (2.9a).
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This ‘black box’ formalism will prove useful if it is possible to either measure, or
use finite element simulations to compute, the admittance as a function of frequency.
So far we have only discussed quantization of linear circuits which are equivalent to
coupled simple harmonic oscillators. Qubits are of course not linear circuit elements,
but the formalism developed here is especially useful for the study of transmon qubits
coupled to resonators since as we will see in Chap. (4), the transmon qubit is essentially
a weakly anharmonic oscillator. The generalization of the discussion above to the
coupling of a weakly anharmonic oscillator to a linear black box (Manucharyan et al.,
2007) is discussed in detail in Appendix C. The reader should familiarize herself with
the discussion of the transmon qubit in Chap. (4) before studying Appendix C.
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Superconductivity

In these notes I will not touch upon the microscopic theory of superconductivity.
[For an introduction see the classic text by Tinkham (Tinkham, 1996).] Rather I
will present only the minimal phenomenology needed to understand the Josephson
effect in small circuits containing tunnel junctions. A useful overview of Josephson
tunnel junctions and various qubit circuits may be found in the papers by Devoret and
Martinis (Devoret and Martinis, 2004) and Clarke and Wilhelm (Clarke and Wilhelm,
2008).

An ordinary (normal-state) tunnel junction consists of two metallic electrodes sep-
arated by a thin oxide barrier which allows electrons to tunnel quantum mechanically
from one electrode to the other. Because even in rather small (mesoscopic but not
nanoscopic) grains, the size of the grain is much larger than the Ångström scale of a
typical Fermi wavelength, the ‘particle-in-a-box’ quantum level spacing is extremely
tiny and the density of states is essentially a continuum as shown in Fig. (3.1a). As a
result, the tunneling of electrons is an incoherent process well-described by the irre-
versible dynamics of Fermi’s Golden Rule. Under voltage bias V the chemical potential
is higher in one grain than the other by an amount eV . Electrons in this energy in-
terval are able to tunnel from the ‘cathode’ to ‘anode’ without blocking due to the
Pauli exclusion principle. As a result the tunnel current is linear in the applied voltage
(on voltage scales low compared to the tunnel barrier height) and the junction can
be characterized as a simple resistor.1 Because the two electrodes are separated by
such a thin barrier they also form a capacitor so the equivalent circuit is that shown
in Fig. (3.1b) and the incoherent relaxation of the charge through the junction has
the familiar characteristic time scale τ = RC. Obviously this incoherent behavior is
not what we seek in a qubit and so we must turn to superconductivity to rescue the
situation.

Let us begin our discussion of superconductivity by considering a small isolated
metallic electrode of some metallic superconductor. Because the electrode is isolated,
the number of electrons in it is fixed and well-defined. For the moment, let us as-
sume that the electron number has even parity. The essential physics of an ordinary
superconductor is that effective attractive interaction resulting from virtual phonon-

1Strictly speaking this is not correct. There are certain novel many-body effects associated with
the quantum fluctuations of the environment to which the tunnel junction is coupled which can
produce singularities in the conductance at low temperatures and low bias voltages (Pierre et al.,
2001). These environmental fluctuation effects become pronounced as the impedance of the source
driving the junction increases and begins to approach the quantum of resistance. See (Devoret et al.,
1990; Girvin et al., 1990).
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a)

b)

F eV

F

R C

Fig. 3.1 Normal metal tunnel junction with equilibrium Fermi energy ǫF and applied voltage

bias V . (a) The single-particle spectrum in each electrode is dense and the occupied (empty)

states are indicated by solid (dotted) lines. (b) Lumped-element equivalent circuit. N.B. this

is an approximate equivalent circuit, only valid when the junction is voltage biased by a

zero-impedance source, so that certain many-body Coulomb interaction effects are negligible.

exchange leads to pairing of electrons of opposite spin into so-called Cooper pairs. If
the number of electrons in the electrode is even, then the quantum ground state has
all of the electrons paired up into a special non-degenerate low-energy ground state.
The system has a finite excitation gap, 2∆, defined by the energy needed to break a
Cooper pair into two separate quasiparticles. The scale of this gap is typically several
kelvin. As illustrated in Fig. (3.2a), the quasiparticle states form a near continuum
above the gap. (Only if the electrode is extremely tiny (on the few nm scale) will the
single-particle level spacing be appreciable. We will not consider this limit further.)

Recalling that a temperature of 1.0K corresponds to a frequency of approximately
21 GHz, we will be considering the limit of low temperatures and low frequencies
relative to the gap: kBT, ~ω ≪ 2∆. Hence to a good approximation we can say that
the primary effect of superconductivity is the reduce the vast Hilbert space of the
electrons in the electrode to a single quantum state, |N〉, labeled by the number of
pairs which is a constant of the motion. This simplification is very important and
will explain how we can produce macroscopic circuit elements whose quantum energy
level spectrum is as simple as that of a single hydrogen atom. Obviously however we
have overshot the mark because a quantum system with only one energy level cannot
be used to make a two-level qubit. To repair this error, consider a system with two

metallic electrodes connected by a tunnel junction as shown in Fig. (3.2b). We will
again limit our attention to the quantum ground state of each electrode, assuming the
electrons in each are fully paired up. Once again the total number of electron pairs in
the system is fixed to some value N = NL+NR. Unlike the case of the single electrode,
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Fig. 3.2 a) Spectrum of a superconducting Cooper pair box (CPB). For the case of an even

number of electrons, there is a unique non-degenerate state separated from the excited states

by a gap 2∆. b) A pair of CPB’s connected by a tunnel barrier to form a Josephson junction.

Ignoring the Coulomb energy, there is a large family of degenerate ground states labeled by

an integer m representing the number of Cooper pairs transferred from one condensate to

the other. c) ‘Tight-binding’ lattice along which the junction ‘moves’ via Josephson tunneling

between ‘sites’ labeled by adjacent values of m.

the total number of pairs no longer uniquely specifies the quantum state. We must
specify the number on each electrode. A useful notation for the set of low-energy states
is:

|m〉 = |NL −m,NR +m〉, (3.1)

where m defines the number of pairs that have transferred through the tunnel junction
from the left electrode to the right electrode starting from some reference state with
pair number NL(R) on the left (right) electrode.

The two electrodes form a small capacitor, but for the moment we will ignore the
Coulomb energy that builds up as Cooper pairs are transferred from one electrode
to the other. In this case we then have a one-dimensional family of states labeled by
the integer m, and which are degenerate in energy2 Remarkably, it turns out that
the tunnel junction permits pairs of electrons to coherently tunnel together from one
side to the other. We will discuss the microscopic details further below, but for now
consider the phenomenological Hamiltonian

2Here we need to point out the crucial difference between the superconducting gap and the gap
in a band insulator like silicon. The latter gap is tied to a particular density at which the electrons
fill up all the valence band (bonding orbitals) and none of the conduction band. In a superconductor
the particular density is not important–the gap follows the Fermi surface as it expands and contracts
with density.
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HT = −1

2
EJ

∑

m

{|m〉〈m+ 1|+ |m+ 1〉〈m|} . (3.2)

The parameter EJ is called the Josephson coupling energy and is a measure of the
ability of Cooper pairs to tunnel through the junction. To rather good accuracy EJ is
given by the Ambegaokar-Baratoff relation (Ambegaokar and Baratoff, 1963)

EJ =
1

2

h

(2e)2
GN∆, (3.3)

where GN = 1/RN is the normal state conductance. One can understand this expres-
sion by noting that the microscopic tunneling Hamiltonian describes single-electron
(not pair) tunneling across the junction. Thus coherent tunneling of a pair of electrons
must be second order in the tunneling matrix element tLR. In the intermediate state
after the first tunneling, we have an unpaired electron in each island and so there
is an energy of order 2∆ appearing in the denominator. Naively, this suggests that
the Josephson coupling will scale inversely with the size of the superconducting gap.
However we note that after the second electron tunnels, we are left with a pair of
holes in one island and an extra pair of electrons in the other. Taking into account the
quantum amplitudes for both of these pairs to disappear into the condensate brings in
two more factors of ∆ (and two factors of the density of states to keep the dimensions
correct) which explains why EJ is in fact linearly increasing in the superconducting
gap. The normal state conductance is computed using Fermi’s Golden Rule for the
tunneling rate which is of course proportional to the square of the matrix element tLR.
Hence we see (qualitatively at least) the origin of Eq. (3.3).

You might wonder why EJ is not quartic in the tunneling matrix element since
the effective matrix element for the pair tunneling is quadratic and perhaps we should
square this as in Fermi’s Golden Rule. The answer goes to the heart of the Josephson
effect. Our effective Hamiltonian HT connects discrete states (labeled by m) not a
discrete state to a continuum. We will find not the irreversible incoherent dynamics of
Fermi’s Golden Rule (as we did in the normal metal case) but rather coherent tunneling
which connects a set of degenerate states {|m〉}. We will in effect be doing degenerate
perturbation theory (that is, finding a linear superposition of the degenerate states
which diagonalizes HT) and finding energy eigenvalues (and corresponding dynamics)
which is first order in EJ, not second order.

We see that HT causes m to either increase or decrease by unity corresponding to
the tunneling of a pair to the right or the left. We can gain some intuition by noticing
that HT is identical to that of a one-dimensional tight-binding lattice model with
near-neighbor hopping amplitude EJ, as illustrated in Fig. (3.2c). The (unnormalized)
eigenfunctions are plane-wave like states labeled by a dimensionless ‘wave vector’ ϕ =
ka where a = 1 is the ‘lattice constant.’

|ϕ〉 =
+∞∑

m=−∞
e+imϕ|m〉. (3.4)

Recalling the cosine dispersion of the one-dimensional tight-binding band with near-
neighbor hopping we see that
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HT|ϕ〉 = −EJ cosϕ|ϕ〉. (3.5)

Imagine a wave packet moving to the right on our tight-binding lattice. This corre-
sponds to a net current of Cooper pairs coherently tunneling through the junction
causing the ‘position’ 〈m〉 to increase linearly with time. The group velocity of the
packet is given by the derivative of the energy with respect to wave vector

vg(ϕ) =
1

~

∂

∂ϕ
[−EJ cosϕ], (3.6)

so the net current flowing is given by the celebrated (first) Josephson relation

I(ϕ) = 2e vg(ϕ) =
2e

~
EJ sinϕ. (3.7)

The maximum possible coherent (dissipationless) current occurs at ϕ = π/2 and is
called the critical current

Ic =
2e

~
EJ. (3.8)

If more current than this is forced through the junction, the voltage rises from zero to
a high value above the excitation gap and our low-energy effective model is no longer
applicable.

As an alternative approach to the derivation of the Josephson relation for the
current, let us define the operator n̂ to be the number operator for the Cooper pairs
transferred across the junction

n̂ ≡
∑

m

|m〉m〈m|. (3.9)

Hamilton’s equation of motion gives for the current operator

Î ≡ 2e
dn̂

dt
= 2e

i

~
[HT, n̂] = −i e

~
EJ

∑

m

{|m〉〈m+ 1| − |m+ 1〉〈m|} . (3.10)

Next we simply note that the plane wave energy eigenfunctions are also eigenfunctions
of the current operator obeying

Î|ϕ〉 = Ic sinϕ|ϕ〉 (3.11)

which is of course equivalent to Eq. (3.7).

Exercise 3.1 Derive Eq. (3.11).



42 Superconductivity

Equivalently we note that in the ϕ representation, the wave function is given by

ψ(ϕ) = 〈ϕ|ψ〉. (3.12)

By using Eq. (3.9) and Eq. (3.4), we see that

n̂|ϕ〉 = −i d
dϕ

|ϕ〉. (3.13)

Thus it follows that in the ϕ representation, the number operator is

n̂ = +i
d

dϕ
. (3.14)

The confusing sign change comes from considering

〈ϕ|n̂|ψ〉 = +i
d

dϕ
ψ(ϕ). (3.15)

From this it follows that

Î = 2e
i

~
[HT, n̂] = 2e

i

~
[−EJ cosϕ,+i

d

dϕ
] = Ic sinϕ. (3.16)

We continue for the moment to ignore the Coulomb interaction, but as a first step
towards including it, let us think about the situation where an external electric field
is applied and maintained in such a way that there is a fixed voltage drop V across
the tunnel junction. This adds to the Hamiltonian a term

U = −(2e)V n̂. (3.17)

Hamilton’s equation of motion yields the equally celebrated (second) Josephson
relation3

~∂tϕ = −∂H
∂n̂

= 2eV, (3.18)

relating the time rate of change of the ‘momentum’ ~ϕ to the ‘force’ 2eV . Equivalently,
the solution of the Schrödinger equation is

|Ψ(t)〉 = e+
i
~
EJ

∫
t
0
dτ cosϕ(τ)|ϕ(t)〉, (3.19)

where

ϕ(t) = ϕ(0) +
2e

~
V t. (3.20)

3As we will discuss in Chap. (4), the fact that the time derivative of the phase variable is pro-
portional to the voltage means that ϕ is directly proportional to the flux variable introduced in
Chap. (2).
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Exercise 3.2 Verify for yourself that Eq. (3.19) does indeed solve the Schrödinger equation:

i~∂t|Ψ(t)〉 = (HT + U)|Ψ(t)〉. (3.21)

The overall phase factor in front of the wave function is not particularly important,
but the time variation of the ‘wave vector’ ϕ(t) is extremely important because it leads
to the ac Josephson effect, namely that dc voltage bias leads to an ac current

〈Î(t)〉 = Ic sin(ϕ(0) + ωt) (3.22)

where the ac Josephson frequency is given by

ω = 2π
2e

h
V. (3.23)

The inverse flux quantum in frequency units is

2e

h
≈ 483.597891(12)MHz/µVolt. (3.24)

Since frequency is the easiest physical quantity to measure with high accuracy, the ac
Josephson effect finds great practical use in metrology to maintain (but not define)
the SI volt.

To summarize our results, we are using here a representation in which the phase
ϕ(t) across the Josephson junction is viewed as a (dimensionless) wave vector. The
Hamiltonian of the junction with voltage bias V is

H = −EJ cosϕ− 2eV n̂, (3.25)

where in the ϕ representation, the number operator has the form

n̂ = +i
d

dϕ
. (3.26)

The pair of Hamilton equations

∂n̂

∂t
=

∂H

∂~ϕ
(3.27)

~∂tϕ = −∂H
∂n̂

(3.28)

correspond to the pair of Josephson relations found in Eq. (3.7) and Eq. (3.18).
Stepping away from the particular expression of the Hamiltonian in the ϕ repre-

sentation, we can write the general abstract representation of the Hamiltonian as

H = −EJĉosϕ− 2eV n̂. (3.29)

As noted earlier, for the case of an isolated Josephson junction, the number of Cooper
pairs transferred through the junction is a well-defined integer and hence the state
|ϕ〉 and the state |ϕ+2π〉 are identical. Hence the wave function ψ(ϕ) obeys periodic
boundary conditions. Because of this there is no operator ϕ̂. Only operators that
preserve the periodic boundary conditions (such as ĉosϕ and n̂ = +i d

dϕ) exist.
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Superconducting Qubits

So far we have studied a single isolated Josephson junction which is able to coherently
transfer Cooper pairs from one metallic island to another. Our discussion of this simple
structure (known as the Cooper pair box) has been incomplete because it has neglected
the fact that as current flows through the junction, charge builds up on the islands and
the Coulomb energy becomes important. Once we include the Coulomb interaction, we
will see that this structure makes an excellent artificial atom which can be used as a
superconducting qubit. The first evidence that Josephson tunneling causes the Cooper
pair box to exhibit coherent superpositions of different charge states was obtained by
Bouchiat et al.(Bouchiat et al., 1998). This was followed in 1999 by the pioneering
experiment of the NEC group (Nakamura et al., 1999) demonstrating time-domain
control of the quantum state of the CPB using very rapid control pulses to modulate
the offset charge.

The remarkable recent progress in creating superconducting quantum bits and ma-
nipulating their states has been summarized in several reviews (Devoret and Martinis,
2004; Esteve and Vion, 2005; Wendin and Shumeiko, 2006; Wendin and Shumeiko,
2007; Clarke and Wilhelm, 2008; Schoelkopf and Girvin, 2008; You and Nori, 2005;
Nori, 2008; Korotkov, 2009). Nearly 30 years ago Leggett discussed the fundamental is-
sues concerning the collective degrees of freedom in superconducting electrical circuits
and the fact that they themselves can behave quantum mechanically (Leggett, 1980).
As noted earlier, the essential collective variable in a Josephson junction (Devoret and
Martinis, 2005) is the phase difference of the superconducting order parameter across
the junction. The first experimental observation of the quantization of the energy lev-
els of the phase ‘particle’ was made by Martinis, Devoret and Clarke in 1985 (Martinis
et al., 1985; Clarke et al., 1988).

A number of different qubit designs, illustrated in Fig. (4.1) and Fig. (4.2) have been
developed around the Josephson junction including the Cooper pair box (CPB) (Averin
et al., 1985; Büttiker, 1987; Lafarge et al., 1993; Bouchiat et al., 1998; Nakamura
et al., 1999; Vion et al., 2002; Koch et al., 2007; Schreier et al., 2008) based on charge,
the flux qubit (Mooij et al., 1999; van der Wal et al., 2000; Chiorescu et al., 2003),
and the phase qubit (Martinis et al., 2002; Berkley et al., 2003). Devoret and co-
workers have recently introduced the fluxonium qubit (Manucharyan et al., 2009b;
Manucharyan et al., 2009a) in which the small Josephson junction is shunted by a
very high inductance created from a string of larger Josephson junctions. Fig. (4.3)
shows an ‘evolutionary phylogeny’ for these different types of qubits. We will turn now
to a discussion of the Hamiltonians of these different types of qubits and subsequently
to an analysis of the relative merits in terms of their sensitivity to noise perturbations.
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Once we understand the Hamiltonians we will be in a position to classify the qubits
according to their location in the ‘Mendeleev Table’ shown in Fig. (4.4). The lectures
by Daniel Esteve will discuss the different methods by which the state of different
qubits can be read out.
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island 
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250 m 

single
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a) b) 

second island 

or ground 

Fig. 4.1 a) Cooper pair box qubit (R. Schoelkopf lab) and b) its equivalent circuit showing

a voltage source biasing the box through a coupling (‘gate’) capacitor cg. The cross denotes

the Josephson junction. The voltage source may represent an intentionally applied bias or be

the result of random charges in the insulating substrate supporting the device. The particular

device illustrated in (a) is a transmon qubit in a 3D cavity for which there is no dc bias applied

(although there may be a random offset voltage due to charges trapped in the substrate).

a) b)gbiasI
g g

c)

Fig. 4.2 Inductively shunted qubits. a) Phase qubit with a transformer flux bias circuit

driven by current Ibias. Josephson junction is indicated by box with cross. b) Fluxonium

qubit. The shunt inductor has been replaced by an array of a large number of Josephson

junctions. The array junctions are chosen to have a sufficiently large ratio of Josephson

energy EJ to charging energy EC that phase slips can be neglected and the array is a good

approximation to a very large inductor. Flux bias circuit not shown. c) Flux qubit consisting

of a superconducting loop with three Josephson junctions. Flux bias circuit not shown.
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Fig. 4.3 Evolutionary phylogeny of superconducting qubits. (Courtesy M. Devoret.)

4.1 The Cooper Pair Box

The Cooper pair box (CPB) (Devoret, 1997) is topologically distinct from the other
designs shown in Fig. (4.2) in that it has no wire closing the loop around the junction.
The Hamiltonian will be described below and derived in detail in Appendix A. The
number of Cooper pairs transferred through the junction is a well-defined integer as
we have already discussed in detail. The integer charge implies the conjugate phase
is compact; that is, in the phase representation, the system obeys periodic boundary
conditions. As we will see below, this implies that charge-based qubits are sensitive
to stray electric field noise, but that this can be overcome by putting the Cooper pair
box in the ‘transmon’ regime where the Josephson tunneling energy dominates over
the Coulomb charging energy (Koch et al., 2007; Houck et al., 2009).

Our previous discussion of the Josephson effect has neglected the Coulomb interac-
tion. Let us define the charging energy associated with the transfer of a single electron
to be

EC =
e2

2CΣ
, (4.1)

where CΣ = CJ + Cg is the total capacitance between the island electrodes. For the
equivalent circuit shown in Fig. (4.1) where the CPB is biased by a low impedance
voltage source (Devoret, 1997), the total capacitance connecting the island to ground is
the sum of the capacitance across the junction plus the gate capacitance: CΣ = CJ+Cg.
The Coulomb energy to transfer a Cooper pair is four times larger than for a single
electron, and so the Coulomb energy operator is given by

Û = 4EC(n̂− ng)
2, (4.2)

where

ng ≡ −CgV

2e
(4.3)
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J C
/E E

Fig. 4.4 ‘Periodic Table’ of superconducting qubits. EJ is the tunneling Josephson energy,

4EC is the energy cost to charge the junction with one Cooper pair, and EL/2 is the energy

cost to ‘charge’ the shunt inductor with one flux quantum. (Courtesy M. Devoret.)

is called the dimensionless ‘gate charge’ or ‘offset charge’ and represents either the
effect of an externally applied electric field or some microscopic junction asymmetry
which breaks the degeneracy between positive and negative charge transfers (Devoret,
1997). The number operator n̂ has integer eigenvalues, while ng is a continuous vari-
able, which may either intentionally, or randomly and uncontrollably, fluctuate. The
effects of such fluctuations on the coherence of the qubit will be discussed in Chapter
(5).

As we noted earlier, from Eq. (3.4) we see that ϕ is a compact variable; that is, the
state |ϕ+2π〉 is identified with the state |ϕ〉. Hence without loss of generality we may
take the wave vector ϕ to live in the first Brillouin zone ϕ ǫ [−π,+π], or equivalently
on a circle. In fact, because of this periodic boundary condition, it is convenient to
view ϕ as an angular coordinate living on a circle, rather than as a quasi-momentum
as we have been doing until now. In this picture, we reinterpret the expression in
Eq. (3.14) as telling us that the number operator n̂ is nothing more than (minus) the
angular momentum conjugate to the angle ϕ. Because ϕ is compact, the conjugate
(dimensionless) angular momentum n̂ naturally has integer eigenvalues which is just
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the property that we require for the operator representing the number of Cooper pairs
which have been transferred through the Josephson junction. Except for the ng term
(to which we will return shortly) the Hamiltonian becomes that of a quantum rotor
in a gravitational field (see Fig. (4.5)

H = 4EC (n̂− ng)
2 − EJĉosϕ, (4.4)

where the charging energy determines the (inverse) moment of inertia, and the Joseph-
son energy is a measure of the torque produced by gravity1

Fig. 4.5 The Cooper pair box Hamiltonian in the phase representation is equivalent to that

of a quantum rotor. The offset charge ng is equivalent to an Aharonov-Bohm flux which

produces a Berry phase proportional to the winding number of the rotor trajectory. Unlike

other qubit circuit topologies, the rotor wave function obeys periodic boundary conditions.

From (Koch et al., 2007).

We know that for small amplitude oscillations, the classical quantum rotor is very
nearly a simple harmonic oscillator. This can be seen by expanding the cosine to second
order (an approximation that is valid in the quantum case in the limit EJ ≫ EC where
the zero-point fluctuations in the phase are small). Up to an irrelevant constant in
the energy (and ignoring the offset charge for the moment) we have for the classical
Hamiltonian

H ≈ 4ECn
2 +

1

2
EJϕ

2. (4.5)

The replacement of the cosine term which is correctly periodic in ϕ by the quadratic
approximation is quite subtle. This is a simple harmonic oscillator only if we extend
ϕ from a compact variable living on a circle to a non-compact variable living on the

1This jumping back and forth between representations can easily give beginners a headache. Notice
that previously when ϕ was a momentum and we were studying the pair tunnel Hamiltonian HT, we
were perfectly happy to have a kinetic energy but no potential energy. This is much like the situation
of a particle moving freely in space except here it is hopping on a lattice. Now if we think of ϕ as
a coordinate, we have to think of the Josephson energy as potential energy. Without the Coulomb
energy EC, our rotor has infinite moment of inertia (and hence no kinetic energy and no dynamics).
Only when we add the charging energy do we get a quantum fluctuations in the phase and dynamical
oscillations of our qubit. Confusingly this situation is sometimes described by saying that without
the charging energy, the phase ϕ is classical.
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real line. For the (quantum) harmonic oscillator, we do not have the requirement
that the wave function be periodic in ϕ. If however EJ/EC is large enough the wave
function will have significant support only near ϕ = 0 and hence we are not making a
significant mistake by ignoring the requirement of periodic boundary conditions. The
boundary condition of vanishing at infinity is close enough because the wave function
is extremely small at ϕ = ±π so very nearly obeys the required periodic boundary
conditions. Further, the small excursions in ϕ mean that the Taylor series expansion of
the cosine is justified. Under these conditions we obtain a quantum harmonic oscillator
with Hamiltonian

H ≈ 4ECn̂
2 +

1

2
EJϕ̂

2 (4.6)

with n̂ now being the ordinary linear (not discrete angular) momentum with continuous
spectrum.

It is interesting to try connect the classical Hamiltonian of this Cooper pair box to
the classical LC oscillator we studied previously. From the second Josephson relation
in Eq. (3.18) we find that the phase angle ϕ is directly proportional to the flux variable
Φ defined in Eq. (2.25) used in the quantization of the LC oscillator.

ϕ =
2e

~
Φ = 2π

Φ

Φ0
. (4.7)

Thus each time the flux variable changes by one flux quantum, the superconducting
phase variable winds by 2π. The classical Lagrangian for the Cooper pair box can be
written

L =
1

2
CΦ̇2 + EJ cos

(
2π

Φ

Φ0

)
, (4.8)

and the Hamiltonian becomes

H =
1

2C
Q2 − EJ cos

(
2π

Φ

Φ0

)
. (4.9)

Expanding the cosine term about Φ = 0 to lowest order (and dropping the zeroth
order term) we have

H ≈ 1

2C
Q2 +

1

2LJ
Φ2, (4.10)

where the (small signal) effective inductance of the Josephson junction is given by

LJ =

(
~

2e

)2
1

EJ
. (4.11)

In this approximation, the CPB becomes a simple harmonic oscillator with resonant
frequency (known as the Josephson plasma frequency) given by

ΩJ ≡ 1√
LJC

=
1

~

√
8EJEC. (4.12)

The Taylor series expansion of the cosine is justified only if we are discussing small
amplitude motions. Classically we can always choose to study this limit. Quantum
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mechanically, we are forced to deal even in the ground state with zero-point fluctuations
in Φ. From Eq. (2.44) we see that (in the harmonic approximation used above)

2π
ΦZPF

Φ0
=

(
2
EC

EJ

)1/4

, (4.13)

so the harmonic approximation is, as suggested above, self-consistent in the limit
EJ ≫ EC. In the quantum rotor picture, this corresponds to strong gravity and large
mass (moment of inertia).

For general flux Φ, not necessarily small, we can define the differential (inverse)
inductance as

L−1(Φ) ≡ d2H

dΦ2
= EJ

(
2π

Φ0

)2

cos

(
2π

Φ

Φ0

)
, (4.14)

we see that the Josephson junction acts as a non-linear inductor. It is this key feature
which will make the energy levels of the Cooper pair box anharmonic.

In the quantum case, if the quantum zero-point fluctuations in Φ are small, then
the above non-linear inductor picture can be useful, but in general we need to resort
to numerical diagonalization of the CPB Hamiltonian. Let us therefore now return
to the full Hamiltonian in Eq. (4.4). In the phase basis, the Schrödinger eigenvalue
equation is the Matthieu equation whose solutions are formally known in terms of
Matthieu functions. Numerical diagonalization is more conveniently performed in the
charge (number) basis where the Coulomb term is diagonal and the Josephson term
is tri-diagonal: 〈m ± 1| cosϕ|m〉 = 1

2 . The basis states are labeled by the eigenvalue
m of the number operator n̂ and the Hilbert space must be truncated at some largest
|m| = mmax. If we are interested only in first N low-lying states, the size of the Hilbert
space needed can be estimated from the zero-point fluctuations of the charge in the
harmonic limit given in Eq. (2.43)

mmax ≫
√
N
QZPF

2e
∼

√
N

(√
EJ

32EC

)1/4

(4.15)

which, conveniently, is usually not very large2.
The qubit spectrum is periodic in the offset charge ng with unit period as can be

seen in Fig. (4.6). Physically this simply means that the integer part of the offset charge
can always be canceled out by transferring an integer number of Cooper pairs from one
island to the other. To understand this mathematically, recall that the wave functions
obey periodic boundary conditions in the angle ϕ. Thus in the ϕ representation

U± = e±iϕ (4.16)

2It is useful at this point to note that for a given tunnel barrier thickness, EJ scales with junction
area but the capacitance CJ (which usually dominates over Cg) and hence the inverse charging energy
also scales with junction area. Thus the Josephson plasma frequency is nearly independent of junction

area while the impedance of the Josephson plasma oscillator ZJ =
(

LJ
CΣ

)1/2
= 1

π
h

(2e)2

√

EC
EJ

scales

inversely with the area. Hence mmax grows with the square root of the area while ϕZPF scales inversely
with the square root of the junction area.
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is a ‘legal’ unitary transformation which preserves the boundary conditions (and phys-
ically transfers one pair through the junction). Recognizing that such a unitary trans-
formation preserves the spectrum of the Hamiltonian and that it shifts the angular
momentum (transferred charge) by one unit

U±n̂U
†
± = n̂∓ 1, (4.17)

we see that the spectrum must indeed be invariant under unit translations of ng.

Fig. 4.6 Energy spectrum of the Cooper pair box as a function of offset charge for different

values of the dimensionless ratio of Josephson energy to charging energy. The exponential

decrease in the charge dispersion is clearly seen. From (Koch et al., 2007).

Since the offset term ng does not appear in the ordinary quantum rotor problem we
need to extend our analogy a bit. It turns out that this term can be viewed as resulting
from the rotor carrying (fake) charge and undergoing an Aharanov-Bohm phase shift
as it circles a line of (fake) magnetic flux which is passing through the axis. To see
this, let us recall that for a particle with charge q moving in the presence of a vector
potential ~A, the canonical momentum is replaced by the mechanical momentum

~p −→ ~p− q ~A(~r). (4.18)

For our quantum rotor turning on the z axis, we are interested in the angular momen-
tum

Lz = (~r × ~p)z −→ (~r × ~p)z − q(~r × ~A)z. (4.19)

If the magnetic field is zero everywhere except for an Aharanov-Bohm tube of flux on
the z axis, we can choose the following gauge for the vector potential

~A(~r) = ΦAB
1

2πr
ẑ × r̂, (4.20)
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which has the correct total flux
∮

~A · d~r = ΦAB (4.21)

for any loop with winding number +1 around the z axis. The mechanical angular
momentum operator thus becomes

(~r × ~p)z −
q

2π
ΦAB = ~

(
−i ∂
∂ϕ

− ΦAB

Φ0

)
(4.22)

where Φ0 is the flux quantum corresponding to charge q (which since it is arbitrary we
can choose to be 2e). By comparison with Eq. (4.4), we see that the real offset charge
is equivalent to a fake Aharonov-Bohm flux

ng =
ΦAB

Φ0
. (4.23)

The fact that the spectrum is periodic in ΦAB is simply a reflection of the fact that
a flux tube containing an integer number of flux quanta produces an Aharanov-Bohm
phase shift of zero (modulo 2π).

In the ‘charge’ limit, EC ≫ EJ, the states of our rotator and nearly angular momen-
tum (i.e. charge) eigenstates weakly perturbed by the gravitational torque (Josephson
coupling). As can be seen in Fig. (4.6a) when the offset charge is half-integer, there
are two adjacent charge states which have the same Coulomb energy. This degeneracy
is lifted by by the Josephson term. The disadvantage of working in this regime is that
EC is large and the excitation energies are extremely strong functions of the offset
charge ng. As we will see in Chap. (5) environmental noise in ng will lead to severe
qubit decoherence.

In the ‘transmon’ limit, EJ ≫ EC, the states of the quantum rotor are nearly
harmonic small-amplitude oscillations near the minimum in gravitational potential
energy (i.e. Josephson energy). As can be seen in Fig. (4.6d) the qubit levels are nearly
harmonic and very nearly completely insensitive to the value of the offset charge. The
reason for this is readily understood within the Aharanov-Bohm analogy of the offset
charge. Let us start our discussion with a path integral language. We know that the
only way that the system can be aware of the value of the Aharanov-Bohm flux is for
the rotor to circle completely around the flux tube in order to acquire the Aharnov-
Bohm phase shift. The interference between this path and the path where the rotor
does not circle the flux modifies the quantum energy. However in the limit of large EJ

(strong gravity), the rotor must tunnel through a very high energy barrier in order
to wind the phase from ϕ = 0 to ϕ = 2π. The barrier height is proportional to EJ

and the particle ‘mass’ is inversely proportional to EC. As a result, the contribution
of these processes to the energy is exponentially small.

Let us return now to the language of wave functions for a more quantitative dis-
cussion. Mathematically we begin by performing the unitary gauge transformation

U = e−ingϕ, (4.24)

which completely removes the offset charge term from the Hamiltonian
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U(n̂− ng)U
† = n̂. (4.25)

Notice that the transformed wave function UΨ no longer obeys periodic boundary
conditions:

{UΨ(ϕ+ 2π)} = e−i2πng{UΨ(ϕ)}. (4.26)

Thus, while the Hamiltonian becomes independent of ng

UHU † = H = 4EC(n̂)
2 − EJ cosϕ, (4.27)

the change in boundary condition with ng nevertheless changes the energy eigenvalue
spectrum. On the other hand, for large EJ/EC the wave function is exponentially small
at the boundary ϕ = ±π, so we do not expect a large change in the spectrum due to
this change in boundary condition.

To develop a better intuition for how the change in boundary condition affects the
energy eigenvalues, consider the following. Rather than viewing the Hamiltonian as
that of a quantum rotor (with compact ϕ living on the interval −π ≤ ϕ ≤ +π) let us
view this as the Hamiltonian of a phase ‘particle’ with coordinate (not momentum!)
ϕ moving in the extended cosine potential as shown in Fig. (4.7). Bloch’s theorem
tells us that the discrete translation symmetry of the potential implies that the wave
functions must be of the form

Ψmk(ϕ) = eikϕψm(ϕ), (4.28)

where ψn obeys periodic boundary conditions ϕ −→ ϕ+ 2π, m is the band index and
(because the ‘lattice constant’ of the potential is 2π) the wave vector k lives in the
first Brillouin zone − 1

2 ≤ k ≤ + 1
2 . We now simply invoke the boundary condition in

Eq. (4.26) by choosing the Bloch wave vector to be k = ng. The use of the extended
cosine potential is just a crutch to get us to Eq. (4.28). The Bloch wave solution in
the interval −π ≤ ϕ ≤ +π solves the quantum rotor problem with compact phase and
boundary condition given in Eq. (4.26). Thus we arrive at the important conclusion
that the spectrum of the quantum rotor plotted against offset charge in Fig. (4.6) is
nothing more than the band structure of a one-dimensional solid with a cosine potential

in which the offset charge defines the Bloch wavevector. The excited band energies
correspond to the excited states of the rotor. The constraint (or ‘superselection rule’)
that the Bloch wavevector is not arbitrary but rather fixed by the offset charge removes
the infinite number of extra states that we built into the Hilbert space when we let ϕ
be a non-compact variable.

The band structure picture is useful because in the limit of large EJ we can invoke
(at least for the low-lying bands) the tight-binding approximation to the band structure
in which we envision the phase particle in a bound state within a well being able to
hop to the corresponding state in an adjacent well by tunneling through the barrier.
We know that for near-neighbor hopping the tight-binding model has a simple cosine
dispersion as a function of wave vector (which in this case is offset charge). Hence
within this approximation the energy of the mth level has the form (Koch et al., 2007)

Em(ng) ≈ Em + ǫm cos(2πng), (4.29)
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Fig. 4.7 Extended cosine potential U = −EJ cos(ϕ).

where the tight-binding bandwidth 2ǫm defines the so-called ‘charge dispersion’. Within
the WKB approximation for the tight-binding hopping amplitude the charge disper-
sion for the mth level is given by (Koch et al., 2007)

ǫm ∼ (−1)mEC
24m+5

m!

√
2

π

(
EJ

2EC

)m
2
+ 3

4

e−
√

8EJ/EC . (4.30)

The charge dispersion is a measure of the sensitivity of the energy to the offset charge.
We see that going to large EJ/EC makes the transmon qubit quite insensitive to (low-
frequency) charge noise which dramatically improves the dephasing time. The fact that
the ‘charge dispersion’ is greater for the higher excited states is simply the naturally
larger bandwidth of the higher energy states of the band structure. (More energetic
particles tunnel through the barrier more readily.)

In the limit of large EJ/EC the quantum rotor begins to approach a harmonic
oscillator. Fortunately the anharmonicity defined by

A ≡ ω12 − ω01 ∼ −EC (4.31)

goes to zero very slowly as the charging energy is reduced and can be easily kept
above 100-200MHz (Koch et al., 2007) which is adequate to prevent smooth nano-
second control pulses from taking the qubit out of the logical subspace (the two lowest
levels) (Houck et al., 2009).

We may perturbatively estimate the anharmonicity (in the limit of negligible charge
dispersion) from Eq. (4.27) by assuming that the zero-point fluctuations of the phase
are small allowing us to expand the cosine potential beyond the second-order consid-
ered previously to write

H ≈ H0 + V, (4.32)

where

H0 = 4ECn̂
2 +

1

2
EJϕ̂

2, (4.33)

and

V = − 1

24
EJϕ̂

4. (4.34)

Using Eq. (4.13) we find
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ϕ2
ZPF =

√
2EC

EJ
, (4.35)

which as noted earlier in connection with Eq. (4.13) is indeed small for large EJ/EC,
so our assumption is self-consistent in this limit.

Using

ϕ̂ = ϕZPF(â+ â†), (4.36)

and neglecting off-diagonal terms we can write the perturbation in a simple form useful
for first order perturbation theory

V = − 1

12
EC(â+ â†)4 ≈ −EC

2
(â†â†ââ+ 2â†â). (4.37)

The second term renormalizes the harmonic oscillator frequency downward slightly

~Ω̃J =
√
8EJEC − EC (4.38)

and the first introduces an anharmonicity which yields Eq. (4.31).

4.2 Inductively Shunted Qubits

We turn now to the class of superconducting qubits illustrated in Fig. (4.2) which are
inductively shunted. In the phase qubit (Martinis et al., 2002; Berkley et al., 2003) the
Josephson junction is shunted by a lumped element inductor. In the fluxonium qubit
(Manucharyan et al., 2009b; Manucharyan et al., 2009a), an extremely large value of
inductance is required, so large that it is impossible to achieve with a coiled wire. This
is due to parasitic capacitance in any coil and is essentially the result of the small
value of the fine structure constant3. Thus instead of a coil, a long chain of Josephson
junctions provides the inductance. The flux qubit (Mooij et al., 1999; van der Wal
et al., 2000; Chiorescu et al., 2003) uses only two junctions in this chain and hence it
turns out that the shunting inductor is not fully linear.

As stated several times previously, the Cooper pair box is unique in its topology
because there is no connection between the two superconducting islands. Thus the
only way to change the charge is to tunnel an integer number of Cooper pairs through
the Josephson junction. The number of Cooper pairs transferred is represented in the
Hamiltonian as an angular momentum operator n̂ which is conjugate to a compact
phase angle ϕ. We saw from Eq. (3.4) that the state of the Cooper pair box |ϕ+ 2π〉
is not distinct from (and indeed is identical to) |ϕ〉. This is what we mean when we
say that ϕ is a compact angular variable living on a circle, or equivalently the wave
function Ψ(ϕ) obeys periodic boundary conditions. One obvious consequence is that
the current flowing through the junction I = Ic sin(ϕ) is (from the first Josephson
relation) a periodic function of the phase variable.

3The parasitic capacitance in any coil leads to self-resonances. The frequemcy of the lowest of these
self-resonances can be very crudely estimated from matching the corresponding free-space wavelength
to the total length of wire in the inductor.
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On the other hand, we know from the second Josephson relation that the phase
variable ϕ is equivalent to the flux variable Φ which we introduced in quantizing the
LC oscillator where we found that the energy stored in the inductor is

U =
1

2L
Φ2 =

1

2
ELϕ

2 (4.39)

where

EL ≡
(

~

2e

)2
1

L
=

(
Φ0

2π

)2
1

L
. (4.40)

Clearly the energy U stored in the inductor and the current flowing through it

I =
dU

dΦ
=

Φ0

2πL
ϕ (4.41)

are not periodic in ϕ. If we shunt our Josephson junction with an external inductor,
the change in topology of the circuit has profound consequences on the mathematical
description. The state described by ϕ and ϕ+2π are physically distinct because they
differ by how much current is flowing in the inductor. Because charge can move onto
the junction capacitor plates continuously through the inductor, the charge variable
is no longer integer-valued but rather continuous, as expected from the fact that ϕ
is no longer a compact variable and the system no longer obeys periodic boundary
conditions. Rather we expect vanishing boundary conditions because the energy stored
in the inductor diverges for large ϕ: Ψ(ϕ −→ ±∞) −→ 0. Because ϕ is now an ordinary
non-compact coordinate and we will denote this by placing a hat over it when we
quantize the system. The Hamiltonian becomes

H = 4EC(n̂− ng)
2 − EJ cos ϕ̂+

1

2
ELϕ̂

2. (4.42)

Because the charge is now a continuous variable we expect on physical grounds
that a static offset charge ng can be completely screened and should not affect the en-
ergy. Mathematically this can be seen by performing the unitary gauge transformation
discussed previously in Eq. (4.24). Notice however the important difference that the
transformed wave function UΨ still obeys the same vanishing boundary conditions.
Hence unlike the previous case, the spectrum does not depend on the static offset
charge in any way.

Let us consider the case of a shunt inductor but take the limit L −→ ∞ which
means EL −→ 0. Since the inductor is present, the phase variable is presumably no
longer compact and yet it would seem that the inductance term does not change
the Hamiltonian. Physically, it seems reasonable to assume that the high frequency
oscillations of the qubit would be unaffected by the enormous reactance of the inductor.
This is indeed the case and the spectrum is the same as before except that now all

values of the wave vector k are allowed since the phase is non-compact4. Thus there is
a continuum of states instead of a single state within each band. The only effect that
offset charge has is to shift the k states k −→ k + ng, but this has no effect on the

4That is, the ‘superselection rule’ discussed previously no longer applies.
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spectrum because all values of k are allowed and (in the extended zone scheme) the
spectrum is periodic under k −→ k + 1. The continuum of states corresponds to the
fact that the inductor can have a fixed DC current flowing in it which can taken on
any value (below the the critical current of the junction).

Exercise 4.1 In the limit of L −→ ∞ described above, the eigenstates are plane-wave-like
Bloch waves. Using the general periodicity properties of Bloch waves, compute the mean
charge (which can be non-zero only because of the infinite inductance)

n̄ = 〈Ψnk|n̂|Ψnk〉. (4.43)

Strictly speaking, the wave vector k is not gauge invariant. What is the correct gauge invariant
operator we should have used in this equation?

If the inductive energy EL is non-zero, then Bloch’s theorem no longer applies.
The quadratic potential in Eq. (4.42) resulting from the inductive energy leads to the
curvature illustrated in Fig. (4.8). The interplay between the quadratic term and the
Josephson cosine term allows us to create a number of different potential energy well
shapes and thus generate different interesting qubit spectra. Before delving into this
we need to recognize that there is one more ‘control knob’ at our disposal, namely
externally applied flux which we can view as the inductive analog of the offset charge
studied previously. If our inductor is part of a transformer with dc current applied in
the other winding then there is a flux offset and the Hamiltonian becomes

H = 4EC(n̂− ng)
2 − EJ cos ϕ̂+

1

2
EL(ϕ̂− ϕg)

2. (4.44)

It is convenient to translate ϕ̂ and n̂ using the unitary transformation

U = eiϕgn̂e−ingϕ̂ (4.45)

which yields

Uϕ̂U † = ϕ̂+ ϕg (4.46)

Un̂U † = n̂+ ng. (4.47)

The Hamiltonian then becomes

H = 4EC(n̂)
2 − EJ cos(ϕ̂+ ϕg) +

1

2
EL(ϕ̂)

2. (4.48)

As with the case of offset charge, we see that the resulting spectrum must be periodic
in the offset flux.

The ability of control the three energy scales EJ, EC, EL as well as the offset flux
ϕg gives the experimentalist the opportunity to create a rich variety of level structures
in the inductance-shunted family of qubits. The phase qubit (Martinis et al., 2002;
Berkley et al., 2003) is shunted by a lumped element inductor and typically operates
with EJ/EC ∼ 104 which makes it very nearly a harmonic oscillator. To increase the
anharmonicity it is operated with large flux bias on the inductor which drives a steady
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Fig. 4.8 a) Extended cosine potential U = −EJ cos(ϕ + ϕg) + ELϕ
2, with dimensionless

offset flux ϕg = π. Used in the fluxonium qubit to produce a ‘Λ’ level configuration; b) Same

as (a) but with ϕg = π/2; c) Same as (a) but with ϕg = 0 to produce a ‘V ’ level configuration;

(bottom panel) Same as (a) but displaced a distance ϕg = 6π to illustrate the current (flux)

biased phase qubit. EL = 0.01EJ.

state current close to the critical current through the junction. In addition to greatly
increasing the anharmonicity, this flux bias also lowers the energy level spacing so the
device is typically constructed with large area junctions having a Josephson plasma
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frequency ΩJ/2π =
√
8EJEC/h which is very high5, ∼ 50 GHz.

In the fluxonium qubit (Manucharyan et al., 2009b; Manucharyan et al., 2009a), the
large inductance (and correspondingly small EL) is supplied by the kinetic inductance
of a Josephson junction array. It also has the advantage that the anharmonicity can
be large. Interestingly, the state-dependent polarizability and the excitation spectrum
of this design is such that the qubit state can be measured even when the qubit
transition frequency is driven down to very low values of order 0.5 GHz. When the
external flux ϕg through the closed loop is zero, the potential energy landscape is that
shown in Fig. (4.8c). The ground state wave function has most of its support in the
deep well near ϕ = 0 and there are two relatively closely spaced excited states with
support in the two higher wells. This arrangement of three energy levels is known in
atomic physics as a ‘V’ configuration. When the external flux is ϕg = π, the situation
reverses as shown in Fig. (4.8a). There are two low-lying states with a large gap to
the next excited state. This arrangement is known in atomic physics as a ‘Lambda’
configuration. As illustrated in the level scheme of Fig. (4.8b) the fluxonium qubit has
the very nice property that its energy spectrum varies smoothly between these two
limits and unlike the flux qubit, does not have exponential sensitivity to the external
flux (Manucharyan et al., 2009b; Manucharyan et al., 2009a). A further interesting
feature is that, unlike the transmon qubit, the anharmonicity of the level structure
can be quite large and it is possible in principle in the ‘Λ’ configuration to have the
low energy level splitting much smaller than the frequency of the readout cavity and
yet still achieve strong dispersive coupling to the cavity via virtual transitions to the
third energy level. This allows efficient readout with suffering from the Purcell effect
enhancement of the qubit decay rate via spontaneous fluorescence into the readout
cavity (Manucharyan et al., 2009b; Manucharyan et al., 2009a).

5As noted earlier, if the capacitance is dominated by the junction itself, then EJEC is independent
of junction area. When external and parasitic capacitance is included, then the plasma frequency rises
with junction area.
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Noise induced Decoherence in Qubit
Circuits

The ideal qubit would have a completely stable transition frequency unperturbed by
the external environment and yet would have a port open to the outside world through
which its state could be controlled and measured. Unfortunately, things are never ideal
and it is our job as quantum engineers to design qubits for the real world. Unlike the Cs
and Rb atoms used in atomic clocks which are (literally) indistinguishable, each qubit
we build is a unique individual. The good news is that we can engineer different classes
of Hamiltonians and qubit Hamiltonians with different parameters within the same
class. The bad news is that in reality, if we can vary the Hamiltonian parameters, they
will tend to vary on their own due to various random sources of noise. This variation
of parameters has two effects. First, it can modulate transition frequencies which leads
to dephasing of superpositions. Second, if the noise (including as we will see, vacuum
noise) is high-frequency, it can cause transitions to occur which change the state of
the qubit. A related engineering quandary, which we will explore in more detail below,
is the following: a qubit which is completely unperturbed by its environment is also
decoupled from our measurement apparatus and hence cannot be read out!

The phenomenological Bloch equation from NMR is a useful starting point to
understand the standard parametrization of qubit relaxation rates. In NMR one typ-
ically studies the dynamics of a large collection of spin-1/2 (say) nuclei in a sample
by coupling a drive/readout coil to the total magnetic moment. In the absence of any
perturbations and assuming there are N spins, all having the same Zeeman energy (no
‘inhomogeneous broadening’), the Hamiltonian is simply

H =
Ω

2

N∑

j=1

σz
j . (5.1)

The component of the magnetization parallel to the Zeeman field

m̂z ≡ 1

N

N∑

j=1

σz
j , (5.2)

commutes with the Hamiltonian and so is a constant of the motion. The transverse
components of the magnetization precess around the magnetic field direction. If we
go to a frame rotating at frequency Ω, these transverse components of the magne-
tization are also constants of the motion (because the Hamiltonian then vanishes).
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Inhomogeneous broadening and various fluctuating perturbations will complicate this
simple picture and cause the net magnetization to relax to its equilibrium value. This
relaxation is characterized in the phenomenological Bloch equations which describe
the dynamics of the components of the mean magnetization vector, mµ ≡ 〈m̂µ〉, in
terms of a longitudinal relaxation time, T1, and a transverse relaxation time, T2.

ṁz = − 1

T1
(mz − m̄z) (5.3)

ṁx = − 1

T2
mx (5.4)

ṁy = − 1

T2
my, (5.5)

The longitudinal relaxation rate can be shown to be given by the sum of the transition
rates from down to up and up to down

1

T1
= Γ↑ + Γ↓. (5.6)

The equilibrium magnetization is given by

m̄z =
Γ↑ − Γ↓
Γ↑ + Γ↓

. (5.7)

The (ensemble) transverse relaxation rate can be shown to be given by1

1

T ∗2
=

1

2T1
+

1

Tϕ
. (5.8)

The first term represents the fact that if the spin makes a transition from up to down
(or vice versa) the coherent superposition of up and down is destroyed. The second
term containing 1

Tϕ
represents the rate at which the transverse magnetization decays

due to random fluctuations in the spin precession rate which cause the different spins
to get out of phase with each other and thus destroy the mean transverse polarization.

We will be dealing not with a large ensemble of spins which are simultaneously
measured (as in NMR) but rather with an individual spin subject to temporal (rather
than spatial) fluctuations which cause the precession rate to vary from measurement
to measurement. Since it takes many measurements to determine the average magne-
tization, we must average the effect of the noise across the ensemble of measurements
on the single spin2. The mathematics is thus similar to the NMR case but the physical
difference in the meaning of the average being taken should be kept in mind.

1The notation of the NMR literature is that T ∗
2 refers to the ensemble transverse relaxation rate

which includes dephasing due to spin-lattice interactions, spatial inhomogeneities of the Zeeman field
and local chemical shifts of the Zeeman splitting. The relaxation time T2 is that associated only
with the homogeneous broadening of the NMR resonance due to spin-lattice interactions. T2 can be
measured using spin-echo methods to cancel out the inhomogeneous broadening. Strictly speaking,
there is no unique phase coherence time. One should specify precisely the experiment used to measure

the coherence. Thus it is common to refer to T
Ramsey
2 and T echo

2 in order to be precise. More complex
echo sequences (e.g. CPMG) can yield still further measures of coherence.

2With a high-fidelity QND measurement of σz one can determine that component of the spin in a
single measurement. However thermal fluctuations (e.g. the initial state of the spin is fluctuating in



62 Noise induced Decoherence in Qubit Circuits

Exercise 5.1 Derive Eqs. (5.6) and (5.7).

We turn now to the microscopic noise which leads to the above phenomenology.
Suppose that the qubit Hamiltonian contains a set of n parameters λj ; jǫ{1, ..., n}.
Let us take the value of these parameters at the working point to be λ̄j ; jǫ{1, ..., n},
and let the deviation from the nominal working point due to noise in the parameter
values be ηj ; jǫ{1, ..., n}. The qubit Hamiltonian can then be expressed in a Taylor
series expansion.

H [~λ] = H0 +

n∑

j=1

ηjVj +
1

2

∑

j,k=1,n

ηjηkVjk + . . . , (5.9)

where H0 ≡ H [~̄λ] and

Vj ≡ ∂H

∂λj

∣∣∣∣
[~̄λ]

(5.10)

Vjk ≡ ∂2H

∂λj∂λk

∣∣∣∣
[~̄λ]

. (5.11)

The noise amplitudes ηj could represent classical random variables or quantum oper-
ators associated with the bath to which the qubit is coupled.

For simplicity, we will initially work only to first order in the expansion. If Vj
commutes with H0 then it is diagonal in the energy eigenbasis and cannot affect the
eigenfunctions, it can only modulate the eigenvalues. Such perturbations can dephase
superpositions but cannot cause transitions between levels and hence cannot relax the
population. On the other hand if [Vj , H0] 6= 0, then Vj is not diagonal in the energy
basis and can cause both dephasing and relaxation.

As a simple example, consider the Hamiltonian of a two-level system

H =
Ω

2
σz + ~η(t) · ~σ. (5.12)

Let us first ignore the transverse field fluctuations and focus on the ηz longitudinal
term which commutes with H0. For simplicity we will take ηz to be a classical random
variable. The exact time evolution operator in the interaction representation is

U(t1, t2) = e−
i
2
θ(t1,t2)σ

z

(5.13)

where the random phase accumulated due to the longitudinal noise is given by

θ(t1, t2) = 2

∫ t2

t1

dτ ηz(τ). (5.14)

thermal equilibrium) and quantum fluctuations (e.g. the spin is actually pointing in the x direction
so the measurement result for σz is random) imply that one must repeat the experiment many times
to determine the quantum/thermal ensemble average magnetization
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Assuming ηz has zero mean then θ also has zero mean and variance given by

〈θ2〉 = 4

∫ t2

t1

dτ1dτ2 〈ηz(τ1)ηz(τ2)〉. (5.15)

If we assume that ηz itself is gaussian distributed then θ will be gaussian. Or if ηz is
not gaussian but its autocorrelation function appearing in Eq. (5.15) is short-ranged in
time compared to t2 − t1, then (under rather mild assumptions) the central limit the-
orem applies because θ is the sum of a large number of independent random variables.
If θ is gaussian distributed with mean zero, then the cumulant expansion converges at
first order and we have the exact result

〈〈eiθ〉〉 = e−
1
2
〈〈θ2〉〉 (5.16)

where 〈〈〉〉 refers to the statistical ensemble average over the noise. If the autocorrela-
tion time of the noise is short we can write Eq. (5.15) as

〈〈θ2〉〉 ≈ 4tSηzηz
(0), (5.17)

where Sηzηz
[ω] is the noise spectral density at frequency ω. The full expressions for the

case where the autocorrelation time of the noise is not negligible are given in (Martinis
et al., 2003). The important time scale t2 − t1 in Eq. (5.15) is given self-consistently
by T ∗2 itself. Noise which is slow on the time scale of T ∗2 produces (the analog of)
inhomogeneous broadening. Noise which is high-frequency on the scale of T ∗2 makes
little contribution to the integral in Eq. (5.15). For sufficiently large T ∗2 , it is only low
frequencies that count here, and it is generally safe to treat ηz classically and ignore
that fact that it typically represents a quantum operator describing a bath variable.
[This will not be true for the transverse noise fluctuations where the high-frequency
spectral density is important.]

Let us define the (pure) dephasing rate 1/Tϕ via

〈〈eiθ〉〉 = e
− t

Tϕ , (5.18)

from which we see that
1

Tϕ
= 2Sηzηz

(0). (5.19)

5.1 Density Matrix Description of Decoherence

It turns out that the important fluctuations of the transverse fields are the ones res-
onant with the transition frequency of the qubit because this is necessary for energy
conservation in the transitions between qubit states. For such high-frequency fluctua-
tions we should more properly use a full quantum theory which involves the quantum
density matrix of the qubit. In the presence of quantum or classical noise, we desire
the ensemble average over the noise of any given physical observable. Let pj be the
probability that an element of the ensemble is in state |ψj〉 (or equivalently that the
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random noise has driven our system to state |ψj〉). The expectation value of observable
O is

〈〈O〉〉 =
∑

j

pj〈ψj |O|ψj〉 = Tr ρO, (5.20)

where the density matrix is defined by

ρ =
∑

j

pj|ψj〉〈ψj |. (5.21)

Clearly the density matrix must satisfy

Tr ρ = 1 (5.22)

Tr ρ2 ≤ 1, (5.23)

the latter satisfied as an equality only for a pure state (a state where one of the pj ’s is
unity and the rest vanish). In fact for a pure state, the density matrix is idempotent

ρ2 = ρ. (5.24)

The von Neumann entropy is given by an expression closely analogous to the classical
one

S = −Tr {ρ log ρ} (5.25)

Exercise 5.2 Prove Eq. (5.23) and Eq. (5.24).

The density matrix contains all the information we need to compute the expectation
value of any observable, or any moment of the distribution of some observable, for
example

〈〈Om〉〉 = Tr ρOm (5.26)

or even the full probability distribution for the measurement results for the observable

P (λ) = Tr {ρδ(λ−O)} . (5.27)

Since a two-level qubit or a spin-1/2 particle has only two independent quantum
states, the density matrix is 2 × 2. The most general such matrix which is hermitian
and has unit trace can be written

ρ =
1

2
(1 + ~m · ~σ) , (5.28)

where the qubit polarization is given by ~m = Trρ~σ, that is

mj = Tr ρσj . (5.29)

Exercise 5.3 Use Eq. (5.28) to prove Eq. (5.29).
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Having now established these statistical results we can proceed to ensemble average
the density matrix over the noise to obtain the reduced density matrix where the noise
bath degrees of freedom have been integrated out (traced over). In the interaction
representation

〈〈ρ(t2)〉〉 = 〈〈U(t1, t2)ρ(t1)U
†(t1, t2)〉〉, (5.30)

where we now take ρ to be the full density matrix for system plus bath and the
interaction representation of the time evolution operator is given by the time-ordered
exponential of the perturbation V̂ (t) which couples the system to the bath

U(t1, t2) = Tτ exp

{
− i

~

∫ t2

t1

dτV̂ (τ)

}
(5.31)

Typically V̂ can be expressed as a product (or sum of products) of system operators
and bath operators. Notice that we cannot separately average (i.e. trace over the bath)
the two time evolution operators appearing in Eq. (5.30) because they are correlated–
they depend on the same bath noise. It is convenient to do a perturbative calculation
which will be valid for short times t2 = t1 +∆t. We assume the perturbation is weak
enough that our perturbative expansion is in fact valid for times longer than the
autocorrelation time of the noise, τc. In that case we can safely choose a a time step
∆t ≫ τc and the random noise variables in U(t1, t2) will be essentially uncorrelated
with the past noise variables that led to ρ(t1). This statistical independence will allow
us to make the ‘no memory’ or Markov approximation (Walls and Milburn, 1994)
which will considerably simplify matters Again, we can only justify this for sufficiently
weak noise that low-order perturbation theory is still valid for the chosen value of ∆t.

By definition we choose 〈〈V̂ (τ)〉〉 = 0 so we must (at least in the Markov approxi-
mation) take our expansion to second order (just as we do in Fermi’s Golden Rule for
transition rates)

U(t1, t2) ≈ 1− i

~

∫ t2

t1

dτV̂ (τ)− 1

2~2

∫ t2

t1

dτdτ ′Tτ V̂ (τ)V̂ (τ ′). (5.32)

The time-ordering operator will prove inconvenient, but we can write

Tτ V̂ (τ)V̂ (τ ′) = V̂ (τ)V̂ (τ ′) + θ(τ ′ − τ)[V̂ (τ ′), V̂ (τ)]. (5.33)

The commutator term does not necessarily vanish, but it turns out it is possible to
lump its effect into the system Hamiltonian where it leads to small corrections to the
system energy levels (e.g. the Lamb shift of atomic levels). We presume that this has
already been done and so this commutator term drops out. The reader is directed to
(Haroche and Raimond, 2006) and (Meystre and III, 1998) for further discussion of
these points.

Anticipating being able to drop the terms linear in V̂ when we trace out the bath
[because they have zero mean and within the Markov approximation no correlations
with the prior noise that led to ρ(t1)], we are thus led to
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ρ(t2) = ρ(t1) +
1

~2

∫ t2

t1

dτdτ ′
{
V̂ (τ)ρ(t1)V̂ (τ ′)

− 1

2
V̂ (τ)V̂ (τ ′)ρ(t1)−

1

2
ρ(t1)V̂ (τ)V̂ (τ ′)

}
. (5.34)

In order to make further progress we now need to express the perturbation in terms
of system and bath variables and trace out the bath variables to obtain an expression
for the time evolution of the reduced density matrix describing the system alone. Let
us suppose that in the interaction picture, the bath coupling has the form

1

~
V̂ (τ) = η̂z(τ)σ̂

z(τ) + η̂x(τ)σ̂
x(τ) (5.35)

= η̂z(τ)σ
z + η̂x(τ){eiΩτσ+ + e−iΩτσ−}. (5.36)

To keep the discussion simple we will assume that the longitudinal and transverse
noises are uncorrelated and can therefore be treated separately in our perturbative
treatment. We start with the longitudinal noise and will attempt to reproduce our
previous semi-classical result in Eq. (5.19). Introducing the notation

Tr bathρ(t) ≡ 〈〈ρ(t)〉〉, (5.37)

we can write

〈〈ρ(t1 +∆t)〉〉 = 〈〈ρ(t1)〉〉 +
∫ t2

t1

dτdτ ′ Tr bath

{
η̂z(τ)σ

zρ(t1)σ
z η̂z(τ

′)

− 1

2
η̂z(τ)η̂z(τ

′)σzσzρ(t1)−
1

2
ρ(t1)η̂z(τ)η̂z(τ

′)σzσz

}
. (5.38)

Using the cyclic property of the trace in the first term, interchanging the dummy labels
τ and τ ′ in the remaining terms and invoking the Markov approximation we obtain

〈〈ρ(t1 +∆t)〉〉 = 〈〈ρ(t1)〉〉 +
∫ t2

t1

dτdτ ′ 〈〈η̂z(τ ′)η̂z(τ)〉〉
{
σz〈〈ρ(t1)〉〉σz − 1

2
σzσz〈〈ρ(t1)〉〉 −

1

2
〈〈ρ(t1)〉〉σzσz

}
. (5.39)

Of course σzσz = 1, but for notational symmetry, we will not use this. Invoking the
Markov approximation as in Eq. (5.17) and defining

γϕ = 2Sηzηz
(0), (5.40)

we have
〈〈ρ(t1 +∆t)〉〉 = 〈〈ρ(t1)〉〉+∆t

γϕ
2
D[σz ]〈〈ρ(t1)〉〉, (5.41)

where the ‘dissipator’ D is called the Lindblad superoperator3

3A ‘superoperator’ is an operator on the N2 dimensional space of ρ if ρ is written as a column
vector of length N2 instead of an N ×N matrix.
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D[O]ρ ≡ OρO† − 1

2
O†Oρ− 1

2
ρO†O. (5.42)

Even though ∆t is not supposed to be too small, if we are appropriately cautious
about the meaning, we can interpret this difference equation as a differential equation
for the time evolution of the reduced density matrix,

d

dt
〈〈ρ(t)〉〉 = 1

2
γϕD[σz ]〈〈ρ(t)〉〉. (5.43)

Let us now try to go from this result to the time evolution of the qubit polarization.
Invoking Eq. (5.28) we have

d

dt
〈〈ρ(t)〉〉 = 1

2

d~m

dt
· ~σ =

1

2
γϕD[σz]

1

2
[1 + ~m · σ]. (5.44)

Using the fact that the different Pauli matrices anticommute this can be rewritten

d~m

dt
· ~σ = −γϕ{mxσ

x +myσ
y}. (5.45)

From this we immediately obtain

ṁz = 0 (5.46)

ṁx = − 1

Tϕ
mx (5.47)

ṁy = − 1

Tϕ
my, (5.48)

in agreement with the phenomenological Bloch equations (5.5) with T1 = ∞.
In order to obtain a finite energy relaxation rate, we must allow for noise in the

transverse field components. Repeating the derivation above and defining the up and
down transition rates (which agree with the derivation of Fermi’s Golden Rule in
(Clerk et al., 2010)) in terms of the noise spectral densities

Γ↓ = Sηxηx
(+Ω) (5.49)

Γ↑ = Sηxηx
(−Ω), (5.50)

Eq. (5.43) becomes the standard master equation (Carmichael, 1993) in Lindblad form

d

dt
〈〈ρ(t)〉〉 = γϕ

2
D[σz ]〈〈ρ(t)〉〉 + Γ↑D[σ+]〈〈ρ(t)〉〉 + Γ↓D[σ−]〈〈ρ(t)〉〉. (5.51)

As discussed extensively in Ref. (Clerk et al., 2010), the bath noise spectral density
at frequency +Ω is a measure of the ability of the bath to absorb energy and thereby
de-excite the qubit, while the spectral density at −Ω gives the ability of the bath
to emit energy at that frequency, thereby exciting the qubit. Classically there is no
distinction since the noise correlators are real-valued, but quantum mechanically we
must distinguish positive and negative frequency because the noise correlators are
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complex-valued (which is possible since the noise operators are hermitian but their
product is not: they do not commute with each other at different times (Clerk et al.,
2010)). Evaluating the above, we arrive at the full Bloch equations in (5.5).

The Bloch equations in NMR refer to the density matrix for a large ensemble
of spins. Here we are dealing with the ensemble of many repeated experiments on
a single ‘spin.’ In NMR inhomogeneous line broadening usually comes from different
parts of the sample having slightly different spin precession frequencies. Here there
is only one spin and inhomogeneous broadening arises from slow temporal (rather
than spatial) fluctuations of the qubit splitting over the course of many repeated
measurements. Another difference with NMR is that typically in NMR we are in the
regime kBT ≫ ~Ω and so Γ↑ ≈ Γ↓. With qubits we are (typically) in the opposite
regime with high frequency and low temperature where Γ↓ ≫ Γ↑.

Exercise 5.4 Derive Eq. (5.5) in detail from Eq. (5.51).

We emphasize that the Markov approximation is not necessarily valid. For instance
the qubit could be looking at the environmental noise filtered by a resonator or cavity,
or in the case of dephasing noise at low frequencies the spectrum of the noise may be
1/f rather than white. The former can be handled by adding the filter (as a harmonic
oscillator) to the Hamiltonian. The latter complicates the analysis and leads to non-
exponential decay (Martinis et al., 2003).

5.1.1 Dephasing and Read Out of Charge Qubits

For generic values of the gate charge, the ground state Ψ0 and excited state Ψ1 of a
charge qubit differ in their respective static electric ‘dipole moments’. Using Eq. (A.18)
we see that the state energy depends on bias voltage VB fluctuations via the ‘dipole
moment’

p̃j = 〈Ψj |
∂H

∂VB
|Ψj〉 (5.52)

= β〈Ψj |Q̂1|Ψj〉, (5.53)

where we have ignored the last term in Eq. (A.18) since it is not state-dependent. Naka-
mura et al.(Nakamura et al., 1999) used the dependence of a certain quasi-particle
tunneling rate on pj to differentiate between the ground state (j = 0) and the ex-
cited state (j = 1) and hence readout the state of the qubit. Aassime et al.(Aassime
et al., 2001) and Lehnert et al.(Lehnert et al., 2003) developed an RF single electron
transistor readout scheme for charge based qubits.

Unfortunately in the regime where charge based readout works, a stray electric
field E (fluctuation in bias voltage VB) causes a first-order perturbation theory shift
of the qubit excitation frequency by an amount

δω01 =
1

~
δVB(p̃1 − p̃0). (5.54)

This leads to very rapid dephasing of quantum superpositions at rate (Martinis et al.,
2003)
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1

Tϕ
=

1

2

(
p̃1 − p̃0

~

)2

SVBVB
, (5.55)

where SVBVB
is the bias voltage spectral density at low frequencies. The total deco-

herence rate is then given by
1

T ∗2
=

1

2T1
+

1

Tϕ
. (5.56)

Recognizing this difficulty, Vion et al. (Vion et al., 2002) introduced the notion of
operating charge qubits at a ‘sweet spot’ where the transition frequency is an extremum
with respect to the voltage and magnetic field control parameters. Several such extrema
(known in atomic physics as ‘clock points’) are visible (at half-integer gate-charge
points) in the Cooper pair box spectrum shown in Fig. (4.6). At these special points,
the leading term in the Taylor series expansion presented in Eq. (5.9) vanishes and only
the second-order effects of the noise contribute to the dephasing. The qubit coherence
time is therefore dramatically increased (Vion et al., 2002). Measurements by the
Devoret group have demonstrated that these coherence lifetimes are indeed consistent
with the expected second-order effects of the noise determined by the curvature of the
spectrum at the extremum (Metcalfe et al., 2007).

We now arrive at an interesting quandary. By tuning the qubit to the sweet spot, the
environment is no longer able to detect which state the qubit is in, based on coupling to
its electric dipole moment. This is why the coherence time is so dramatically enhanced.
But, if the environment cannot measure the state of the qubit by looking at the dipole
moment, neither can we! The Saclay group recognized this and developed the concept
of reading out the qubit by measuring the state dependent susceptibility (inductance
of the quantronium qubit). Rather than going into the details of this, it is easier
in the context of the present discussion to instead think about the closely related
state-dependent susceptibility method based on capacitance developed by the Yale
group (Blais et al., 2004; Wallraff et al., 2004) and which will be explained in detail in
Chapter 6. Because the offset charge is essentially equivalent to an applied voltage, and
the potential energy of a capacitor is 1

2CV
2, the second derivative of the transition

energy with respect to ng which can be derived from Eq. (4.4) (and illustrated in
Fig. (4.6)) is essentially the difference in quantum capacitance (Widom et al., 1984;
Averin et al., 1985; Likharev and Zorin, 1985; Averin and Bruder, 2003; Duty et al.,
2005; Sillanpää et al., 2005) presented to an external probing field when the qubit is
in the ground and excited states. Essentially this effect was used by the Yale group
in developing the dispersive readout (Blais et al., 2004; Wallraff et al., 2004) based
on (6.13). Working with a low frequency probe, precisely this effect was measured in
(Duty et al., 2005; Sillanpää et al., 2005). The difference is that the high-frequency
dispersive probe depends on the matrix elements related to the quantum capacitance,
but as is clear from (6.13), it also depends on the detuning of the qubit and resonator
frequencies. The importance of this difference will become clear below.

The invention of the transmon qubit brings us to our next major quandary. As
noted in Fig. (4.6), by going to large EJ/EC one can dramatically reduce the cur-
vature of the spectrum at the extrema and eventually make the transition frequency
exponentially close to constant independent of the gate charge (Koch et al., 2007;
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Houck et al., 2009). Operation in this transmon regime leads to even longer lifetimes
and long-term qubit frequency stability (Houck et al., 2009; Paik et al., 2011). If the
energy eigenvalues are essentially independent of the offset charge then neither we nor
the environment can read the state of the qubit using either the dipole moment or
the susceptibility (quantum capacitance) since neither is dependent on the quantum
state. While this explains the even longer coherence times of the transmon, we are
left to wonder how it is that the dispersive readout still works even though quantum
capacitance is zero in both states. Recall that if the qubit were actually a perfect
harmonic oscillator, the transition frequencies would not respond at all to changes in
offset charge (displacement of the origin of the oscillator). It is obvious from classical
considerations that the susceptibility would be a constant (given by the inverse of
the spring constant) independent of the state. The oscillator is highly polarizable and
responds strongly to slow variations in offset charge by being displaced, but this dis-
placement to a new equilibrium position has no effect on the excitation spectrum. As
noted above, the transmon comes exponentially close to this ideal behavior and yet,
the dispersive readout still works. This is because, while the charge dispersion falls off
exponentially, the transmon retains its anharmonicity. As can be seen from (6.13), the
cavity pull due to the virtual polarization of the qubit is strongly dependent on the
detuning between the qubit and cavity. For the case of the multi-level transmon, the
expression for the cavity pull has to be re-derived, but the essential point is that the
detuning for the 0 → 1 transition is not the same as that for the 1 → 2 transition and
so the cavity pull is state dependent, provided that the cavity frequency is reasonably
close to the qubit. For a very low frequency cavity, we are back in the regime measuring
the quantum capacitance where the effect on the cavity is small.

The fluxonium qubit (Manucharyan et al., 2009b; Manucharyan et al., 2009a) can
be operated in a regime which maintains very large anharmonicity even while suppress-
ing the effects of offset charge noise. The fluxonium energy level structure therefore
gives the advantage over the transmon that the qubit transition frequency can be far
removed from the cavity readout frequency which prevents Purcell enhancement of
the excited state decay rate.



6

Introduction to Cavity and Circuit
QED

Quantum electrodynamics (QED) studies atoms and electrons coupled to the quantum
fluctuations of the electromagnetic field. Cavity QED (cQED) engineers those quantum
fluctuations of the vacuum by surrounding the atoms with a resonant cavity which
supports only discrete modes of the electromagnetic field. By adjusting the frequencies
(and damping) of those resonant modes with respect to the transition frequency of
the atoms, one can dramatically alter the coupling of the atoms to their quantum
environment (and conversely alter the photon modes via their coupling to the atoms).
Because the cavity traps photons, they interact with the atoms repeatedly and one
can enter a regime of strong coupling in which the natural excitations of the system
are coherent superpositions of atom and photon excitations known as polaritons.

There is a long history of cavity QED studies in the AMO community for both
alkali atoms in optical cavities (Mabuchi and Doherty, 2002; Walls and Milburn, 1994;
Thompson et al., 1992; Boca et al., 2004; Schuster et al., 2008) and Rydberg atoms
in microwave cavities (Nogues et al., 1999; Guerlin et al., 2007; Gleyzes et al., 2007;
Deleglise et al., 2008; Raimond et al., 2001; Haroche and Raimond, 2006). In the optical
case one typically monitors the effect of the atoms on the photons transmitted through
(or reflected from) the cavity. It is not possible to measure the state of the atoms after
they have fallen through the cavity because the spontaneous emission lifetime is on the
order of nanoseconds at optical frequencies. In the microwave experiments pioneered by
the Paris group it is difficult to directly measure the microwave photons but relatively
easy to measure the state of the Rydberg atoms with very high fidelity after they exit
the cavity since they have a lifetime of approximately 30 ms and can be probed with
state-selective ionization.

‘Circuit QED’ uses superconducting qubits as artificial atoms coupled to microwave
resonators (Blais et al., 2004;Wallraff et al., 2004; Chiorescu et al., 2004; Devoret et al.,
2007; Schoelkopf and Girvin, 2008) as illustrated schematically1 in Fig. (6.1). Measur-
ing the amplitude and phase of microwaves transmitted through (or reflected from)
the resonator realizes the equivalent of optical cavity QED at microwave frequencies.
It is interesting to note that (typically) there is just a single microwave signal channel
running to and from the cavity. Application of microwaves near the cavity frequency

1There exists a dual geometry in which the Josephson junction qubit is placed in line with the center
pin of the resonator and couples directly to the microwave currents flowing in the resonator (Devoret
et al., 2007; Bourassa et al., 2009). In this dual geometry the fine structure constant is replaced by
its inverse and the problem is engineering the circuit to reduce the coupling to manageable levels.
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excites the cavity and performs a measurement of the state of the qubit. On the
other hand application of microwaves at the qubit transition frequency (assumed to
be strongly detuned from the cavity frequency) does not strongly excite the cavity
and, most importantly, does not perform a measurement. Rather such microwaves
resonant with the qubit can be used to perform single qubit rotations. Thus we have
a very convenient ‘frequency multiplexing’ in which a single wire carries out different
operations depending on the frequency of the microwaves applied to it.

In recent years there were many theoretical proposals for coupling qubits to either
three-dimensional cavities or lumped element resonators and for protocols for analyzing
microwave photon states (Shnirman et al., 1997; Makhlin et al., 2001; Buisson and
Hekking, 2001; Marquardt and Bruder, 2001; Al-Saidi and Stroud, 2001; Plastina and
Falci, 2003; Blais et al., 2003; Yang et al., 2003; You and Nori, 2003; Menzel et al., 2010;
Koch and Le Hur, 2009; Koch et al., 2010; Nunnenkamp et al., 2011; Viehmann et al.,
2011) (and others too numerous to list) and there has been a flurry of experiments
on circuit QED (Wallraff et al., 2004; Chiorescu et al., 2004; Schuster et al., 2005;
Wallraff et al., 2005; Schuster et al., 2007b; Johansson et al., 2006; Siddiqi et al., 2006;
Boulant et al., 2007; Schuster et al., 2007a; Wallraff et al., 2007; Sillanpää et al., 2007;
Houck et al., 2007; Leek et al., 2007; Majer et al., 2007; Astafiev et al., 2007; Metcalfe
et al., 2007; Deppe et al., 2008; Fink et al., 2008; Hofheinz et al., 2008; Wang et al.,
2008; Schreier et al., 2008; Houck et al., 2008; Fragner et al., 2008; Grajcar et al.,
2008; Sandberg et al., 2008; Il’ichev et al., 2009; Bishop et al., 2009a; Chow et al.,
2009; Hofheinz et al., 2009; DiCarlo et al., 2009; Fink et al., 2009; Baur et al., 2009;
Leek et al., 2009; Leek et al., 2010; Bianchetti et al., 2010; Niemczyk et al., 2010;
Johnson et al., 2010; DiCarlo et al., 2010; Neeley et al., 2010; Mariantoni et al., 2011a;
da Silva et al., 2010; Fink et al., 2010; Astafiev et al., 2010; Hoffman et al., 2011b;
Gambetta et al., 2011a; Srinivasan et al., 2011a; Wilson et al., 2011; Bylander et al.,
2011; Ong et al., 2011; Vijay et al., 2011; Bozyigit et al., 2011; Eichler et al., 2011b;
Eichler et al., 2011a; Lang et al., 2011; Hoi et al., 2011; Paik et al., 2011; Kim et al.,
2011; Mariantoni et al., 2011b; Dewes et al., 2012; Baur et al., 2012; Eichler et al.,
2012; Murch et al., 2012; Johnson et al., 2012; Houck et al., 2012; Underwood et al.,
2012; Yin et al., 2013; Sete et al., 2013; Kirchmair et al., 2013; Vlastakis et al., 2013;
Hoi et al., 2012; Hoi et al., 2013; Hatridge et al., 2013; Woolley et al., 2013; Córcoles
et al., 2013; Murch et al., 2013; Shanks et al., 2013).

In optical cQED, one uses a Fabry-Pérot cavity which (because optical wavelengths
are so small) is typically very large compared to a wavelength of light at the frequencies
associated with atomic spectra. The frequency of one of the longitudinal modes trapped
by the cavity can be adjusted to be close to the transition frequency of the atoms that
are dropped into (or nowadays trapped within) the cavity. While the coupling to this
one special mode can be significantly modified by the cavity, the spontaneous emission
rate of the atom into modes not trapped by the cavity is scarcely affected. The mirrors
are relatively far apart and the atom sees a lot of ‘free space’. Hence its spontaneous
emission time γ−1 ∼ 1ns remains largely unaffected. The strong-coupling limit where
the atom coherently exchanges energy with the one special longitudinal mode more
rapidly than it decays into the continuum of other modes requires considerable effort
to achieve (Thompson et al., 1992; Boca et al., 2004; Schuster et al., 2008).
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Fig. 6.1 Circuit QED: Schematic illustration (not to scale) of a transmon qubit embedded

in a coplanar waveguide resonator. Panel (a) shows the lumped element circuit equivalent to

the distributed circuit shown in panel (b). From (Koch et al., 2007).

In circuit QED, extremely strong coupling is trivial to obtain (the atoms can always
be made with antennae as large as needed to achieve strong coupling). In fact, it
requires care to obtain weak coupling and the main reason that the cavity is useful
is to protect the qubit from the environment by filtering out the vacuum noise which
causes spontaneous emission. This physics of using a cavity to modify the coupling
to the environment is that of the Purcell effect (Purcell, 1946), first observed2 for a
superconducting qubit by (Houck et al., 2008). Here a qubit placed inside a cavity can
have its decay rate suppressed if it is far detuned from the cavity resonance or enhanced
if the qubit transition frequency is close to a (broad) cavity resonance. The former
is useful for protecting quantum superpositions. The latter is useful for providing
rapid qubit reset to the ground state. It has also been successfully used to generate
single microwave photons on demand and enhance the fidelity of coherent quantum
information transfer from a superconducting qubit to a ‘flying’ photon qubit (Houck
et al., 2007). One can view the Purcell effect as the resonator performing an impedance
transformation on the external dissipation presented by the environment to the qubit
(Houck et al., 2008). The UCSB group (Neeley et al., 2008; Yin et al., 2013; Sete et al.,
2013) has used a tunable transformer coupling to quantitatively explore the role of
environmental coupling in a phase qubit circuit over a wide range of coupling strengths
and to sculpt the shape of the temporal mode of the photon spontaneously emitted

2In an early pioneering paper, the Saclay group (Turlot et al., 1989) studied a related dissipation
time-delay effect through the variation of the macroscopic quantum tunneling rate of a Josephson
junction coupled to a transmission line feeding a microwave absorber whose position along the trans-
mission line could be varied in situ.
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by an excited qubit. The Houck group has utilized a different approach to control the
spontaneous emission wave form. They rapidly vary the effective dipole moment of
the qubit on time scales short compared to the spontaneous emission time(Srinivasan
et al., 2013). The ETH group has taken still another approach (Pechal et al., 2013).

The coupling between the electric field in the cavity and the dipole moment of a
(single) atom at position ~R is given by3

U = −~p · ~E(~R). (6.1)

As we have seen, each discrete mode of a resonator is an independent harmonic oscil-
lator. We will assume for now that only a single mode (the one closest in frequency
to the atom transition) is important. (Of course it is important to remember that this
is not always a good approximation.) The electric field in the cavity (or voltage in a
circuit) can be written in terms of the mode polarization direction ǫ̂ and the mode zero

point fluctuation amplitude EZPF (computed at position ~R) and the photon operators
as4

~E = ǫ̂EZPF(â+ â†). (6.2)

We assume that the atom can be approximated as a two-level system. The dipole
moment operator connects the ground and excited states of the atom and so the
interaction Hamiltonian in Eq. (6.1) becomes

H1 = ~g(â+ â†)σx, (6.3)

where σx flips the two-level system between states and the ‘vacuum Rabi coupling’ g
is given by the dipole matrix element connecting the ground and excited states of the
atom

~g = −〈ψ1|~p · ǫ̂|ψ0〉EZPF (6.4)

where we again emphasize that EZPF is the vacuum fluctuation amplitude of the cavity
mode at ~R, the position of the atom. In atomic cQED the atoms move around and
the coupling is strongest at the antinodes of the mode and vanishes at the nodes. In
circuit QED we have the advantage of being able to place the artificial atoms at any
desired fixed location within the cavity.

Eq. (6.3) can be rewritten as

H1 = ~g(âσ+ + â†σ−) + ~g(âσ− + â†σ+), (6.5)

where

3This can be equivalently written in terms of the electromagnetic vector potential and the electron

momentum ∼ ~P · ~A. We neglect the ~A · ~A term which leads to transitions in which the photon is
not absorbed or emitted but rather scattered to a new state (Raman scattering) by the electron. See
(Nataf and Ciuti, 2010; Viehmann et al., 2011; Ciuti and Nataf, 2011; Viehmann et al., 2012) for
additional discussion on this topic.

4We make a certain gauge choice here and could have used ~E = −iǫ̂EZPF(â − â†) to be closer to
the choice made in discussing the voltage of the LC oscillator in Eq. (2.53). Note that one-dimensional
coplanar waveguide resonators for microwaves do not have a polarization degree of freedom. Three
dimensional microwave cavities and optical cavities of course do.



Introduction to Cavity and Circuit QED 75

σ± =
1

2
(σx ± iσy) (6.6)

are the raising and lowering operators for the qubit energy. If the cavity mode is close
in frequency to the atom transition frequency, the first term is important because
it nearly conserves the total energy. The second term only mixes states that are far
away from each other, or equivalently, it is rapidly rotating in the interaction picture.
Dropping this term is called the rotating wave approximation (RWA). This is often
an excellent approximation but is not necessarily valid if the coupling is very strong
or if the detuning of the atom from the cavity is large so that no one cavity mode is
singled out.

In this simplest approximation of a two-level atom coupled to a single cavity mode
(within the rotating wave approximation), the system is described by the Jaynes-
Cummings Hamiltonian

H = H0 + V, (6.7)

where

H0 = ~ωcâ
†â+

~ω01

2
σz (6.8)

where the single cavity mode is described as a simple harmonic oscillator of angular
frequency ωc, the two-level atom is represented as a simple spin-1/2 with excitation
frequency ω01,

V = ~g(âσ+ + â†σ−) (6.9)

and the ‘vacuum Rabi coupling’, g, represents the dipole matrix element for the process
in which the atom absorbs or emits a photon. For the case of a superconducting qubit
coupled to an LC resonator, this Hamiltonian is derived in detail in Appendix A).

The external driving and damping terms, not written explicitly here, which help
control the electromagnetic state of the cavity, are treated using the input-output for-
malism of quantum optics (Clerk et al., 2010) described in Appendix B. The extension
of this Hamiltonian to the case of multiple qubits is known as the Tavis-Cummings
model (Tavis and Cummings, 1968). If we had not made the RWA, we would have the
so-called Rabi Hamiltonian which in a certain sense is also integrable(Braak, 2011).

The full Hamiltonian with which we must deal

H = ~ωcâ
†â+

~ω01

2
σz + ~g(âσ+ + â†σ−) +Hdrive +Hdamping, (6.10)

includes environmental terms which produce the spontaneous emission of energy from
the atom at some rate γ. In addition in order to excite the atoms with an external
drive one must open a port into the cavity which then allows spontaneous emission of
energy from the cavity at some rate κ (or for a two-sided cavity at rates κL and κR).

Let us begin our analysis by considering the spectrum of H0 where the atom and
photon are not yet coupled. In Fig. (6.2) we show two ladders of photon states, one
for the qubit being in the ground state (|g〉 = | ↑〉) and the other for the qubit being in
the excited state (|e〉 = | ↓〉). (There is no uniform convention on whether the ground
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state should be labeled by spin up or down.) In Fig. (6.2a) we see the case where the
detuning between the qubit frequency and the cavity frequency

∆ ≡ ω01 − ωc, (6.11)

vanishes and in Fig. (6.2b) we see the case where ∆ is positive. The detuning is
considered strong if ∆ ≫ g.

0, g

1, g

2, g

3, g

c

0,e

1,e

2,e

01

1(2 )g

2(2 )g

3(2 )g

0, g

1, g

2, g

3, g

c

0,e

1,e

2,e

01

3g

2g

g

Fig. 6.2 Jaynes-Cummings ladder or ‘dressed-atom’ level structure. (left panel) Degenerate

case ω01 = ωc. The degenerate levels mix and split by an amount proportional to the vacuum

Rabi splitting g. (right panel) Dispersive case ω01 = ωc + ∆. For ∆ > 0 the level repulsion

causes the cavity frequency to decrease when the qubit is in the ground state and increase

when the qubit is in the excited state.

First we consider the case ∆ = 0 where the states |n+1, g〉 and |n, e〉 are degenerate.
As shown in Fig. (6.2a) this degeneracy is lifted by the dipole coupling matrix element
resulting in an energy splitting 2g for the lowest pair and 2g

√
n+ 1 for the higher

levels. The splitting 2g of the lowest pair of excitations is called the vacuum Rabi
splitting (Thompson et al., 1992; Raimond et al., 2001; Wallraff et al., 2004; Boca
et al., 2004; Johansson et al., 2006; Schuster et al., 2008). The energy eigenstates of
H0 + V are coherent superpositions

|Ψ±〉 =
1√
2
(|n+ 1, g〉 ± |n, e〉) (6.12)

(‘bonding-anti-bonding’ combinations) of photon excitation and qubit excitation known
in the condensed matter and AMO literature as polaritons. The coupling available in
circuit QED is now so strong that splittings of ∼ 150 MHz corresponding to ∼ 300
qubit line widths are easily achieved (Fink et al., 2008; Bishop et al., 2009a). The
higher lying excited states form a strongly anharmonic ladder which can be explored
by either strong driving or use of two excitation tones (Deppe et al., 2008; Fink et al.,
2008; Bishop et al., 2009a).

In the so-called dispersive regime where the qubit is far detuned from the cavity
(|ω01 − ωc| ≫ g), we will see below that diagonalization of the Hamiltonian to lowest
order in g leads to a second-order dispersive coupling



Introduction to Cavity and Circuit QED 77

Vdispersive = ~
g2

∆

[
â†â+

1

2

]
σz . (6.13)

This coupling is QND (quantum non-demolition) with respect to both photon number
and qubit polarization since it commutes with both. The dispersive coupling can be
interpreted either as a shift in the cavity frequency which depends on the state of
the qubit, or as the ‘ac-Stark’ or ‘light’ shift [plus the Lamb shift (Blais et al., 2004;
Schuster et al., 2005; Fragner et al., 2008)] of the qubit frequency proportional to
the number of photons in the cavity. The qubit-state-dependent shift of the cavity
frequency leads to changes in the amplitude and phase of photons reflected from or
transmitted through the cavity and is the basis of the QND readout of the qubit state in
circuit QED (Blais et al., 2004; Wallraff et al., 2004). The mean value of the light shift
can be used to rapidly tune qubit transition frequencies (Schuster et al., 2005; Schuster
et al., 2007b; Gambetta et al., 2006; Majer et al., 2007). The fluctuating part of the
light shift can be viewed as the quantum back-action (Clerk et al., 2010) of the qubit
measurement. As required by the principles of quantum measurement (Clerk et al.,
2010), the photon shot noise (Bertet et al., 2005) in the cavity gradually dephases the
qubit superposition as information is gained about σz . This back-action effect leads
to a broadening of the spectroscopic line width of the qubit (Schuster et al., 2005;
Schuster et al., 2007b; Ithier et al., 2005; Lupascu et al., 2005; Boissonneault et al.,
2008; Boissonneault et al., 2009). In the so-called ‘strong-dispersive’ regime (Schuster
et al., 2007a), the coupling is so large that the light shift per photon exceeds both

the cavity line width κ and the atom line width γ: g2

∆ > κ, γ. In this regime the
qubit spectrum breaks up into a series of separately resolved peaks representing the
distribution of photon numbers within the driven cavity (Schuster et al., 2007a). This
‘photon number’ detector was used to distinguish thermal and coherent states in the
cavity and could be used to measure number-squeezed states and other non-classical
states (Schuster et al., 2007a). Most recently (Paik et al., 2011) have observed light
shifts several orders of magnitude larger than the qubit line width. This strong-coupling
physics was first beautifully observed in the time domain by the Paris group (Nogues
et al., 1999; Guerlin et al., 2007; Gleyzes et al., 2007; Deleglise et al., 2008).

To derive Eq. (6.13) we need to find a unitary transformation

U = eη̂; U † = eη̂
†

= e−η̂, (6.14)

which removes the off-diagonal term in Eq. (6.9) which is first-order in g. Using the
Baker-Campbell-Hausdorff expansion we have

H̃ = UHU † = H + [η̂, H ] +
1

2
[η̂, [η̂, H ]] + . . . (6.15)

In perturbation theory we write H = H0 + V where V is the off-diagonal term linear
in g and we expect η̂ to therefore be of order g. Expanding to second order in g we
have

H̃ ≈ H0 + V + [η̂, H0] + [η̂, V ] +
1

2
[η̂, [η̂, H0]]. (6.16)

We need to choose η̂ to satisfy
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[η̂, H0] = −V (6.17)

in order to remove the lowest-order off-diagonal term. We are then left with only the
second-order terms which conveniently combine to

H̃ = H0 +
1

2
[η̂, V ]. (6.18)

It is straightforward to verify that the solution to Eq. (6.17) is

η̂ =
g

∆
(âσ+ − â†σ−). (6.19)

Clearly the expansion in g is valid only for large enough detuning so that g/∆ ≪ 1.
(On the other hand if ∆ becomes too large the RWA fails so caution is required.)
Computing the second-order term (and dropping an irrelevant constant) we arrive at
the dispersive Hamiltonian

H̃ = H0 + χ

(
â†â+

1

2

)
σz , (6.20)

where

χ ≡ ~
g2

∆
. (6.21)

For the case of a closed cavity (no damping and no drive) we can do better than
this dispersive approximation. Without drive or damping, the Hamiltonian in Eq. (6.7)
has the special property (due to the rotating wave approximation) that it commutes
with the excitation number

[H0 + V, N̂ex] = 0, (6.22)

with

N̂ex ≡ â†â+
1 + σz

2
(6.23)

being the sum of the cavity excitation number and the qubit excitation number. This
extra symmetry means that the Hamiltonian is block diagonal. The only state to which
|n, ↑〉 is coupled by V is |n + 1, ↓〉. Hence the largest block we have to diagonalize is
2× 2. The ground state |0, ↓〉 is (in the RWA) not connected to any other state by V
and hence is an eigenstate on its own. For the higher pairs of states containing a total
of n+ 1 excitations we can write

Ψ(n+1) = α|n, ↑〉+ β|n+ 1, ↓〉, (6.24)

for which the 2x2 eigenvalue problem becomes

H
(n+1)
2×2

(
α
β

)
= E

(n)
±

(
α
β

)
(6.25)

where
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H
(n+1)
2×2 = ~

(
nωc +

1
2ω01 g

√
n+ 1

g
√
n+ 1 (n+ 1)ωc − 1

2ω01

)
(6.26)

=

(
n+

1

2

)
~ωc + ~

(
+∆
2 g

√
n+ 1

g
√
n+ 1 −∆

2

)
. (6.27)

This has eigenvalues

E
(n+1)
± =

(
n+

1

2

)
~ωc ±

~

2

√
∆2 + 4g2(n+ 1) (6.28)

and the eigenfunctions in Eq. (6.24) given by

Ψ+ =

(
α+

β+

)
=

(
cos(θ/2)
sin(θ/2)

)
(6.29)

Ψ− =

(
α−
β−

)
=

(
− sin(θ/2)
cos(θ/2)

)
, (6.30)

where

θ = tan−1
(
2g

√
n+ 1

∆

)
. (6.31)

In the dispersive limit (g ≪ ∆) we can perform a Taylor series expansion of the
energy eigenvalues in Eq. (6.28) to obtain

E
(n+1)
± ≈

(
n+

1

2

)
~ωc ± ~∆

[
1

2
+
( g
∆

)2
(n+ 1)−

( g
∆

)4
(n+ 1)2

]
. (6.32)

This can be reexpressed as an effective Hamiltonian

H̃ ≈
(
N̂ex −

1

2

)
~ωc +Σz~∆

[
1

2
+
( g
∆

)2
N̂ex −

( g
∆

)4
N̂2

ex

]
, (6.33)

where Σz = ±1 is a spin label that smoothly connects to σz in the limit g −→ 0.
The lowest order term in the expansion reproduces the result in Eq. (6.20) and

the next order term shows that the cavity inherits some non-linearity (anharmonicity
or self-Kerr effect) from the qubit. The advantage of the exact (within the RWA)
solution is that it applies even for small ∆ where the dispersive approximation fails.
For ∆ = 0 the uncoupled levels occur in degenerate pairs and the degeneracy is lifted
by an amount linear in g giving the simple result which is plotted in the left panel of
Fig. (6.2)

E
(n+1)
± =

(
n+

1

2

)
~ωc ± g~

√
n+ 1. (6.34)

The single excitation eigenstates are ‘polaritons’, coherent superpositions of cavity and
qubit excitations. The ‘vacuum Rabi splitting’ (Blais et al., 2004) of the upper and
lower polariton states can be observed spectroscopically (Wallraff et al., 2004; Fragner
et al., 2008; Bishop et al., 2009a) provided the system is in the strong-coupling limit
(g ≫ γ, κ) where the splitting 2g exceeds the atom and cavity line widths, γ and
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κ respectively. In the strong-coupling limit, the line width of each single polariton
excitation is in fact (Blais et al., 2004) (for ∆ = 0)

γ̃ =
γ + κ

2
, (6.35)

because the excitation is half qubit and half photon. Because of the peculiar
√
n+ 1

splitting of the higher excited states, the polariton spectrum is quite anharmonic so
the combination of the ground state and one of the single polariton excitations can be
viewed as a two-level system which (in the strong coupling limit) can be driven rela-
tively strongly without going up the excitation ladder and therefore can be coherently
Rabi flopped just like a qubit (Bishop et al., 2009a) as shown in Fig. (6.3).

Fig. 6.3 a) Schematic illustration of n-photon non-linear transitions from ground state of

qubit and cavity |0, g〉 to the n excitation manifold 1√
2
[|n, g〉 ± |n − 1, e〉; b) Driven vacuum

Rabi spectrum. Horizontal axis is drive frequency and vertical axis is drive intensity. At low

power one sees the two widely-separated vacuum Rabi peaks corresponding to the transition

from the ground state to the upper and lower polariton states. At higher powers one sees

multi-photon absorption peaks in to the higher excitation manifolds. After (Bishop et al.,

2009b).

Returning now to the dispersive limit where the qubit is strongly detuned from
the cavity, one polariton has primarily qubit character and the other primarily cavity
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character. For the case of positive detuning, it is Ψ
(n=0)
+ which is primarily qubit. The

rate of energy relaxation of this state is given by the weighted average of the bare
qubit and cavity decay rates

γtot = cos2(θ/2)γ + sin2(θ/2)κ. (6.36)

For large detuning where sin2(θ/2) is small, we see that spontaneous emission of a
photon via the cavity is very weak. We can say that the qubit must emit its fluorescence
photon into the cavity and pay the energy denominator price of the large detuning
before the photon decays out into the continuum. Equivalently the cavity filters out
the vacuum noise at the qubit frequency which otherwise would have caused fairly
rapid spontaneous emission.

Exercise 6.1 The Purcell effect (Purcell, 1946) is the modification of the spontaneous emis-
sion rate of an atom or qubit due to the presence of a resonator. Depending on circumstances,
it can cause the rate of spontaneous fluorescence of the qubit to either be enhanced or re-
duced. We see from Eq. (6.36) that the fluorescence rate can be reduced by using a long-lived
cavity (small κ) and detuning the qubit far from the cavity resonance (sin2(θ/2) ≪ 1). This
equation was derived in the strong coupling limit g ≫ κ where it makes sense to first treat
the hybridization of the qubit and the cavity and only then add the intrinsic damping of
each. In the weak coupling limit g ≪ κ it makes sense to treat the density of photon states
inside the cavity as a broad continuum (of width κ) and use Fermi’s Golden Rule to obtain
the fluorescence rate

γκ = 2π|g|2ρ(ω01). (6.37)

Show that

ρ(ω01) = −
1

π
Im

1

ω01 − ωc + iκ/2
, (6.38)

and hence that

γκ = |g|2
κ

∆2 + (κ/2)2
. (6.39)

Notice that for large detuning ∆ ≫ κ

γκ ≈
g2

∆2
κ (6.40)

in agreement with Eq. (6.36) (for Nex = 1). On the other hand, for ∆ = 0 , the rate

γκ =
4|g|2

κ
(6.41)

is inversely proportional to κ rather than linearly proportional to κ as in the strong coupling
case. This can be understood from the density of states in the resonator being spread out
over a greater width and hence having a lower value for large κ as shown in Fig. (6.4). One
can view the Purcell effect as the resonator performing an impedance transformation on the
external dissipation presented by the environment to the qubit (Houck et al., 2008). Neeley
et al.(Neeley et al., 2008) have used a tunable transformer coupling to quantitatively explore
the role of environmental coupling in a phase qubit circuit over a wide range of coupling
strengths.
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Fig. 6.4 Cavity density of states for two different cavity widths, κ. The larger value of κ

yields a broader line but the height is lower at the peak corresponding to a lower density of

states.

The rate of progress in observing novel strong coupling non-linear quantum op-
tics effects in superconducting electrical circuits is quite remarkable. As noted above,
Houck et al.used the Purcell effect (Houck et al., 2008) to generate non-classical photon
states in a cavity (Houck et al., 2007). The states were a superposition of n = 0 and
n = 1 Fock states with controlled amplitude and phase. ‘Fluorescence tomography’
was performed on these states using square law detection to determine the probability
of having a photon. In addition, homodyne measurements were performed to deter-
mine the two quadratures of the electric field which are controlled by the off-diagonal
coherence between the n = 0 and n = 1 Fock states. In particular they showed that
the mean electric field of the one-photon Fock state was zero.

Higher Fock states up to n = 6 were synthesized by the UCSB group (Hofheinz
et al., 2008) who also observed that the decay rate scaled linearly with n as expected
(Wang et al., 2008). This same effect was seen qualitatively in the frequency do-
main in the experiment of Schuster et al.(Schuster et al., 2007a). The qubit spectrum
showed up to 6 resolved peaks displaying the distribution of photon numbers within
the driven cavity and the line width of the peaks increased with n. In a 2009 tour-
de-force, Hofheinz et al.(Hofheinz et al., 2009) demonstrated a remarkable method for
synthesizing arbitrary photon states (including Fock and various cat states) in a cavity
and measuring their Wigner distributions. This level of control now exceeds what has
been possible to date with atomic physics methods.

Because microwave photons have 104 to 105 times less energy than visible photons,
they are much more difficult to detect. The work of Houck et al.(Houck et al., 2007)
and Schuster et al.(Schuster et al., 2007a) showed that individual photons could be
detected with low efficiency and recent work (Hofheinz et al., 2009; Johnson et al.,
2010) demonstrated very high efficiency detection of individual photons in a cavity.
However a general purpose high bandwidth ‘photomultiplier’ does not yet exist in
the microwave regime. There have been some theoretical proposals for single photon
detection (Helmer et al., 2009; Romero et al., 2009) but this remains an important
open experimental problem.

Another novel new direction is construction of single artificial atom ‘lasers’ (Astafiev
et al., 2007; Marthaler et al., 2008; Ashhab et al., 2009) as well as Sisyphus cooling and
amplification (Grajcar et al., 2008) of an oscillator. The extreme strong coupling avail-
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able should permit observation of ‘photon blockade’ effects (Birnbaum et al., 2005),
and parametric down-conversion by three-wave mixing (Moon and Girvin, 2005; Mar-
quardt, 2007). The advances in our understanding and fabrication of Josephson junc-
tion circuits motivated by the quest for a quantum computer have led to dramatic
advances in the ability to do four-wave mixing, parametric amplification near the
quantum limit, as well as strong squeezing of the vacuum (Castellanos-Beltran et al.,
2008; Bergeal et al., 2010b; Bergeal et al., 2010a). These advances will not only permit
much better dispersive readout of qubits, they also open up the possibility of continu-
ous variable quantum information processing (Gottesman et al., 2001; Braunstein and
van Loock, 2005) since two-mode squeezed states are an entanglement resource.

6.1 Quantum Control of Qubits in Cavities

Suppose that we apply a classical drive with a smooth envelope centered on the qubit
transition frequency ω01 to the cavity

Vd = {vR(t) cosω01t+ vI(t) sinω01t} (â† + â). (6.42)

In the dispersive regime this drive is far removed from the cavity resonance and only
weakly populates the cavity with virtual photons. The vacuum Rabi coupling term
of the Jaynes-Cummings model in Eq. (6.9) can then cause coherent rotations of the
qubit. This is most easily analyzed by applying the dispersive unitary transformation
of Eq. (6.14). To lowest order in g/∆ we have the original drive on the cavity plus an
effective drive directly on the qubit

Ṽd ≈ Vd + Vdq (6.43)

where
Vdq ≡ [η, Vd] = {λR(t) cosω01t+ λI(t) sinω01t}σx. (6.44)

For large detuning (∆ ≫ κ, χ) the complex qubit drive amplitude

λR(I) ≡ vR(I)(t)
g

∆
(6.45)

can be interpreted as the external drive filtered by the response function of the cavity.
(It is important to note that we assume here that since ∆ ≫ χ the filter factor is
the same independent of the state of the qubit.) It is convenient to apply a unitary
transformation to take us into a frame rotating at the qubit transition frequency

Urot = e
i
2
ω01tσ

z

(6.46)

to remove the rapid precession of the ‘spin’. Within the rotating wave approximation
for the drive we are left with

Hrot = UrotHU
†
rot (6.47)

=
λR(t)

2
σx − λI(t)

2
σy. (6.48)

Thus we see that the cosine and sine drives produce rotations of the qubit around the
x and y axes (in the rotating frame). Rotations about the z axis can be achieved ‘in
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hardware’ by manipulating the qubit transition frequency to speed up or slow down
the precession or ‘in software’ by mathematically rotating between the cosine and sine
components of the drive. This gives us complete quantum control of the qubit state.

We have thus demonstrated that a single input wire to the cavity can be frequency
multiplexed. A drive near the cavity frequency produces a dispersive measurement
of the qubit state because the resonance frequency of the cavity and hence the re-
flection coefficient depends on the state of the qubit. On the other hand, a drive at
the qubit frequency is so far detuned from cavity frequency that reflection coefficient
is independent of the state of the qubit and so almost no measurement (and almost
no measurement induced dephasing) occurs when applying coherent control pulses to
rotate the qubit.

Exercise 6.2 In the derivation above we assumed a classical drive and implicitly neglected
the light shift of the qubit transition frequency that occurs when the cavity contains photons.
Consider the derivation above more carefully and what constraints the light shift (and the
quantum fluctuations in the drive) puts on the fidelity and/or speed of the single qubit gates.



7

Quantum Measurements in Circuit
QED

The theory of quantum measurements has a long history starting with the founders of
quantum mechanics torturing each other with the implications of various gedanken ex-
periments and their interpretation. Today measurements that are essentially quantum
in nature are routinely achieved experimentally. Many of the relevant ideas are better
known in the quantum optics community than in the condensed matter community
because the idealized measurement limits were first achieved using quantum optics
methods. However the development of superconducting qubits has also spurred great
experimental advances in achieving quantum limited measurements in condensed mat-
ter systems. The author’s introduction to the basic facts of quantum measurements
came from the review article of Makhlin, Schön and Shnirman (Makhlin et al., 2001).
For a recent discussion that bridges the quantum optics/condensed matter domain,
the reader is also directed to (Clerk et al., 2010). The reader is also directed to the
discussion in this volume by Korotkov (Korotkov, 2012) of conditional evolution.

Let us start by reviewing the basics. Consider a particle that lives in one dimension
and is in quantum state |Ψ〉. The wave function of the particle in the position basis is

ψ(x) = 〈x|Ψ〉 (7.1)

where |x〉 is the position eigenstate with position eigenvalue x. According to the
‘Copenhagen interpretation’ of quantum mechanics, the probability of finding the par-
ticle at position x when the position is measured is given by the Born rule

P (x) = 〈Ψ|x〉〈x|Ψ〉 = |ψ(x)|2. (7.2)

After such a sudden and strong measurement of position, the particle state is said to
‘collapse’ to |x〉.

Similarly, if we choose instead to measure the particle’s momentum (or wavevector
k) the probability of distribution of the results is given by

P̃ (k) = 〈Ψ|k〉〈k|Ψ〉 = |ψ[k]|2, (7.3)

where |k〉 is a momentum eigenstate with momentum eigenvalue ~k and the wave
function in the momentum basis is given by the Fourier transform of the position
basis wave function.

ψ[k] =
1√
2π

∫ +∞

−∞
dx e−ikxψ(x). (7.4)
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Note that because we have included a factor of 1/
√
2π in the Fourier transform, we

have ∫ +∞

−∞
dk P̃ (k) = 1. (7.5)

One important difference (for a free particle) between measuring position and mo-
mentum is that, the momentum measurement leaves the system in an eigenstate of
the Hamiltonian. Hence a subsequent measurement of the momentum will yield the
same answer. The first result will be a random number drawn from the probability dis-
tribution P̃ (k), but all subsequent repeated measurements will yield the same result.
This repeatability of the results is the defining characteristic of so-called ‘quantum
non-demolition’ (QND) measurements.

The above simple description of a ‘strong projective’ measurement can be physi-
cally realized in certain experimental situations. Frequently however, we need a more
sophisticated description of how measurements are done in the laboratory. In practice,
we often make experimental measurements on quantum systems by coupling the sys-
tem to a physical measurement apparatus which itself has a quantum Hamiltonian. We
then subsequently make what is effectively a strong projective measurement of some
‘pointer variable’ which is a degree of freedom of the measurement apparatus. Suppose
that the measurement pointer variable is described by a position coordinate y. Before
the measurement the wave function of the system plus measurement apparatus might
be a product state

Ψ0(x, y) = ψ(x)φ(y), (7.6)

where ψ describes the initial state of the system of interest and φ describes the initial
state of the measurement apparatus. As a result of the coupling between the system
and the measurement apparatus, they become correlated (entangled) and the wave
function is no longer separable. The joint probability distribution for the two variables
in terms of the subsequent state Ψ of the combined system is

P (x, y) = |Ψ(x, y)|2, (7.7)

while the probability for each separately is

PX(x) =

∫
dy P (x, y) (7.8)

PY (y) =

∫
dxP (x, y). (7.9)

Note that these are correctly normalized to unity.
Suppose now that we measure the pointer variable and the result (drawn from the

distribution PY ) is some value y. What can we say from this about the value of x, the
quantity we are really interested in? We can say that x has a random value drawn from
the conditional probability distribution P (x|y). The vertical bar indicates that this is
the probability distribution for x given y. Prior to the measurement, x has probability
distribution PX(x). After the measurement of a value y for the pointer variable, we
learn that the variable x is drawn from a new probability distribution P (x|y). If
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this distribution has very narrow support in the vicinity of some value x0(y), then
by measuring the pointer variable y we have effectively measured the value of x to
be x0(y). This would be a ‘strong measurement.’ In a weak measurement, P (x|y) is
broadly distributed, but still slightly narrower than the prior distribution PX(x). We
don’t know the precise value of x but we have learned something about it because the
width of its probability distribution has been reduced by conditioning upon the value
of y.

From basic probability theory we know that

P (x, y) = P (x|y)PY (y). (7.10)

That is, the joint probability for x and y to occur is the probability that x occurs
given y, times the probability that y occurs. From this we readily derive

P (x|y) = P (x, y)

PY (y)
(7.11)

which tells us how to update our knowledge of the distribution of x given the new
information we have acquired on the value of y. PX(x) is called the ‘prior distribution’
and P (x|y) is the posterior or updated distribution.

Using Eq. (7.7) and Eq. (7.9) we can express this in terms of the wave function

P (x|y) = |Ψ(x, y)|2∫
dx |Ψ(x, y)|2 . (7.12)

This simply tells us that the conditional probability of x given y is nothing more
than the joint probability evaluated at y and then multiplied by a constant to get the
normalization right ∫

dxP (x|y) = 1. (7.13)

Exercise 7.1 Bayes Theorem
We can also write the inverse relation

P (y|x) =
P (x, y)

PX(x)
(7.14)

from which we can immediately derive the famous Bayes rule which relates the two conditional
probabilities

P (x|y) = P (y|x)
PX(x)

PY (y)
. (7.15)

Consider one of the examples that Reverend Bayes presented in the 18th century. Your friend
drops a marble at random somewhere in the interval [0, L]. The probability distribution of
its position is therefore PX(x) = 1/L. Now your friend drops a second marble at random
in the same interval. Suppose your friend updates your knowledge by telling you that the
second marble landed to the left of the first marble. How should you update your estimate of
the probability distribution of the position of the first marble? Clearly the new information
biases the distribution to the right, but how? The Bayes rule gives us the answer. Let y be a
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discrete variable that takes values y = ±1 representing the result that the second marble is
left/right of the first. Clearly

P (y = +1|x) =
x

L
(7.16)

because the further the first marble is to the right, the more likely the second will be to the
left. Furthermore

PY (y = ±1) =
1

2
(7.17)

because a priori (that is, without prior information about the position of the first marble),
the second marble is equally likely to be on the left or right of the first. Thus from Eq. (7.15)

P (x|y = +1) =
2x

L2
. (7.18)

Given that the second marble landed to the left, there is zero probability that the first marble
is at the far left and the distribution rises linearly from there.

What happens to this conditional probability if we iterate the procedure and the next
marble also happens to land to the left of the first one? To the right? Clearly in the limit of
a large number, N , of such ‘measurements’ the probability distribution for x becomes very
narrow and is centered on x = fL, where f is the fraction of the marbles that landed to the
left of the first. Can you derive the asymptotic form of the probability distribution for large
N?

Historical note: Bayes never actually wrote down his rule as an equation. Eqn. (7.15) was
probably first derived later by Simon Laplace (McGrayne, 2011).

Exercise 7.2 Apply the Bayes rule to answer the following questions.

• A certain disease has an incidence rate of 10−4 in the general population. The diagnostic
test for this disease is highly accurate: the probability of a false negative is only 2%, and
the probability of a false positive result is only 1%. You are given the test and the result is
positive. What is the probability that you have the disease?

• A magician has two unfair coins. Coin A comes up heads with probability p > 1
2
. Coin B

comes up heads with probability 1− p. The magician chooses one of the coins at random and
flips it randomly in N trials. It comes up heads every time. What is the probability this is
coin A? What is the probability that the next flip will come up heads?

• A resonant cavity coupled to a cold bath has the property that its mean energy decays
exponentially at rate κ. You have available a photomultiplier which can detect any photons
emitted from the cavity. The cavity is initially prepared in a state that contains 1 photon
with probability p and zero photons with probability 1− p. After time t, the photomultiplier
has not detected a photon. Based on this information, what is the posterior probability that
the cavity contains a photon?

7.1 Stern-Gerlach Measurement of a Spin

Ultimately we will be interested in interrogating the state of a qubit in a resonant cavity
using a microwave drive. Before analyzing this somewhat complicated situation, it will
be very useful to gain some intuition by reviewing the familiar case of measurement
of a spin by using a Stern-Gerlach magnet. The key idea is that we do not directly
measure the spin. Rather we use the magnet to entangle the spin with the position
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N

S

Fig. 7.1 Measurement of a spin using the Zeeman field gradient of a Stern-Gerlach magnet

to entangle spin with momentum. The curves on the right show the momentum distribu-

tion of each spin component. One can either measure the momentum directly or wait for

the momentum difference to evolve into position difference. In the example depicted, the

measurement is strong because the momentum distributions of the two compomnents are

essentially non-overlapping.

of of the particle and then use a detector that measures the position as illustrated in
Fig. (7.1).

To keep matters simple let us stick to a one-dimensional description with a free-
particle kinetic energy Hamiltonian H0 and imagine that the effect of passing through
the magnetic field gradient of the Stern-Gerlach magnet is to produce a spin-dependent
impulsive force on the particle (assumed to be electrically neutral so that there is no
Lorentz force)

F (x, t) = +~k0 δ(t)σ
z , (7.19)

via a potential of the form

V (x, t) = −~k0 δ(t)σ
zx, (7.20)

where ~k0 is the impulse delivered in some brief interval of time (approximated here
by the delta function). Just such spin-dependent impulsive forces are routinely im-
plied in ion-trap quantum computers via application of laser beams with appropriate
polarizations.

This coupling term commutes with σz, the quantity we want to measure, and hence
in principle we can make a quantum non-demolition measurement (QND) of the spin.
The necessary repeatability is only possible if the quantity in question is a constant
of the motion1, both respect to the unperturbed Hamiltonian [H0, σ

z] = 0 and the
perturbation coupling the system to the measurement apparatus, [V, σz ] = 0.

1It is a confusing but common practice to refer to a measurement as being QND even if the
quantity being measured is not quite a constant of the motion due to weak coupling of the system
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Suppose that in the absence of the Stern-Gerlach coupling term, the wave function
is given by a product of spin and space functions:

ψ0(x) = [a| ↑〉+ b| ↓〉]Φ(x) (7.21)

where |a|2 + |b|2 = 1 and 〈Φ|Φ〉 = 1. Let us further suppose that the spatial wave
packet Φ is made up of plane waves all of low enough energy so that for a short time
interval around t = 0, the packet maybe treated as approximately stationary (i.e.,
H0Φ(x, t) ≈ 0). Then in the vicinity of time t = 0 the solution of the Schrödinger
equation will be discontinuous and approximately given by

ψ(x, t) ≈ eik0xσ
zθ(t)ψ0(x), (7.22)

where θ(t) is the Heaviside step function. This can be written for t > 0 as

|ψ〉 = a| ↑〉|Φ↑〉+ b| ↓〉|Φ↓〉, (7.23)

or

ψ(x) ≈ a| ↑〉eik0xΦ(x) + b| ↓〉e−ik0xΦ(x), (7.24)

or equivalently the momentum basis wave function will be

ψ[k] = a| ↑〉Φ[k − k0] + b| ↓〉Φ[k + k0]. (7.25)

We no longer have a separable wave function because the measuring apparatus has
entangled the spin with the momentum. The full time-dependent solution is such
that this displacement in momentum space will eventually result in displacement in
real space, but for the purposes of the present discussion, let us imagine we have a
mechanism for measuring the momentum directly and immediately. This measurement
of the momentum will, via the entanglement, tell us something about the spin.

For simplicity let us assume that the spatial wave packet is gaussian

Φ(x) = (2πσ2
0)
−1/4e

− x2

4σ2
0 (7.26)

with Fourier transform

Φ[k] =

(
2σ2

0

π

)+1/4

e−k
2σ2

0 . (7.27)

The probability distribution at time t = 0+ for the measured momentum conditioned
on the spin being up or down is given by a displaced gaussian

P (k| ↑) = |Φ0[k − k0]|2 (7.28)

P (k| ↓) = |Φ0[k + k0]|2 (7.29)

and is shown in Fig. (7.2) for different values of the dimensionless impulse k0σ0. Clearly
if k0σ0 ≫ 1, there is no ambiguity in the result. If the measured value of k is pos-
itive (negative), then the spin is definitely up (down). This corresponds to a strong
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Fig. 7.2 Momentum distribution of the particle after passage through the Stern-Gerlach

magnet, conditioned on the spin being up or down. Left panel: weak measurement in which

the momentum difference is small relative to the momentum uncertainty. Right panel: strong

measurement in which the momentum distributions do not overlap.

measurement. However if k0σ0 ≪ 1, we have a weak measurement in which we have
acquired only a small amount of information about the spin.

To quantify how much information we have gained, we can make use of the Bayes
rule. Given the state of the spin, we can predict the distribution of measured values
of k using Eqs. (7.28,7.29). In particular, suppose we are given the prior probability
for the spin to be up, p(↑) = |a|2, and to be down, p(↓) = |b|2. The prior probability
distribution for k is thus

P (k) = P (k| ↑)p(↑) + P (k| ↓)p(↓) = |a|2|Φ0[k − k0]|2 + |b|2|Φ0[k + k0]|2. (7.30)

What we want however is the inverse conditional probability. Namely, given the mea-
sured value of k what can we say about the probability that the spin is up or down?
This is given by Bayes rule

P (↑ |k) = P (k| ↑) p(↑)
P (k)

=
1

P (k)
|a|2|Φ0[k − k0]|2 (7.31)

P (↓ |k) = P (k| ↓) p(↓)
P (k)

=
1

P (k)
|b|2|Φ0[k + k0]|2 (7.32)

For the case of gaussian wave packets considered here, this simplifies to

P (↑ |k) = |a|2
Z
e+λk (7.33)

P (↓ |k) = |b|2
Z

|e−λk, (7.34)

where λ ≡ 4k0σ
2
0 and the normalization simplifies to

Z = |a|2eλk + |b|2e−λk. (7.35)

We now specialize to the particular case of |a|2 = |b|2 = 1
2 , where the prior polar-

ization of the qubit is m = |a|2−|b|2 = 0 and the estimate of the polarization following
the measurement is

to a dissipative bath. This non-ideality is ignored as long as the damping is weak and the quantity
would otherwise truly be constant even in the presence of the measurement apparatus.
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m(k) = P (↑ |k)− P (↓ |k) = tanh(λk), (7.36)

which shows explicitly how the new information from the measurement revises our
estimate of the state of the spin. The Shannon entropy for the prior distribution of
the value of the spin is

S = −
∑

σ

pσ ln pσ = −[p↑ ln p↑ + p↓ ln p↓] = ln 2. (7.37)

(This entropy in base e familiar from statistical mechanics, corresponds to one classical
bit of information which is calculated in base 2.) After the measurement yields a value
of k, the Shannon entropy for the spin distribution is

S(k) = −
∑

σ

P (σ|k) lnP (σ|k) (7.38)

= ln 2 + ln(coshλk)− λk tanhλk. (7.39)

This is reduced from the prior entropy by the amount of information gained by the
measurement about the state of the qubit. The information gained is

I(k) = − ln(coshλk) + λk tanhλk, (7.40)

and the average information gained is

Ī =

∫
dk P (k)I(k). (7.41)

For a very weak measurement, we expect λk to be small, in which case to leading
order in the expansion we have

I(k) ≈ λ2k2

2
, (7.42)

and using Eq. (7.30) the average information gain for weak measurements is

Ī ≈ λ2

2
(

1

4σ2
0

+ k20) ≈ 2k20σ
2
0 =

1

2

k20
(∆k)2

(7.43)

where (for k0σ0 ≪ 1), the momentum uncertainty is (∆k)2 = 1
4σ2

0

. It makes sense that

the narrower is the momentum uncertainty of the wave packet, the more information
we will gain from the measurement of the spin-dependent impulse imparted to the
particle.

The above discussion was couched in the language of classical probability distribu-
tions. Let us now repeat it in the language of quantum density matrices2. Using the
entangled state of the spin and position in Eq. (7.23) the full density matrix is

2Of course quantum probability amplitudes are not the same thing as classical probabilities which
is why we have to be a bit careful and recall that density matrices have off-diagonal elements which
represent superposition effects with no classical analog. Even the interpretation of the density matrix
itself can be tricky. It might represent an ensemble of quantum systems or it might represent the
observer’s incomplete state of knowledge about the state of a quantum system.
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ρ =

(
|Φ↑〉aa∗〈Φ↑| |Φ↑〉ab∗〈Φ↓|
|Φ↓〉ba∗〈Φ↑| |Φ↓〉bb∗〈Φ↓|

)
. (7.44)

If the measurement of the momentum yields the result k, then the reduced density
matrix for the spin is given by

ρk =
1

P (k)
〈k|ρ|k〉 = 1

P (k)

(
〈k|Φ↑〉aa∗〈Φ↑|k〉 〈k|Φ↑〉ab∗〈Φ↓|k〉
〈k|Φ↓〉ba∗〈Φ↑|k〉 〈k|Φ↓〉bb∗〈Φ↓|k〉

)
(7.45)

=
1

Z

(
|a|2e+λk ab∗

a∗b |b|2e−λk
)
, (7.46)

where Z is given in Eq. (7.35) and the normalization factor P (k) is

P (k) ≡ Tr 〈k|ρ|k〉 = |aΦ0[k − k0]|2 + |bΦ0[k + k0]|2, (7.47)

is nothing but the probability that measurement of the momentum will yield k.
Notice that the diagonal elements of Eq. (7.46) match the classical probabilities in

Eq. (7.33-7.34). Eq. (7.46) has a simple interpretation. Suppose for example that the
measured value of the momentum turns out to be k = 0. Then nothing happens to
the spin as a result of the measurement. For k > 0 the weight of the up-spin ampli-
tude increases and the down-spin weight decreases by the corresponding factor. The
reverse occurs for k < 0. Notice that there is no explicit reweighting of the off-diagonal
elements of the density matrix because the competing exponential factors cancel. How-
ever the normalization factor indirectly changes the value of the off-diagonal term. The
net effect is simply a rotation of the qubit around an axis passing through the equator
of the Bloch sphere and lying perpendicular to the qubit polarization. This rotation
moves the qubit along a line of constant ‘longitude’ on the Bloch sphere.

If the spin is up, the probability of observing a positive value of k is increased.
Conversely, observation of a positive value of k means that the spin is more likely
to be up. As mentioned above and as Korotkov (Korotkov, 2012) has discussed, this
application of the Born Rule of quantum mechanics is consistent with the Bayes Rule
from classical probability theory. Gaining information from the measured value of k
allows us to update our estimate of the spin polarization. Despite the fact that σz is a
constant of the motion, the polarization of the spin has changed, not due to any unitary
evolution under the action of the Hamiltonian, but rather due to the measurement-
induced collapse of the momentum state which is entangled with the spin. It is readily
verified that the spin is still in a pure state because the eigenvalues of ρ are zero and
one. (Hint: Trρ = 1 and Detρ = 0.) Equivalently, the von Neuman entropy (as opposed
to the Shannon entropy used above and calculated only from the diagonal elements of
ρ) vanishes since the state remains pure:

S̃ = −Tr ρ ln ρ = 0. (7.48)

If we ignore the result of the measurement (or equivalently ensemble average over
all measurement results) by tracing out the orbital degree of freedom in Eq. (7.44),
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we obtain the following reduced density matrix for the spin as a result of carrying out
(but ignoring) the measurement3

ρ̄ = Tr orbital ρ =

∫ +∞

−∞
dk P (k)ρk =

(
aa∗ ab∗〈Φ↓|Φ↑〉

ba∗〈Φ↑|Φ↓〉 bb∗

)
. (7.49)

Because we have ignored the measurement results we see that in this case there is no
change in the diagonal elements–we receive no information about the orientation of the
spin. Note however that the act of measurement has dephased the spin because the off-
diagonal elements are reduced by a factor given by the overlap of the two pointer states.
The stronger the measurement the greater this reduction will be as the two pointer
states become orthogonal and therefore fully distinguishable. This dephasing reduces
the expectation value of the transverse components of the spin without affecting the
z component. Using

〈Φ↓|Φ↑〉 =
∫
dx e2ik0x|Φ(x)|2 = e−2k

2
0(∆x)2 , (7.50)

where (∆x)2 = σ2
0 . As we will see below, it makes sense that the dephasing should be

proportional to the position uncertainty because the magnetic field acting on the spin
varies linearly with position. The greater is the position uncertainty, the greater is the
magnetic field uncertainty. As we will see below, if we measure the position x, then we
know the magnetic field that acted on the spin and know that this rotated the spin
through a definite angle 2k0x. The off-diagonal element of the density matrix is thus
multiplied by e2ik0x but the qubit remains in a pure state. Now however we have a
simple interpretation of Eq. (7.50) which tells us that we are ensemble averaging over
all the different rotation angles. The average of a bunch of density matrices each of
which corresponds to a pure state, leads to an impure state. More on this below.

If we assume that the measurement takes time ∆t, we can define a dephasing rate
Γϕ via

〈Φ↓|Φ↑〉 = e−Γϕ∆t (7.51)

so that

Γϕ =
2k20(∆x)

2

∆t
. (7.52)

Similarly, we can define a measurement rate Γmeas from the rate of acquisition of
information when we monitor the pointer variable

Γmeas =
Ī
∆t

=
1

2

k20
(∆k)2

1

∆t
. (7.53)

As expected, the measurement rate is inversely proportional to the momentum uncer-
tainty.

3Notice the very important fact that the probability measure for k exactly cancels the normaliza-
tion factor in the denominator of Eq. (7.45) which allows the integral to be trivially carried out.
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The ratio of these two rates is given by the simple Heisenberg uncertainty expres-
sion:

Γϕ

Γmeas
= 4(∆k)2(∆x)2 ≥ 1. (7.54)

The best we can do is have the ensemble average dephasing rate equal the ensemble
averaged measurement rate. In the present example this equality is actually achieved,
meaning that the measurement is quantum limited. The equality of the measurement
rate and the dephasing rate in our quantum limited detector follows from the uncer-
tainty relation between momentum and position for a minimum uncertainty Gaussian
wave packet. Quantum limited measurements are discussed in great detail in our re-
cent review on quantum noise (Clerk et al., 2010) and the Chapter by Clerk in this
volume (Clerk, 2012).

Let us now consider the situation where we decide that rather than measure the
particle momentum (which contains information about the spin through its entan-
glement), we decide instead to measure the particle position which initially is not
affected by the momentum boost and hence is not entangled with the spin4. We see
from Eq. (7.24) that the probability distribution for position is |Φ(x)|2 independent
of the position. Nevertheless, something interesting happens when we make the mea-
surement. Suppose that the measured value of position turns out to be x. Then the
analog of Eq. (7.45) for the reduced density matrix for the spin conditioned on having
measured x is

ρx =
1

PX(x)
〈x|ρ|x〉 = 1

PX(x)

(
〈x|Φ↑〉aa∗〈Φ↑|x〉 〈x|Φ↑〉ab∗〈Φ↓|x〉
〈x|Φ↓〉ba∗〈Φ↑|x〉 〈x|Φ↓〉bb∗〈Φ↓|x〉

)
(7.55)

=

(
|a|2 e−iϕab∗

e+iϕa∗b |b|2
)
, (7.56)

where ϕ ≡ 2k0x and

PX(x) = Tr 〈x|ρ|x〉 = |Φ0(x)|2 (7.57)

is the probability distribution for position. Clearly the probabilities to find the spin
up and down remain |a|2 and |b|2 and have not been changed by the measurement.
Note however the spin has been rotated by an angle ϕ around the z axis so that it
moves along a line of constant latitude. Unlike the previous example of momentum
measurement, there is no state collapse which is affecting the spin. Rather this change
in the spin state is the result of the measurement back-action through the unitary
time evolution generated by the coupling V . As we can see from Eq. (7.20), the size
of the Zeeman field which briefly acts on the spin varies linearly with the position x.
Hence the measured value X determines the rotation angle caused by the coupling
V . This is not surprising, because while V commutes with σz , it does not commute
with the transverse components of the spin and we expect them to be changed by the
measurement. Because the measurement of position yields no information about σz,
the collapse of the position has no effect on σz .

4After some time the momentum boost will affect the position of each spin component and position
then is entangled with the spin.
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The message here is that if we measure the state of the environment presented to
the qubit by the measurement apparatus (in this case the pointer variable which is
the particle position or momentum), then we have complete information about what
happened to the qubit. What happened may be random, but we know precisely what it
is. If however we ignore the results of the measurement by ensemble averaging over the
measurement results, the random results will lead to measurement induced dephasing

of the qubit. In this example, we can ensemble average over all possible results of
the momentum measurement or the position measurement. Either way we should get
the same answer because this corresponds to tracing out the environmental degrees of
freedom by summing over a complete set of states (in some particular basis).

7.2 Dispersive Readout of a Qubit in a Cavity

Now that we understand Stern-Gerlach measurements we are ready to study dispersive
readout of a qubit in a cavity. This readout works because the cavity frequency, and
hence the phase of the reflection coefficient for microwaves, depends on the state of
the qubit. In the Stern-Gerlach example, the state of the qubit is entangled with the
momentum of the particle wave and we considered the different back-action effects
of measuring the particle momentum or the conjugate variable, the position. In this
example, the phase of the microwaves reflected from the cavity is entangled with the
state of the qubit and will consider the different back-action effects of measuring the
phase of the microwaves or its conjugate variable, the photon number.

Suppose that we have the effective Hamiltonian in the dispersive limit given by
Eq. (6.20). This is the analog of the Stern-Gerlach Hamiltonian Eq. (7.20). Instead of
the Zeeman splitting varying linearly with position, it now varies linearly with photon
number N̂ = a†a. The analogy is not perfect because the photon number has discrete
integer eigenvalues and for a coherent state obeys a Poisson distribution, while the
position is continuous and (in our example) Gaussian distributed. However as we shall
see, in the limit of weak measurements involving a large number of photons, the Poisson
distribution effectively becomes a Gaussian.

If we send a microwave pulse at the bare cavity frequency ωc in coherent state |α〉
towards the (one-sided) cavity, then the initial state of the system (before the wave
packet hits the cavity) is a product state

|ψin〉 = [a| ↑〉+ b| ↓〉]|α〉, (7.58)

while the final state has the qubit and cavity entangled

|ψout〉 = [a|e−iθ0α〉| ↑〉+ b|e+iθ0α〉| ↓〉], (7.59)

where θ0 is the phase of the complex reflection coefficient given in Eq. (B.22) of
Appendix B. Using the expression for the dispersive cavity pull in Eq. (6.20) and
noting that the drive at the bare cavity frequency is detuned from the actual cavity
frequency by an amount χσz , the reflection coefficient becomes (with j = −i)

r =
χσz − iκ/2

χσz + iκ/2
= e−iθ0σ

z

(7.60)
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with tan θ0
2 = κ

2χ . As can be seen in Fig. (7.3), for a fixed phase angle difference, the
two coherent states become more and more distinguishable as the amplitude increases.
Thus the more photons we use, the stronger the measurement we make.
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0

0

Fig. 7.3 Fresnel ‘lollipops’ showing that two coherent states differing by a fixed phase an-

gle, become more and more distinguishable as the amplitude increases. For sufficiently large

amplitude, the difference in the Q quadratures exceeds the uncertainty due to the vacuum

noise. When fully distinguishable we have a strong quantum measurement of the spin which

is entangled with the photon field.

If, as illustrated in Fig. (7.4), we make a homodyne measurement of the reflected
wave we can choose to measure either of the two quadrature amplitudes defined in
Eqs. (2.81-2.82). The two quadratures X̂ and Ŷ are precisely analogous to the position
and momentum in the Stern-Gerlach example introduced above.5 For the coherent
state |e−iθ0σz

α〉 with α =
√
N̄ real, we have (see Appendix E)

〈Ŷ 〉 = −σzα sin θ0, (7.61)

so that, at least for θ0 ≪ 1, measuring Ŷ is equivalent to measuring the phase of the
wave.6 and 〈{

Ŷ − 〈Ŷ 〉
}2
〉

=
1

4
. (7.62)

By comparison with our previous example, we see that the ‘momentum kick’ is

Y0 = −
√
N̄ sin θ0 (7.63)

and (as shown in Appendix E) the momentum is gaussian distributed with variance

5Note however the important fact that with the normalization we have chosen, their commutator

is smaller by a factor of two [X̂, Ŷ ] = i
2
. Hence the Heisenberg uncertainty relation for the two

quadratures is (∆X)2(∆Y )2 ≥ 1
16

.
6Strictly speaking there is no ‘phase operator’. Only operators like sin θ which are periodic in theta

are well-defined.
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(∆Y )2 =
1

4
. (7.64)

Hence by analogy to Eq. (7.53), the measurement rate is

Γmeas =
1

∆t

Y 2
0

2(∆Y )2
= 2 ¯̇N sin2 θ0, (7.65)

where ¯̇N = N̄
∆t is the incident (and outgoing) photon flux. Thus we see that the

measurement rate is maximized when θ0 = π
2 which is achieved when the dispersive

shift is half a linewidth: χ = κ
2 . However the measurement is weak and continuous

only for θ0 ≪ 1 and in this limit we can make the approximation

Γmeas ≈ 2 ¯̇Nθ20 . (7.66)
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Fig. 7.4 Left panel: Homodyne measurement in which the signal is mixed with a local oscil-

lator of the same frequency. The resulting interference allows one to determine the amplitude

(rather than simply the power) of the signal. The phase of the local oscillator determines the

signal quadrature which is measured by the square-law detector. The beam splitter can be

made very strongly transmitting and only weakly reflecting (at the expense of needing more

LO power), so that the vacuum noise added by the LO port is negligible. Right panel: Vector

addition of the signal and LO phasors which converts a phase change of the signal into an

amplitude (and hence intensity) change which can be detected by the square-law detector.

The corresponding dephasing is most easily determined using the overlap of the
pointer coherent states (see Appendix E)

〈eiθ0α|e−iθ0α〉 = e|α|
2(e−2iθ0−1) ≈ e−i2θ0N̄e−2N̄θ2

0 . (7.67)

The complex exponential simply represents the average phase rotation of the qubit by
an angle 2θ0 for each photon which passes through the cavity. The dephasing term
represents the ensemble averaging over the fluctuations in the photon number in the
coherent state. From this we deduce

Γϕ∆t = 2N̄θ20, (7.68)

so that again we have a quantum limited measurement with Γϕ = Γmeas.
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Continuing the Stern-Gerlach analogy, the analog of Eq. (7.46) for the reduced
density matrix conditioned on measuring a value y for the Ŷ signal quadrature can be
found using the results in Appendix E

ρy =
1

P (y)
〈y|ρ|y〉 = 1

Z

(
|a|2e+λy eiϕab∗

e−iϕa∗b |b|2e−λy
)
, (7.69)

where

λ ≡ −4
√
N̄ sin θ0, (7.70)

and

P (y) = |a|2e−λy + |b|2e+λy, (7.71)

and (unlike the Stern-Gerlach case) there is an additional deterministic phase rotation
given by

ϕ = −N̄ sin 2θ0. (7.72)

Let us now consider what happens when instead of measuring the ‘momentum’ (the
Ŷ signal quadrature), we instead measure the ‘position’ (the X̂ signal quadrature).
Using the results from Appendix E) to project onto a given value x of X̂, the analog
of Eq. (7.56) is

ρx =

(
|a|2 eiλ(x−x̄)eiϕab∗

e−iλ(x−x̄)e−iϕa∗b |b|2
)
, (7.73)

where x̄ =
√
N̄ cos θ0 is the mean value of x.

Suppose that instead of measuring the X̂ quadrature amplitude via a homodyne
measurement, we choose instead to use a photomultiplier to measure N̂ . Suppose that
the result of this measurement is an integer n. Then the reduced density matrix of
the spin is readily determined using the following property of coherent states (see
Appendix E)

〈n|e+iθ0α〉 =
[
eiθ0α

]n
√
n!

. (7.74)

From this we have

ρn =

(
|a|2 ab∗e−i2θ0n

ba∗e+i2θ0n |b|2
)
. (7.75)

Thus the qubit is left in a pure state but rotated around the z axis by an angle
θn = −2θ0n. This simply means that each photon that reflects from the cavity de-
terministically shifts the phase of the superposition of the two qubit states by a fixed
angle−2θ0. This is the direct analog of Eq. (7.56) in the Stern-Gerlach example (except
here n has a non-zero mean value rather than fluctuating around zero). For sufficiently
small θ0 we can carry out the ensemble average over the photon number fluctuations
using the following approximation

〈〈e−i2θ0n〉〉 ≈ e−i2θ0〈〈n〉〉e−
1
2
〈〈[2θ0(n−N̄)]2〉〉 ≈ e−i2θ0N̄e−2N̄θ2

0 , (7.76)

which correctly reproduces Eq. (7.67).
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The connection between measuring the photon number and the X̂ signal quadra-
ture can be seen by noting that (for real α) the number of photons is related to the
value of X̂ whose fluctuations modulate the length of phasor

N̂ =
(
α+∆X̂

)2
+
(
∆Ŷ

)2
− 1

2
(7.77)

= N̄ + 2
√
N̄∆X̂ +

((
∆X̂

)2
+
(
∆Ŷ

)2
− 1

2

)
. (7.78)

For sufficiently small θ0 the last term in parentheses can be neglected (it vanishes
exactly in the state |α〉). Thus the off-diagonal phase factor in Eq. (7.75) which contains
the photon number measurement result can be written in terms of the measurement
result for the X̂ quadrature signal amplitude measurement result

e−i2θ0n ≈ e−i2N̄θ0e−i4θ0
√
N̄(x−x̄) (7.79)

which precisely matches the phase factor of the off-diagonal element Eq. (7.73) in
the limit of small θ0. In this limit it takes many photons to make the measurement
and n becomes gaussian distributed and (its discreteness is hard to see) just like the
continuous measurement result for x. It is important to emphasize that Eq. (7.73) and
Eq. (7.75) are exact for any value of θ0. We have a simple physical equivalence between
them only for small θ0 however.

7.2.1 Heterodyne Detection

The above results tell us that the back-action of the homodyne measurement on the
qubit depends on which quadrature of the homodyne signal is being measured. In a
heterodyne measurement, the frequency of the local oscillator is detuned from that of
the signal. One can view this as rotating the measurement between the two quadra-
ture amplitudes at a rate given by the detuning. Thus we obtain information about
both quadratures. This is a bit strange because the two quadratures are canonically
conjugate and hence are incompatible observables–we cannot know them both simul-
taneously with perfect precision. Thus, just as a phase-preserving amplifier must add
some noise (Clerk et al., 2010), so a heterodyne measurement must be subject to some
inefficiency. From the quantum noise point of view, this comes about because of addi-
tional vacuum noise mixed into the output. If the signal is at frequency f and the local
oscillator is at frequency f −∆ the output will be at frequency ∆. However vacuum
noise at the image frequency f +∆ will also be mixed down to the same output fre-
quency increases the uncertainty in the measurement of the quadrature amplitudes by
just the amount required by the Heisenberg uncertainty relation (Clerk et al., 2010).

Alternatively one can make the equivalent of a heterodyne measurement using two
simultaneous homodyne measurements as shown in Fig. (7.5). Here the additional
vacuum noise is introduced by the 50-50 beam splitter needed to allow the separate
homodyne measurements. Despite the additional noise introduced by the vacuum port
of this beam splitter, the qubit remains in a pure state. Measurement of X̂ quadrature
yields a rotation around the z axis and measurement of the Ŷ quadrature pushes the
polarization towards σz = ±1 as before. However because only half the signal is used
for the Ŷ measurement, the measurement rate is only 50% of the previous rate.
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Fig. 7.5 Idealized version of a heterodyne measurement consisting of two separate homodyne

measurements. The local oscillator beam splitters indicatd by the dashed lines are highly

transmitting and only weakly reflecting. The 50-50 beam splitter necessarily introduces an

extra vacuum port. By correctly choosing the phase of each of the two local oscillators, both

quadratures (I,Q) of the input signal can be measured using the two square-law detectors.

The added noise of the vacuum port reduces the measurement efficiency by 50% for a given

quadrature relative to homodyne measurement of that quadrature. Nevertheless the state

of the qubit remains pure if the two square-law detectors are ideal. In practice, heterodyne

measurement is done with a single beam splitter and local oscillator detuned from the signal.

The resulting beat note at the intermediate frequency (IF) is then amplified. The analog

of the added noise from the 50:50 beam splitter is the extra vacuum noise from the ‘image

frequency’ which is also mixed down by the local oscillator to the IF frequency.

Exercise 7.3 Show that if the phases of the two local oscillators in the pseudo-heterodyne
setup in Fig. (7.5) are set to measure the same quadrature, then it is possible to recover the
homodyne measurement result with no additional noise. Hint, first write down the S mstrix
for the 50-50 beam splitter, making sure that it is unitary. Use this to determine whether
the shot noise in the two homodyne signals is correlated. Recall that the shot noise can be
viewed as resulting from the interference between the classical input and the vacuum noise
that comes with it.
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7.2.2 Strong-Dispersive Limit

We have seen that when the qubit transition frequency ωQ is strongly detuned from
the cavity resonance frequency ωR, the resulting ‘dispersive’ Hamiltonian takes the
form in Eq. (6.20)

H = ωRa
†a+

ωQ

2
σz +

χ

2
a†aσz . (7.80)

This Hamiltonian is diagonal and deceptively simple looking, yet we have come to
realize that it provides a powerful toolbox for quantum control of the joint states of
the cavity and the qubit. The coefficient χ tells us the that the frequency of the cavity
shifts by χ when the qubit changes state. The same dispersive coupling term also tells
us that the qubit transition frequency changes by χ each time a photon is added to the
cavity. Because of the very large transition dipole of superconducting artificial atoms
(several electron charges moving ∼ 1 millimeter), the dispersive shift χ can be ∼ 103

times larger than the line widths of both the cavity and the atom placing the system
deep into what is known as the ‘strong-dispersive’ regime. In this regime one can easily
resolve the different spectral peaks of the qubit corresponding to the different possible
integer number of photons in the cavity (Schuster et al., 2007a; Johnson et al., 2010;
Paik et al., 2011; Sears et al., 2012). That is, the light shift of the qubit is strongly
quantized. This opens up new avenues for quantum control by allowing one to apply
a Rabi rotation to the qubit which is effective if and only if there is some particular
chosen photon number in the cavity.

Conversely the two possibly cavity frequencies (depending on the state of the qubit)
are well resolved. Hence a drive tone at frequency ωR ± χ

2 will excite (coherently
displace) the cavity only if the qubit is in the particular selected state. The combination
of a photon number dependent qubit rotation and a qubit state dependent cavity
displacement is an extremely powerful tool set (Leghtas et al., 2013; Leghtas et al.,
2012; Nigg and Girvin, 2013). For example, it becomes a relatively simple matter to
create entangled states of the qubit and cavity

|ψ〉 = 1√
2

[
|g〉|α〉 ± |e〉| − α〉

]
(7.81)

where |e〉 and |g〉 are the states of the qubit and |±α〉 are coherent states of amplitude
±α of the cavity.

With a few additional steps one can disentangle the qubit from the cavity to yield
a photon cat state

|ψ〉 = 1√
2
|g〉|
[
α〉 ± | − α〉

]
, (7.82)

or even entangle the qubit with two different cats (one with even photon number parity
and one with odd)

|ψ〉 = 1

2

[
|g〉[|α〉+ | − α〉

]
+ |e〉

[
|g〉[|α〉 − | − α〉]

]
. (7.83)

Furthermore the same tool set allows easy state tomography and direct measurement
of the cavity Wigner function as well as the photon number parity (Kirchmair et al.,
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2013). Schrödinger cats of size up to ∼ 100 photons can now be produced (Vlastakis
et al., 2013). The ability to measure the photon number parity opens up the possibility
for using Schrödinger cat states as code words in a quantum memory protocol which
remarkably is robust against photon loss errors (Leghtas et al., 2012).

Experimental progress in Circuit QED has now brought us into a new ultra-strong
coupling regime which is well beyond what can be achieved in conventional non-linear
quantum optics. This new regime is opening up new vistas of fundamental quantum
physics and affords radically new possibilities for quantum information processing.

7.2.3 Multi-port Resonators

All of the results derived above assumed a single-sided cavity in which there is only one
port so the reflected energy is equal to the incident energy. In this case the reflection
coefficient has unit magnitude and information about the state of the qubit is encoded
only in the phase of the reflection coefficient. For a two-port cavity there will be a signal
reflected from the input port and another signal transmitted through the output port.
Depending on the relative coupling strengths of these two ports, information on the
qubit state can be contained in one or both signals. This is discussed in more detail
in (Clerk et al., 2010).

One interesting case is where the input port is very weakly coupled and the damping
of the cavity is dominated by the output port. In this case there is no information in
the signal reflected from the input port. in general, the information in the output
port resides in both amplitude and phase of the signal. For example if the cavity is
irradiated not at the bare cavity frequency ωc (as in the example discussed above) but
rather at ωc−χ, then the amplitude will be large for one qubit state and small for the
other. This setup is very useful in the strong dispersive limit χ ≫ κ. In this limit the
power transmitted through the cavity at frequency ωc is very small and so not useful
for measurement (even though the phase difference between the two qubit states is π;
that is, θ0 = π

2 ).

7.3 Multi-qubit Dispersive Readout

An important idea in circuit QED is the understanding that dispersive coupling to the
cavity can be used to perform a simultaneous joint readout of multiple qubits (Blais
et al., 2004; Bishop et al., 2009b). This joint readout was used for two-qubit state
tomography by Majer et al.(Majer et al., 2007). In its most basic form, the idea is
simply that with two qubits, there are four possible quantum states and four different
dispersive frequency pulls of the cavity. If one is in the strong dispersive coupling regime
and all four frequency pulls can be reliably distinguished in a single shot, then one has
two bits of classical information and a complete projective measurement of both qubits.
Of course in the presence of qubit decay and amplifier noise, the detector tomography
can be complex (Bishop et al., 2009b). A more sophisticated understanding of the
situation of imperfect resolution of the four peaks has been developed recently and
(Filipp et al., 2009) demonstrated that it is possible to still reliably measure two-qubit
correlations even in the presence of readout noise.

A simplified version of the theory for joint readout of two qubits is the following.
While the cavity pull is linear in the qubit polarizations
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δωc = χ1σ
z
1 + χ2σ

z
2 , (7.84)

the corresponding homodyne (transmission) amplitude is not

A(σz
1 , σ

z
2) = Re

{
eiϕ

κ/2

∆− δωc + iκ/2

}
. (7.85)

Here, ∆ is the detuning of the readout tone from the bare cavity resonance, κ is the
cavity line width, and ϕ is the local oscillator phase. Because this can take on only
four distinct values (corresponding to two classical bits of information) this expression
can always be recast in the form

A(σz
1 , σ

z
2) = β0 + β1σ

z
1 + β2σ

z
2 + β12σ

z
1σ

z
2 . (7.86)

The joint coefficient β12 is in general non-zero (as long as ∆ 6= 0) and typically on
the same scale as the other coefficients. By using pre-rotations (by angle zero or π)
of each of the two qubits prior to making the measurement, it is straightforward to
obtain any one or two-qubit correlator in the z basis. Ensemble averaging many such
measurements will reduce the statistical uncertainty to arbitrarily low values. For
example,

〈σz
1σ

z
2〉 =

1

4β12
〈A(σz

1 , σ
z
2)−A(−σz

1 , σ
z
2)−A(σz

1 ,−σz
2) +A(σz

1 , σ
z
2)〉 . (7.87)

Any other arbitrary correlators (e.g. 〈σx
1σ

y
2 〉) can be achieved by pre-pending rotations

through appropriate arbitrary angles. The Yale group has recently used this multi-
qubit readout method to measure values of the CHSH entanglement witness well above
the classical bound (Chow et al., 2010) and to prove three-qubit entanglement in a
GHZ state (DiCarlo et al., 2010).

7.4 Non-linear and latching readouts

We have focused here on dispersive readout using a simple harmonic oscillator res-
onator parametrically coupled to the qubit. For binary readout of the state of a two-
level qubit, other readout methods based on coupling to a non-linear oscillator have
been developed. The Josephson bifurcation amplifier, and its cousin the cavity bifur-
cation amplifier, (Siddiqi et al., 2004; Metcalfe et al., 2007; Mallet et al., 2009) use
a large Josephson junction as the non-linear element. The advantage of a non-linear
cavity is that it can ‘latch’ into one of two stable oscillation modes depending on the
state of the qubit. Because of hysteresis, the readout can remain ‘latched’ in its stable
state even if the qubit decays, thus providing a high signal to noise ratio. A very simple
readout scheme has been developed by the Yale group (Reed et al., 2010a) in which
the bare cavity is linear but one takes advantage of the anharmonicity inherited from
the qubit itself so that a separate non-linear element is not needed. It is also very
robust and easy to implement under a large range of circuit parameter values.

For phase qubits, the UCSB group has developed a high-fidelity readout based
on the qubit modulating the macroscopic quantum tunneling rate of a large junction
placed in a meta-stable current carrying state (Martinis et al., 2002).
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Summary and Future Directions

The rate of progress in the realization of quantum microwave circuits over the past
decade has been truly remarkable and represents both progress towards building novel
quantum machines and realizing non-linear quantum optics in a novel strong-coupling
regime. Circuit QED is much more than atomic physics with wires. We have a set of
modular elements which are readily connected together. Hence, we have the opportu-
nity to assemble large scale structures from these quantum building blocks and do some
real quantum engineering. Further progress will require scaling up both the number of
qubits and resonators and continuing to advance coherence times and gate fidelities.
As the number of qubits grows, it will be important to increase the on-off ratio of the
couplings among them. Simply detuning them from each other will probably not be
sufficient and interference between two coupling channels which can null out the net
coupling will likely be needed. Houck et al. have developed a novel transmon structure
in which the vacuum Rabi coupling can be tuned over a wide range using magnetic
flux to control the interference between two internal modes of the qubit (Srinivasan
et al., 2011b; Gambetta et al., 2011b; Hoffman et al., 2011a).

Another exciting direction involves using multiple physical qubits to realize in-
dividual logical qubits to overcome the difficulties of maintaining stable transition
frequencies. In particular, the possibility of topological protection (Kitaev, 2003; Ioffe
and Feigelman, 2002; Ioffe et al., 2002; Doucot et al., 2003; Doucot et al., 2005) is
beginning to be explored in superconducting qubits (Gladchenko et al., 2009). The
central idea is that qubits are constructed in which the ground and excited states are
degenerate and this degeneracy is robust against local variations in Hamiltonian pa-
rameters. Even if the energy levels are not exactly degenerate, it would be very useful
to have a qubit with a “Lambda” energy level scheme, that is, two nearly degenerate
levels that can be coupled via stimulated Raman pulses through a third level. This
would be advantageous both as a robust qubit and for purposes of fundamental quan-
tum optics studies. It seems reasonably certain that this cannot be achieved without
applied magnetic flux to frustrate the Josephson couplings (as in a flux qubit or in
the fluxonium qubit). Indeed the fluxonium qubit may turn out to be quite useful as
a Lambda system.

The development of large resonator arrays will be interesting not only as a quan-
tum computation architecture but also for fundamental quantum optics purposes. An
array of resonators each containing a qubit that induces a Kerr nonlinearity will be
a realization of the boson Hubbard model (Fisher et al., 1989) which exhibits both
superfluid and Mott insulator phases. There is now a burgeoning interest in seeing
‘quantum phase transitions of light’ (Greentree et al., 2006; Illuminati, 2006; Hart-
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mann and Plenio, 2007; Jarrett et al., 2007; Rossini and Fazio, 2007; Angelakis et al.,
2007; Hartmann et al., 2008; Makin et al., 2008; Aichhorn et al., 2008; Cho et al.,
2008c; Cho et al., 2008a; Zhao et al., 2008; Na et al., 2008; Lei and Lee, 2008; Cho
et al., 2008b; Ji et al., 2009; Hartmann et al., 2009; Grochol, 2009; Dalidovich and Ken-
nett, 2009; Carusotto et al., 2009; Schmidt and Blatter, 2009; Koch and Le Hur, 2009;
Lieb and Hartmann, 2010; Hartmann, 2010; Schmidt et al., 2010; Houck et al., 2012;
Hayward et al., 2012; Nissen et al., 2012; Petrescu et al., 2012; Hwang and Choi, 2013;
Schmidt and Koch, 2013). Since the transmon qubit is itself an anharmonic oscillator,
one might imagine it would be easier to simply use a lattice of coupled transmons to
realize the boson Hubbard model (with negative Kerr coefficient). The advantage of
using a lattice of resonators is that their resonance frequencies can be closely matched
to a single fixed value. The Kerr coefficient induced by coupling each resonator to
an off-resonant qubit will have some variation due to variations in qubit transition
frequencies, but this disorder in the Hubbard U will be more tolerable than disorder
in the photon ‘site energies.’ Just as cold atom systems are now used to simulate
condensed matter models, so we may be able to use photons as interacting strongly
correlated bosons, which can be probed, measured and controlled in ways that are
impossible in ordinary condensed matter.

The demands placed on classical computers to design and simulate even small
numbers of qubits and resonators is already enormous. As the size of our quantum
machines grows, the modeling complexity will grow exponentially. Similarly the ex-
perimental measurements and process tomography needed to verify the operation of
larger quantum machines will become extremely challenging. We will have to develop
calibration and verification protocols that can reliably vet each segment of a quantum
processor without the luxury of complete end-to-end process tomography. Today, clas-
sical computers are sufficiently complex that we cannot design the next generation by
hand. We must use the current generation of computers to design the next. Eventually
this might be true of quantum machines. However, one wonders if we might soon find
ourselves in a situation where both existing quantum machines and classical comput-
ers are not powerful enough to be used to design and model the next generation of
quantum machines. We are rapidly gathering supplies to cross that novel and exciting
desert!
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Appendix A

Cooper Pair Box Hamiltonian

The Cooper pair box consists of a superconducting island coupled to a superconducting
ground via a Josephson junction, or two islands connected by a Josephson junction.
The Hamiltonian has the same form in both cases. The equivalent circuit is shown in
Fig. (4.1). The bias voltage V could be an intentionally applied dc or ac voltage, or a
quantum fluctuating voltage associated with a microwave photon field, or it could be a
random voltage representing some local charge asymmetry in the vicinity of the island.
For simplicity, we will take the voltage to be supplied by an ideal zero-impedance
source. Because figuring out the Hamiltonian of a system connected to a power supply
can be confusing, we will consider a physical realization of the voltage source as a very
large ‘buffer’ capacitor CB as shown in Fig. (A.1). In this configuration, the circuit
has two islands with corresponding node fluxes, Φ1 and Φ2. The charging energy can
be determined by writing the Lagrangian for the two flux variables

L =
1

2
CBΦ̇

2
2 +

1

2
Cg

(
Φ̇2 − Φ̇1

)2
+

1

2
CJΦ̇

2
1. (A.1)

Defining

Φ ≡
(
Φ1

Φ2

)
, (A.2)

the Lagrangian can be written

L =
1

2
Φ̇TCΦ̇, (A.3)

where the capacitance matrix is given by

C =

(
Cg + CJ −Cg

−Cg Cg + CB

)
. (A.4)

The electrostatic Hamiltonian is now readily expressed in terms of the charges canon-
ically conjugate to Φ

H =
1

2
QTC−1Q, (A.5)

where

Q ≡
(
Q1

Q2

)
. (A.6)
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12
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gC
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Fig. A.1 Equivalent circuit for determining the electrostatic energy of a Cooper pair box

biased by a voltage source represented by a large capacitor CB. The Josephson junction

capacitance CJ is coupled to the voltage source via the capacitor Cg. There are two node

fluxes Φ1 and Φ2.

The inverse capacitance matrix is given by

C−1 =
1

CgCB + CgCJ + CBCJ

(
Cg + CB Cg

Cg Cg + CJ

)
. (A.7)

This can be simplified by defining the total capacitance to ground for each of the two
islands

C1Σ ≡ CJ + C2s (A.8)

C2Σ ≡ CB + C1s, (A.9)

and the two series capacitances

1

C1s
≡ 1

Cg
+

1

CJ
(A.10)

1

C2s
≡ 1

Cg
+

1

CB
. (A.11)

Using these definitions, the inverse capacitance matrix can be written

C−1 =




1
C1Σ

β
C2Σ

β
C2Σ

1
C2Σ


 , (A.12)

where the dimensionless coupling constant is given by
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β ≡ Cg

Cg + CJ
. (A.13)

The electrostatic Hamiltonian can then be written

H =
Q2

1

2C1Σ
+ β

Q2

C2Σ
Q1 +

Q2
2

2C2Σ
. (A.14)

We define the ‘nominal’ bias voltage as1

VB =
Q2

C2Σ
. (A.16)

In terms of this we can write the electrostatic Hamiltonian as

H =
Q2

1

2C1Σ
+ βVBQ1 +

1

2
C2ΣV

2
B . (A.17)

Including now the Josephson junction energy and quantizing we arrive at the full
Cooper pair box Hamiltonian

H =
Q̂2

1

2C1Σ
+ βVBQ̂1 − EJ cos

2e

~
Φ1 +

1

2
C2ΣV

2
B . (A.18)

Note that the last term is a constant of the motion and can be ignored.
Defining the dimensionless offset (or ‘gate’) charge ng

ng ≡ −βC1ΣVB
2e

≈ −CgVB
2e

, (A.19)

(with the latter equality only in the limit of large CB) and defining the charging energy

EC ≡ e2

2C1Σ
, (A.20)

we can also write the Hamiltonian in terms of the integer-valued number operator

n̂ ≡ Q̂1

2e
(A.21)

representing the excess number of Cooper pairs on island one. Its conjugate variable is
the relative phase angle for the superconducting order parameter across the junction

ϕ =
2e

~
Φ1 = 2π

Φ1

Φ0
, (A.22)

1N.B. The actual voltage on island two is

V =
∂H

∂Q2
= VB + β

Q1

C2Σ
. (A.15)

In the limit of of large CB the actual voltage is fully buffered (i.e., becomes independent of Q1) and
is given by V ≈ V (Q1 = 0) = VB.
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where Φ0 is the superconducting flux quantum. In terms of this pair of dimensionless
charge and phase variables, the Hamiltonian becomes

H = 4EC

(
n̂2 − 2ngn̂

)
− EJ cosϕ+

1

2
C2ΣV

2
B (A.23)

= 4EC (n̂− ng)
2 − EJ cosϕ+

1

2

C1ΣC2Σ

Cg + CJ
V 2
B , (A.24)

It is sometimes convenient to work in the (angular) position basis with wave function
Ψ(ϕ) and n̂ = −i ∂

∂ϕ being represented by the angular momentum conjugate to the an-

gle ϕ. In other cases, it is more convenient to work in the angular momentum (charge)
eigenbasis and recognize that the operator cosϕ term is a ‘torque’ that changes the
angular momentum by ±1 unit.

Dropping the last constant term in Eq. (A.24) and assuming the voltage bias is
fully buffered (large CB), we arrive at Eq. (4.2). We again emphasize that ng is a
continuous variable (and often subject to 1/f noise), while n̂ is integer-valued (i.e., is
the angular momentum conjugate to the angular variable ϕ) and changes by ±1 each
time a Cooper pair tunnels through the Josephson junction connected across CJ.

A.1 Cooper Pair Box Coupled to an LC Resonator

Consider the circuit in Fig. (A.2) which shows a Cooper pair box coupled to an LC
resonator. For simplicity we will ignore the possibility of a dc bias voltage on the qubit.
The Hamiltonian can be immediately written down by analogy with Eq. (A.14)

H = H1 +H2 +H12 (A.25)

H1 =
Q̂2

1

2C1Σ
− EJ cos

2e

~
Φ̂1 (A.26)

H2 =
Q̂2

2

2C2Σ
+

1

2LB
Φ̂2

2 (A.27)

H12 =
β

C2Σ
Q̂1Q̂2. (A.28)

Let the eigenfunctions of H1 obey

H1|j〉 = ǫj |j〉, (A.29)

and let us denote the matrix elements of the charge operator in this basis by

Qjk = 〈j|Q̂1|k〉. (A.30)

This is the analog of the dipole matrix elements of an atom. The LC resonator hamil-
tonian can be written

H2 = ~ωcâ
†â, (A.31)

where ωc =
1√

LBC2Σ
, and the second charge operator can be written following Eq. (2.42)

Q̂2 = −iQ2ZPF

(
â− â†

)
, (A.32)
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BL BC

2

JC

1

gC

Fig. A.2 Equivalent circuit for a Cooper pair box (without dc voltage bias) capacitively

coupled to an LC resonator.

where following Eq. (2.43) we have

Q2ZPF =

√
CB~ωc

2
. (A.33)

We now have the full Hamiltonian

H = ~ωcâ
†â+

∞∑

k=0

ǫk|k〉〈k| − i
βQ2ZPFQjk

2C2Σ
|j〉(â− â†)〈k|, (A.34)

in a form which is convenient for numerical diagonalization.
If the spectrum of the qubit is sufficiently anharmonic, we may be able to restrict

our attention to its two lowest states. Projecting our Hamiltonian onto these two states
allows us to represent the qubit operators in terms of Pauli spin matrices. Taking the
ground state |0〉 to be represented by spin down | ↓〉 and the excited state |1〉 to be
represented by spin up | ↑〉 we can represent all possible qubit operators within the
2× 2 Hilbert space:

|0〉〈0| = 1− σz

2
(A.35)

|1〉〈1| = 1 + σz

2
(A.36)

|1〉〈0| = σ+ (A.37)

|0〉〈1| = σ−. (A.38)
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The Hamiltonian then becomes (dropping an irrelevant constant)

H = ~ωcâ
†â+

~ω01

2
σz−i(â−â†)~

{
g11

1 + σz

2
+ g00

1− σz

2
+ g10σ

+ + g01σ
−
}

(A.39)

where
~ω01 ≡ ǫ1 − ǫ0 (A.40)

and

~gjk ≡ βQ2ZPFQjk

2C2Σ
. (A.41)

If the eigenstates ofH1 have a static dipole moment, then the diagonal matrix elements
of the charge operator Q1 will be non-zero. Here we are, for simplicity, ignoring the
possibility of a dc bias which produces an offset charge. In this case H1 has a charge-
parity symmetry which guarantees that the diagonal matrix elements of the charge
operator Q1 vanish. We are free to choose a gauge (i.e., choose the arbitrary phases of
the eigenstates of H1) so that g01 = g10 = g is real. We then arrive at the celebrated
Jaynes-Cummings Hamiltonian

H = ~ωcâ
†â+

~ω01

2
σz − i~g(â− â†)(σ+ + σ−), (A.42)

which, when the rotating wave approximation is justified, further simplifies to

H = ~ωcâ
†â+

~ω01

2
σz − i~g(âσ+ − â†σ−). (A.43)

We can reduce this to the more familiar expression given in Eq. (6.7) by making a
rotation of the spin axes via the unitary transformation

Û = ei
π
4
σz

, (A.44)

which yields

Uσ+U † = +iσ+ (A.45)

Uσ−U † = −iσ+. (A.46)

and thus finally

H = ~ωcâ
†â+

~ω01

2
σz + ~g(âσ+ + â†σ−). (A.47)



Appendix B

Semi-Infinite Transmission Lines,
Dissipation and Input/Output
Theory

This appendix is based on material presented in (Clerk et al., 2010).
So far we have studied transmission line resonators which contain discrete standing

wave resonance. We turn now to the case of infinite and semi-infinite transmission lines
where we will deal with traveling waves rather than standing waves. In order to control
the state of quantum bits we will want to send control pulses down a transmission line
to the qubit. However opening up a port into the qubit to allow control signals in
can also allow quantum and thermal noise to also enter. Such noises can dephase the
coherent superpositions of qubits and also permit the qubits to decay by spontaneously
emitting energy out the port and into the transmission line.

Another reason for studying the case of traveling waves in semi-infinite transmis-
sion lines is the following. In addition to controlling qubits by sending pulses down
transmission lines, we may also wish to measure the state of a qubit by sending mi-
crowave pulses down a transmission line and seeing out the reflected pulse is modified
according to the state of the qubit. Thus we also need to understand continuum scat-
tering theory for microwaves and how to relate the properties of the reflected wave to
those of the incident wave and of the system from which they are reflecting.

You might think that since a transmission line is made of purely reactive elements,
it cannot dissipate energy. If however it is semi-infinite in length, then a wave launched
at one end carries away energy and never returns. As usual in studying irreversible
behavior, there is a subtle order of limits here. If time goes to infinity before the
transmission line length goes to infinity then there is no dissipation. In the opposite
order of limits, there is dissipation because the waves travel away and never have
time to reach the end of the transmission line and reflect back. We will in fact see
that a semi-infinite transmission line acts just like a resistor with resistance equal
to its characteristic impedance R = Zc =

√
ℓ/c. Remarkably however because the

transmission line is made of purely reactive elements we know, as we have already
seen, how to treat it quantum mechanically. Hence we will be able to develop a fully
quantum theory of a dissipative resistor (Caldeira and Leggett, 1983).

It is useful to start with a classical model considering as before a coaxial trans-
mission line modeled as a perfectly conducting wire with inductance per unit length
of ℓ and capacitance to ground per unit length c as shown in Fig. B.1. If the voltage
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at position x at time t is V (x, t), then the charge density is q(x, t) = cV (x, t). By
charge conservation the current I and the charge density are related by the continuity
equation

∂tq + ∂xI = 0. (B.1)

The constitutive relation (essentially Newton’s law) gives the acceleration of the charges

ℓ∂tI = −∂xV. (B.2)

We can decouple Eqs. (B.1) and (B.2) by introducing left and right propagating modes

V (x, t) = [V→ + V←] (B.3)

I(x, t) =
1

Zc
[V→ − V←]. (B.4)

In terms of the left and right propagating modes, Eqs. (B.1) and B.2 become

vp∂xV
→ + ∂tV

→ = 0 (B.5)

vp∂xV
← − ∂tV

← = 0 (B.6)

where vp ≡ 1/
√
ℓc is the wave phase velocity. These equations have solutions which

propagate by uniform translation without changing shape since the line is (in the
present model) dispersionless

V→(x, t) = Vout(t−
x

vp
) (B.7)

V←(x, t) = Vin(t+
x

vp
), (B.8)

where Vin and Vout are arbitrary functions of their arguments. For an infinite trans-
mission line, Vout and Vin are completely independent. However for the case of a
semi-infinite line terminated at x = 0 (say) by some system S, these two solutions
are not independent, but rather related by the boundary condition imposed by the
system. We have

V (x = 0, t) = [Vout(t) + Vin(t)] (B.9)

I(x = 0, t) =
1

Zc
[Vout(t)− Vin(t)], (B.10)

from which we may eliminate V (x = 0, t) to derive the crucially important ‘input-
output’ relation

Vout(t) = Vin(t) + ZcI(x = 0, t). (B.11)

The first term on the RHS is simply the direct reflection of the input wave, while the
second term represents waves radiated into the transmission line by current injected
by the system S.

If the system under study is just an open circuit so that I(x = 0, t) = 0, then
Vout = Vin, meaning that the outgoing wave is simply the result of the incoming wave
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Fig. B.1 a) Coaxial transmission line, indicating voltages and currents as defined in the

main text. b) Lumped element representation of a transmission line with capacitance per

unit length c = C/a and inductance per unit length ℓ = L/a. c) Discrete LC resonator

terminating a transmission line.

reflecting from the open circuit termination. In general however, there is an additional
outgoing wave radiated by the current I that is injected by the system dynamics into
the line. In the absence of an incoming wave we have

V (x = 0, t) = ZcI(x = 0, t), (B.12)

indicating that the transmission line acts as a simple resistor which, instead of dissipat-
ing energy by Joule heating, carries the energy away from the system as propagating
waves. As noted above, the fact that the line can dissipate energy despite containing
only purely reactive elements is a consequence of its infinite extent. One must be care-
ful with the order of limits, taking the length to infinity before allowing time to go to
infinity. In this way the outgoing waves never reach the far end of the transmission line
and reflect back. Since this is a conservative Hamiltonian system, we will be able to
quantize these waves and make a quantum theory of resistors (Caldeira and Leggett,
1983). The net power flow carried to the right by the line is

P =
1

Zc
[V 2

out(t)− V 2
in(t)]. (B.13)
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The fact that the transmission line presents a dissipative impedance to the system
means that it causes damping of the system. It also however opens up the possibility
of controlling the system via the input field which partially determines the voltage
driving the system. From this point of view it is convenient to eliminate the output
field by writing the voltage as

V (x = 0, t) = 2Vin(t) + ZcI(x = 0, t). (B.14)

As we will discuss in more detail below, the first term drives the system and the second
damps it. From Eq. (B.11) we see that measurement of the outgoing field can be used
to determine the current I(x = 0, t) injected by the system into the line and hence to
infer the system dynamics that results from the input drive field.

The great benefit of Eq. (B.14) is the following. If the system S is coupled to the
transmission line through a capacitor, then the coupling Hamiltonian can be expressed
in terms of the voltage at the end V (x = 0, t). By eliminating Vout we can see how
the system is driven by Vin and damped by ZcI(x = 0, t). This classical result will
be helpful in understanding the closely analogous quantum expressions which will be
derived further below in a rather different manner.

As a simple classical example, consider the system consisting of an LC resonator
shown in Fig. (B.1 c). This can be viewed as a simple harmonic oscillator whose
coordinate Q is the charge on the capacitor plate (on the side connected to L0). The
current I(x = 0, t) = Q̇ plays the role of the velocity of the oscillator. The equation of
motion for the oscillator is readily obtained from

Q = C0[−V (x = 0+, t)− L0İ(x = 0+, t)]. (B.15)

Using Eq. (B.14) we obtain a harmonic oscillator damped by the transmission line and
driven by the incoming waves

Q̈ = −Ω2
0Q− κQ̇− 2

L0
Vin(t), (B.16)

where the resonant frequency is Ω2
0 ≡ 1/

√
L0C0. Note that the term ZcI(x = 0, t) in

Eq. (B.14) results in the linear viscous damping rate κ ≡ Zc/L0.
If we solve the equation of motion of the oscillator, we can predict the outgoing

field. In the present instance of a simple oscillator we have a particular example of the
general case where the system responds linearly to the input field. We can characterize
any such system by a complex, frequency dependent impedance Z[ω] defined by

Z[ω] = −V (x = 0, ω)

I(x = 0, ω)
. (B.17)

Note the peculiar minus sign which results from our definition of positive current
flowing to the right (out of the system and into the transmission line). Using Eqs. (B.9,
B.10) and Eq. (B.17) we have

Vout[ω] = r[ω]Vin[ω], (B.18)
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where the reflection coefficient r is determined by the impedance mismatch between
the system and the line and is given by the well known result

r[ω] =
Z[ω]− Zc

Z[ω] + Zc
. (B.19)

If the system is constructed from purely reactive (i.e. lossless) components, then
Z[ω] is purely imaginary and the reflection coefficient obeys |r| = 1 which is consistent
with Eq. (B.13) and the energy conservation requirement of no net power flow into the
lossless system. For example, for the series LC oscillator we have been considering, we
have

Z[ω] =
1

jωC0
+ jωL0, (B.20)

where, to make contact with the usual electrical engineering sign conventions, we
have used j = −i. If the damping κ of the oscillator induced by coupling it to the
transmission line is small, the quality factor of the resonance will be high and we
need only consider frequencies near the resonance frequency Ω0 ≡ 1/

√
L0C0 where the

impedance has a zero. In this case we may approximate

Z[ω] ≈ 2

jC0Ω2
0

[Ω0 − ω] = 2jL0(ω − Ω0) (B.21)

which yields for the reflection coefficient

r[ω] =
ω − Ω0 + jκ/2

ω − Ω0 − jκ/2
(B.22)

showing that indeed |r| = 1 and that the phase of the reflected signal winds by 2π
upon passing through the resonance. 1

Turning to the more general case where the system also contains lossy elements, one
finds that Z[ω] is no longer purely imaginary, but has a real part satisfying Re Z[ω] >
0. This in turn implies via Eq. (B.19) that |r| < 1. In the special case of impedance
matching Z[ω] = Zc, all the incident power is dissipated in the system and none is
reflected. The other two limits of interest are open circuit termination with Z = ∞
for which r = +1 and short circuit termination Z = 0 for which r = −1.

Finally, if the system also contains an active device which has energy being pumped
into it from a separate external source, it may under the right conditions be de-
scribed by an effective negative resistance ReZ[ω] < 0 over a certain frequency range.
Eq. (B.19) then gives |r| ≥ 1, implying |Vout| > |Vin|. Our system will thus act like the
one-port reflection amplifier discussed in great detail in Ref. (Clerk et al., 2010).

B.0.1 Quantum Input-output theory for a driven cavity

The results from the previous section can be more formally derived in a full quantum
theory of a cavity driven by an external coherent source. The theory relating the drive,

1For the case of resonant transmission through a symmetric cavity, the phase shift only winds by
π.
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the cavity and the outgoing waves radiated by the cavity is known as input-output
theory and the classical description was presented in Appendix B. The present quan-
tum discussion closely follows standard references on the subject (Walls and Milburn,
1994; Yurke, 1984; Yurke and Denker, 1984). The crucial feature that distinguishes
such an approach from many other treatments of quantum-dissipative systems is the
goal of keeping the bath modes instead of tracing them out. This is obviously necessary
for the situations we have in mind, where the output field emanating from the cavity
contains the information acquired during a measurement of the system coupled to
the cavity. As we learned from the classical treatment, we can eliminate the outgoing
waves in favor of a damping term for the system. However we can recover the solution
for the outgoing modes completely from the solution of the equation of motion of the
damped system being driven by the incoming waves.

In order to drive the cavity we must partially open one of its ports which ex-
poses the cavity both to the external drive and to the vacuum noise outside which
permits energy in the cavity to leak out into the surrounding bath. We will formally
separate the degrees of freedom into internal cavity modes and external bath modes.
Strictly speaking, once the port is open, these modes are not distinct and we only
have ‘the modes of the universe’ (Lang et al., 1973; Gea-Banacloche et al., 1990a;
Gea-Banacloche et al., 1990b). However for high Q cavities, the distinction is well-
defined and we can model the decay of the cavity in terms of a spontaneous emission
process in which an internal boson is destroyed and an external bath boson is cre-
ated. We assume a single-sided cavity. For a high Q cavity, this physics is accurately
captured in the following Hamiltonian

Ĥ = Ĥsys + Ĥbath + Ĥint. (B.23)

The bath Hamiltonian is
Ĥbath =

∑

q

~ωq b̂
†
q b̂q (B.24)

where q labels the quantum numbers of the independent harmonic oscillator bath
modes obeying

[b̂q, b̂
†
q′ ] = δq,q′ . (B.25)

Note that since the bath terminates at the system, there is no translational invariance,
the normal modes are standing not running waves, and the quantum numbers q are
not necessarily wave vectors.

The coupling Hamiltonian is (within the rotating wave approximation)

Ĥint = −i~
∑

q

[
fqâ
†b̂q − f∗q b̂

†
qâ
]
. (B.26)

For the moment we will leave the system (cavity) Hamiltonian to be completely gen-
eral, specifying only that it consists of a single degree of freedom (i.e. we concentrate
on only a single resonance of the cavity with frequency ωc) obeying the usual bosonic
commutation relation

[â, â†] = 1. (B.27)

(N.B. this does not imply that it is a harmonic oscillator. We will consider both linear
and non-linear cavities.) Note that the most general linear coupling to the bath modes
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would include terms of the form b̂†qâ
† and b̂qa but these are neglected within the

rotating wave approximation because in the interaction representation they oscillate
at high frequencies and have little effect on the dynamics.

The Heisenberg equation of motion (EOM) for the bath variables is

˙̂
bq =

i

~
[Ĥ, b̂q] = −iωqb̂q + f∗q â (B.28)

We see that this is simply the EOM of a harmonic oscillator driven by a forcing term
due to the motion of the cavity degree of freedom. Since this is a linear system, the
EOM can be solved exactly. Let t0 < t be a time in the distant past before any wave
packet launched at the cavity has reached it. The solution of Eq. (B.28) is

b̂q(t) = e−iωq(t−t0)b̂q(t0) +

∫ t

t0

dτ e−iωq(t−τ)f∗q â(τ). (B.29)

The first term is simply the free evolution of the bath while the second represents the
waves radiated by the cavity into the bath.

The EOM for the cavity mode is

˙̂a =
i

~
[Ĥsys, â]−

∑

q

fq b̂q. (B.30)

Substituting Eq. (B.29) into the last term above yields

∑

q

fq b̂q =
∑

q

fqe
−iωq(t−t0)b̂q(t0)

+
∑

q

|fq|2
∫ t

t0

dτ e−i(ωq−ωc)(t−τ)[e+iωc(τ−t)â(τ)], (B.31)

where the last term in square brackets is a slowly varying function of τ . To simplify our
result, we note that if the cavity system were a simple harmonic oscillator of frequency
ωc then the decay rate from the n = 1 single photon excited state to the n = 0 ground
state would be given by the following Fermi Golden Rule expression

κ(ωc) = 2π
∑

q

|fq|2δ(ωc − ωq). (B.32)

From this it follows that
∫ +∞

−∞

dν

2π
κ(ωc + ν)e−iν(t−τ) =

∑

q

|fq|2e−i(ωq−ωc)(t−τ). (B.33)

We now make the Markov approximation which assumes that κ(ν) = κ is a con-
stant over the range of frequencies relevant to the cavity so that Eq. (B.33) may be
represented as ∑

q

|fq|2e−i(ωq−ωc)(t−τ) = κδ(t− τ). (B.34)
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Using ∫ x0

−∞
dx δ(x − x0) =

1

2
(B.35)

we obtain for the cavity EOM

˙̂a =
i

~
[Ĥsys, â]−

κ

2
â−

∑

q

fqe
−iωq(t−t0)b̂q(t0). (B.36)

The second term came from the part of the bath motion representing the wave radiated
by the cavity and, within the Markov approximation, has become a simple linear
damping term for the cavity mode. Note the important factor of 2. The amplitude
decays at half the rate of the intensity (the energy decay rate κ).

Within the spirit of the Markov approximation it is further convenient to treat
f ≡

√
|fq|2 as a constant and define the density of states (also taken to be a constant)

by

ρ =
∑

q

δ(ωc − ωq) (B.37)

so that the Golden Rule rate becomes

κ = 2πf2ρ. (B.38)

We can now define the so-called ‘input mode’

b̂in(t) ≡
1√
2πρ

∑

q

e−iωq(t−t0)b̂q(t0) . (B.39)

corresponding to the initial pulse propagating towards the cavity. We finally have for
the cavity EOM

˙̂a =
i

~
[Ĥsys, â]−

κ

2
â−

√
κ b̂in(t). (B.40)

Note that when a wave packet is launched from the bath towards the cavity, causality
prevents it from knowing about the cavity’s presence until it reaches the cavity. Hence
the input mode evolves freely as if the cavity were not present until the time of the
collision at which point it begins to drive the cavity. Since b̂in(t) evolves under the
free bath Hamiltonian and acts as the driving term in the cavity EOM, we interpret
it physically as the input mode. Eq. (B.40) is the quantum analog of the classical
equation (B.16), for our previous example of an LC-oscillator driven by a transmission
line. The latter would also have been first order in time if we had worked with the
complex amplitude A instead of the coordinate Q.

Eq. (B.39) for the input mode contains a time label just as in the interaction
representation. However it is best interpreted as simply labeling the particular linear
combination of the bath modes which is coupled to the system at time t. Some authors
even like to think of the bath modes as non-propagating while the cavity flies along
the bath (taken to be 1D) at a velocity v. The system then only interacts briefly with
the local mode positioned at x = vt before moving on and interacting with the next
local bath mode. We will elaborate on this view further at the end of this subsection.
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The expression for the power Pin (energy per time) impinging on the cavity depends

on the normalization chosen in our definition of b̂in. It can be obtained, for example, by
imagining the bath modes b̂q to live on a one-dimensional waveguide with propagation
velocity v and length L (using periodic boundary conditions). In that case we have to
sum over all photons to get the average power flowing through a cross-section of the

waveguide, Pin =
∑

q ~ωq(vp/L)
〈
b̂†q b̂q

〉
. Inserting the definition for b̂in, Eq. (B.39),

the expression for the input power carried by a monochromatic beam at frequency ω
is

Pin(t) = ~ω
〈
b̂†in(t)b̂in(t)

〉
(B.41)

Note that this has the correct dimensions due to our choice of normalization for b̂in
(with dimensions

√
ω). In the general case, an integration over frequencies is needed

(as will be discussed further below). An analogous formula holds for the power radiated
by the cavity, to be discussed now.

The output mode b̂out(t) is radiated into the bath and evolves freely after the

system interacts with b̂in(t). If the cavity did not respond at all, then the output
mode would simply be the input mode reflected off the cavity mirror. If the mirror
is partially transparent then the output mode will also contain waves radiated by the
cavity (which is itself being driven by the input mode partially transmitted into the
cavity through the mirror) and hence contains information about the internal dynamics
of the cavity. To analyze this output field, let t1 > t be a time in the distant future
after the input field has interacted with the cavity. Then we can write an alternative
solution to Eq. (B.28) in terms of the final rather than the initial condition of the bath

b̂q(t) = e−iωq(t−t1)b̂q(t1)−
∫ t1

t

dτ e−iωq(t−τ)f∗q â(τ). (B.42)

Note the important minus sign in the second term associated with the fact that the
time t is now the lower limit of integration rather than the upper as it was in Eq. (B.29).

Defining

b̂out(t) ≡
1√
2πρ

∑

q

e−iωq(t−t1)b̂q(t1), (B.43)

we see that this is simply the free evolution of the bath modes from the distant future
(after they have interacted with the cavity) back to the present, indicating that it
is indeed appropriate to interpret this as the outgoing field. Proceeding as before we
obtain

˙̂a =
i

~
[Ĥsys, â] +

κ

2
â−

√
κ b̂out(t). (B.44)

Subtracting Eq. (B.44) from Eq. (B.40) yields

b̂out(t) = b̂in(t) +
√
κ â(t) (B.45)

which is consistent with our interpretation of the outgoing field as the reflected in-
coming field plus the field radiated by the cavity out through the partially reflecting
mirror.
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The above results are valid for any general cavity Hamiltonian. The general proce-
dure is to solve Eq. (B.40) for â(t) for a given input field, and then solve Eq. (B.45) to
obtain the output field. For the case of an empty cavity we can make further progress
because the cavity mode is a harmonic oscillator

Ĥsys = ~ωcâ
†â. (B.46)

In this simple case, the cavity EOM becomes

˙̂a = −iωcâ−
κ

2
â−

√
κ b̂in(t). (B.47)

Eq. (B.47) can be solved by Fourier transformation, yielding

â[ω] = −
√
κ

i(ωc − ω) + κ/2
b̂in[ω] (B.48)

= −
√
κχc[ω − ωc]b̂in[ω] (B.49)

and

b̂out[ω] =
ω − ωc − iκ/2

ω − ωc + iκ/2
b̂in[ω] (B.50)

which is the result for the reflection coefficient quoted in Eq. (B.22). For brevity, here
and in the following, we will sometimes use the susceptibility of the cavity, defined as

χc[ω − ωc] ≡
1

−i(ω − ωc) + κ/2
(B.51)

For the case of steady driving on resonance where ω = ωc, the above equations yield

b̂out[ω] =

√
κ

2
â[ω]. (B.52)

In steady state, the incoming power equals the outgoing power, and both are related
to the photon number inside the single-sided cavity by

P = ~ω
〈
b̂†out(t)b̂out(t)

〉
= ~ω

κ

4

〈
â†(t)â(t)

〉
(B.53)

Note that this does not coincide with the naive expectation, which would be P =
~ωκ

〈
â†â
〉
. The reason for this discrepancy is the the interference between the part of

the incoming wave which is promptly reflected from the cavity and the field radiated by
the cavity. The naive expression becomes correct after the drive has been switched off
(where ignoring the effect of the incoming vacuum noise, we would have b̂out =

√
κâ).

We note in passing that for a driven two-sided cavity with coupling constants κL and
κR (where κ = κL + κR), the incoming power sent into the left port is related to the
photon number by

P = ~ωκ2/(4κL)
〈
â†â
〉
. (B.54)

Here for κL = κR the interference effect completely eliminates the reflected beam and
we have in contrast to Eq. (B.53)
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P = ~ω
κ

2

〈
â†â
〉
. (B.55)

Eq. (B.47) can also be solved in the time domain to obtain

â(t) = e−(iωc+κ/2)(t−t0)â(t0)

−
√
κ

∫ t

t0

dτ e−(iωc+κ/2)(t−τ)b̂in(τ). (B.56)

If we take the input field to be a coherent drive at frequency ωL = ωc +∆ so that
its amplitude has a classical and a quantum part

b̂in(t) = e−iωLt[b̄in + ξ̂(t)] (B.57)

and if we take the limit t0 → ∞ so that the initial transient in the cavity amplitude
has damped out, then the solution of Eq. (B.56) has the form with

ā = −
√
κ

−i∆+ κ/2
b̄in (B.58)

and (in the frame rotating at the drive frequency)

d̂(t) = −
√
κ

∫ t

−∞
dτ e+(i∆−κ/2)(t−τ)ξ̂(τ). (B.59)

Even in the absence of any classical drive, the input field delivers vacuum fluctua-
tion noise to the cavity. Notice that from Eqs. (B.39, B.57)

[b̂in(t), b̂
†
in(t
′)] = [ξ̂(t), ξ̂†(t′)]

=
1

2πρ

∑

q

e−i(ωq−ωL)(t−t′)

= δ(t− t′). (B.60)

This is the operator equivalent of white noise. Using Eq. (B.56) in the limit t0 → −∞
in Eq. (B.59) yields

[â(t), â†(t)] = [d̂(t), d̂†(t)]

= κ

∫ t

−∞
dτ

∫ t

−∞
dτ ′ e−(−i∆+κ/2)(t−τ)

e−(+i∆+κ/2)(t−τ ′)δ(τ − τ ′)

= 1 (B.61)

as is required for the cavity bosonic quantum degree of freedom. We can interpret
this as saying that the cavity zero-point fluctuations arise from the vacuum noise that
enters through the open port. We also now have a simple physical interpretation of the
quantum noise in the number of photons in a driven cavity. It is due to the vacuum



124 Semi-Infinite Transmission Lines, Dissipation and Input/Output Theory

noise which enters the cavity through the same ports that bring in the classical drive.
The interference between the vacuum noise and the classical drive leads to the photon
number fluctuations in the cavity.

In thermal equilibrium, ξ̂ also contains thermal radiation. If the bath is being
probed only over a narrow range of frequencies centered on ωc (which we have as-
sumed in making the Markov approximation) then we have to a good approximation
(consistent with the above commutation relation)

〈ξ̂†(t)ξ̂(t′)〉 = Nδ(t− t′) (B.62)

〈ξ̂(t)ξ̂†(t′)〉 = (N + 1)δ(t− t′) (B.63)

where N = nB(~ωc) is the thermal equilibrium occupation number of the mode at the
frequency of interest. We can gain a better understanding of Eq. (B.62) by Fourier
transforming it to obtain the spectral density

S[ω] =

∫ +∞

−∞
dt 〈ξ̂†(t)ξ̂(t′)〉eiω(t−t′) = N. (B.64)

As mentioned previously, this dimensionless quantity is the spectral density that would
be measured by a photomultiplier: it represents the number of thermal photons passing
a given point per unit time per unit bandwidth. Equivalently the thermally radiated
power in a narrow bandwidth B is

P = ~ωNB. (B.65)

One often hears the confusing statement that the noise added by an amplifier is a
certain number N of photons (N = 20, say for a good cryogenic HEMT amplifier
operating at 5 GHz). This means that the excess output noise (referred back to the
input by dividing by the power gain) produces a flux of N photons per second in a 1
Hz bandwidth, or 106N photons per second in 1 MHz of bandwidth.

We can gain further insight into input-output theory by using the following picture.
The operator b̂in(t) represents the classical drive plus vacuum fluctuations which are
just about to arrive at the cavity. We will be able to show that the output field is
simply the input field a short while later after it has interacted with the cavity. Let us
consider the time evolution over a short time period ∆t which is very long compared to
the inverse bandwidth of the vacuum noise (i.e., the frequency scale beyond which the
vacuum noise cannot be treated as constant due to some property of the environment)
but very short compared to the cavity system’s slow dynamics. In this circumstance
it is useful to introduce the quantum Wiener increment

dŴ ≡
∫ t+∆t

t

dτ ξ̂(τ) (B.66)

which obeys
[dŴ , dŴ †] = ∆t. (B.67)

In the interaction picture (in a displaced frame in which the classical drive has
been removed) the Hamiltonian term that couples the cavity to the quantum noise of
the environment is from Eq. (B.26)
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V̂ = −i~
√
κ(â†ξ̂ − âξ̂†). (B.68)

Thus the time evolution operator (in the interaction picture) on the jth short time
interval [tj , tj +∆t] is

Ûj = e
√
κ(â dŴ †−â† dŴ ) (B.69)

Using this we can readily evolve the incoming temporal mode forward in time by a
small step ∆t

dŴ ′ = Û †dŴ Û ≈ dŴ +
√
κ∆t â. (B.70)

Recall that in input-output theory we formally defined the outgoing field as the
bath field far in the future propagated back (using the free field time evolution) to the
present, which yielded

b̂out = b̂in +
√
κâ. (B.71)

Eq. (B.70) is completely equivalent to this. Thus we confirm our understanding that
the incoming field is the bath temporal mode just before it interacts with the cavity
and the outgoing field is the bath temporal mode just after it interacts with the cavity.

This leads to the following picture which is especially useful in the quantum trajec-
tory approach to conditional quantum evolution of a system subject to weak continuous
measurement (Gardiner et al., 1992; Walls and Milburn, 1994). On top of the classical
drive b̄in(t), the bath supplies to the system a continuous stream of “fresh” harmonic
oscillators, each in their ground state (if T = 0). Each oscillator with its quantum fluc-

tuation dŴ interacts briefly for a period ∆t with the system and then is disconnected
to propagate freely thereafter, never interacting with the system again. Within this
picture it is useful to think of the oscillators arrayed in an infinite stationary line and
the cavity flying over them at speed vp and touching each one for a time ∆t.



Appendix C

Coupling a qubit to a linear black
box

As we learned in Chapter 4, the transmon qubit is essentially a weakly anharmonic os-
cillator. In the limit of large Josephson energy and small charging energy (EJ/EC ≫ 1),
the quantum fluctuations in the phase ϕ across the Josephson junction are small and
we can ignore the fact that ϕ is a periodic variable. It is important to understand that
this is a good approximation only in the limit that the charge dispersion enforced by
the periodic boundary conditions on ϕ can be neglected. One way to make the charging
energy small is to make the transmon islands large which makes the coupling of the
transmon to the electromagnetic modes of the cavity large. We therefore do not want
to treat this coupling as a perturbation since the presence of the transmon can signifi-
cantly alter the cavity modes due to this strong coupling. It is very useful therefore to
treat the harmonic part of the cavity plus qubit Hamiltonian exactly (Manucharyan
et al., 2007; Nigg et al., 2012). We then simply have coupled harmonic oscillators whose
spectrum is straightforward to understand. In the strong-coupling case, this harmonic
oscillator basis can be very efficient for expressing the full Hamiltonian including the
anharmonic part of the Hamiltonian. In certain situations if the anharmonicity is weak,
we may be able to treat it analytically in low-order perturbation theory. Even if this
is not the case, we have an efficient basis in which to numerically diagonalize the full
Hamiltonian. This is particularly true when the cavity has many resonant modes. The
mixing and renormalization of these modes by the qubit is largely taken care of by the
exact treatment of the harmonic part of H and so we obtain faster convergence of the
numerics in terms of the number of modes we need to keep and the number of quanta
in each mode.

The simple harmonic oscillator approximation to the transmon Hamiltonian is
given in Eq. (4.10). Let us imagine that we have included this effective LC oscillator
in our ‘black box’ whose equivalent circuit is shown in Fig. (2.9a). The normal modes
of the box include a qubit-like mode and many cavity-like modes coupled capacitively
via the transmon ‘antenna.’ Note that the equivalent circuit describing the input ad-
mittance across the terminals of the Josephson junction is still precisely of the form
shown in Fig. (2.9a). The coupling capacitor Cg and the junction capacitance CJ and
inductance LJ do not appear explicitly in the circuit. Their values help control the
resonance frequencies and characteristic impedances of the resonances (i.e. the values
of the equivalent circuit elements), but these individual elements from the real circuit
do not themselves explicitly appear in the equivalent circuit.
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We now turn to the treatment of the anharmonicity. Using Eq. (2.180) the phase
across the Josephson junction can be expressed in terms of the normal modes

ϕ =
2e

~
Φ =

∑

m

ϕ
(m)
ZPF(âm + â†m). (C.1)

The Josephson energy is

U = −EJ cosϕ = −EJ

{
1− 1

2
ϕ2 +

1

24
ϕ4 + . . .

}
. (C.2)

The leading constant is irrelevant and we have already included the quadratic term in
the harmonic part of the Hamiltonian. Hence the anharmonic part of the Hamiltonian
analogous to Eq. (4.34) which we need to keep is

V = −EJ cosϕ+ EJ

{
1− 1

2
ϕ2

}
≈ −EJ

1

24
ϕ4 + . . . (C.3)

We will make the approximation (valid for large EJ/EC, i.e. small ϕZPF) of keeping
only the quartic term1

V ≈ −EJ
1

24

{∑

m

ϕ
(m)
ZPF(âm + â†m)

}4

. (C.4)

Recall from examination of the transmon anharmonicity that the small parameter in
this expansion is EC, not EJ, because the quantum fluctuations ϕZPF are inversely
proportional to EJ.

In general we will have to treat this expression numerically, but we can immediately
make some general remarks about the effect of V by normal ordering the terms and
making the rotating wave approximation. We see that there will be quadratic terms
of the form b̂†mb̂m generated which shift the frequencies of the ‘bare’ modes and other

quadratic terms of the form b̂†j b̂k which will mix modes that are close in frequency

relative to EC. More significantly there will be ‘self-Kerr’ terms of the form b̂†j b̂
†
j b̂j b̂j

which make the modes anharmonic and ‘cross-Kerr’ terms of the form b̂†j b̂j b̂
†
k b̂k. The

qubit state-dependent shift of the cavity frequency appears here as a cross-Kerr term
between the qubit and the cavity mode(s). This gives us a nice physical picture of how
to think about the modes even if we need to numerics to obtain quantitative accuracy.

1It is important to note however that even if we kept all the terms in the expansion of V we would
still not have the exact result because we are still neglecting the charge dispersion associated with
the periodic boundary conditions on ϕ.



Appendix D

Feynman Disentangling Theorem

The Feynman ‘disentangling theorem’ states that the exponential of the sum of two
operators A and B can be simplified in the following manner

e(A+B) = eAeBe
1
2
[B,A], (D.1)

provided that the commutator [B,A] itself commutes with both A and B.
Here is a simple proof that begins with the following lemma. Let us define

B̃(λ) = eλABe−λA, (D.2)

where λ is a variable parameter. This object obeys the differential equation

dB̃

dλ
= eλA[A,B]e−λA = [A,B]. (D.3)

This has solution
B̃(λ) = B + λ[A,B]. (D.4)

With this lemma in hand, consider now

V (λ) ≡ eλ(A+B) − eλAeλBe
1
2
λ2[B,A]. (D.5)

Clearly V (0) = 0. If we can prove V (1) also vanishes, then the theorem is proved.
Consider the differential equation

dV

dλ
= (A+B)V −AV − eλABeλBe

1
2
λ2[B,A] + λ[B,A]V (D.6)

= BV − B̃(λ)V + λ[B,A]V = 0, (D.7)

where the last equality follows from our first lemma. The solution of this equation is
of course

V (λ) = V (0) = 0, (D.8)

which proves our theorem.



Appendix E

Coherent States

A coherent state with complex amplitude α has the defining property of being an
eigenstate of the lowering operator

â|α〉 = α|α〉, (E.1)

from which it follows that
〈α|â†â|α〉 = |α|2 = N̄ , (E.2)

where N̄ is the mean photon number in the coherent state. It is important to note
that a coherent state is not an eigenstate of the raising operator. We have

〈α|â† = 〈α|α∗, (E.3)

but
â†|α〉 6= α∗|α〉. (E.4)

Exercise E.1 A common source of confusion is to fail to understand the distinction between
eiϕ|α〉 and |eiϕα〉. If you compute 〈â〉 for the two cases you will see the difference.

It is readily verified that Eq. (E.1) is solved by the unitary displacement of the
vacuum state

|α〉 = e(αâ
†−α∗â)|0〉. (E.5)

To see this consider

â|α〉 = e(αâ
†−α∗â)

{
e−(αâ

†−α∗â)âe(αâ
†−α∗â)

}
|0〉. (E.6)

Using Eq. (D.4) the term in curly brackets becomes

ã ≡ â+ α, (E.7)

which from which Eq. (E.1) readily follows.
Using the Feynman disentangling theorem D Eq. (E.5) can be written in normal-

ordered form with the annhilation operators to the right of the creation operators

|α〉 = e+αâ†

e−α
∗âe

1
2
[−α∗â,+αâ†]|0〉 (E.8)

= e−
1
2
|α|2e+αâ† |0〉 (E.9)

= e−
1
2
|α|2

∑

n=0

αn

√
n!
|n〉. (E.10)
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From this result it is straightforward to derive the overlap of two coherent states

〈β|α〉 = e−
1
2 (|α|

2+|β|2−2αβ∗). (E.11)

The following special case appears in the theory of decoherence in the dispersive read-
out of a qubit

〈e+iθ0α|e−iθ0α〉 = e−N̄(1−e−2iθ0 ) = e−iN̄ sin 2θ0e−N̄(1−cos 2θ0). (E.12)

Let us now examine the properties of the quadrature amplitudes

X̂ ≡ â+ â†

2
(E.13)

Ŷ ≡ −i â− â†

2
(E.14)

which obey the commutation relation
[
X̂, Ŷ

]
=
i

2
. (E.15)

Let us define the projector onto the state with definite quadrature amplitude

PX(x) = δ(x− X̂) (E.16)

PY (y) = δ(y − Ŷ ). (E.17)

Using the integral representation of the Dirac delta function we have

PX(x) =

∫ ∞

−∞

dξ

2π
eiξxe−iξX̂ (E.18)

PY (y) =

∫ ∞

−∞

dξ

2π
eiξye−iξŶ . (E.19)

Normal ordering the operators using the disentangling theorem yields

PX(x) =

∫ ∞

−∞

dξ

2π
e−

ξ2

8 eiξxe−
i
2
ξâ†

e−
i
2
ξâ (E.20)

PY (y) =

∫ ∞

−∞

dξ

2π
e−

ξ2

8 eiξye+
1
2
ξâ†

e−
1
2
ξâ, (E.21)

which allows us to readily compute the matrix elements of these projectors between
two coherent states

〈β|PX(x)|α〉 =
∫ ∞

−∞

dξ

2π
e−

ξ2

8 eiξxe−
i
2
ξβ∗

e−
i
2
ξα〈β|α〉 (E.22)

=

√
2

π
e
−2

[
x−β∗+α

2

]2
e−

1
2 (|α|

2+|β|2−2αβ∗) (E.23)

〈β|PY (y)|α〉 =
∫ ∞

−∞

dξ

2π
e−

ξ2

8 eiξye+
1
2
ξβ∗

e−
1
2
ξα〈β|α〉 (E.24)

=

√
2

π
e
−2

[
y−iβ

∗−α
2

]2
e−

1
2 (|α|

2+|β|2−2αβ∗). (E.25)
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For the case β = α, we recognize here the (displaced version of the) gaussian distribu-
tion of position and momentum in the ground state of the harmonic oscillator. For the
particular case associated with the dispersive readout of a qubit we have (for α real)

〈e−iθ0σz

α|PX(x)|e−iθ0σz

α〉 =
√

2

π
e−2[x−

√
N̄ cos θ0]

2

(E.26)

〈e−iθ0σz

α|PY (y)|e−iθ0σ
z

α〉 =
√

2

π
e−2[y+

√
N̄ sin θ0σ

z]
2

(E.27)

〈eiθ0α|PX(x)|e−iθ0α〉 =
√

2

π
e−2[x−

√
N̄ cos θ0+i

√
N̄ sin θ0]

2

eN̄(e
−2iθ0−1) (E.28)

〈eiθ0α|PY (y)|e−iθ0α〉 =
√

2

π
e−2[y]

2

eN̄(e
−2iθ0−1). (E.29)



References

Aassime, A., Johansson, G., Wendin, G., Schoelkopf, R. J., and Delsing, P. (2001).
Radio-frequency single-electron transistor as readout device for qubits: Charge sen-
sitivity and backaction. Phys. Rev. Lett., 86, 3376–3379.
Aichhorn, Markus, Hohenadler, Martin, Tahan, Charles, and Littlewood, Peter B.
(2008). Quantum fluctuations, temperature, and detuning effects in solid-light sys-
tems. Phys. Rev. Lett., 100, 216401.
Al-Saidi, W. A. and Stroud, D. (2001). Eigenstates of a small Josephson junction
coupled to a resonant cavity. Phys. Rev. B , 65, 014512.
Ambegaokar, V. and Baratoff, A. (1963). Tunneling between superconductors. Phys.
Rev. Lett., 10, 486. Erratum: Phys. Rev. Lett. 11, 104 (1963).
Angelakis, Dimitris G., Santos, Marcelo Franca, and Bose, Sougato (2007, Sep).
Photon-blockade-induced mott transitions and xy spin models in coupled cavity
arrays. Phys. Rev. A, 76, 031805.
Ansmann, Markus, Wang, H., Bialczak, Radoslaw C., Hofheinz, Max, Lucero, Erik,
Neeley, M., O’Connell, A. D., Sank, D., Weides, M., Wenner, J., Cleland, A. N., and
Martinis, John M. (2009). Violation of bell’s inequality in Josephson phase qubits.
Nature, 461, 504–506.
Ashhab, S., Johansson, J. R., Zagoskin, A. M., and Nori, Franco (2009). Single-
artificial-atom lasing using a voltage-biased superconducting charge qubit. NJP , 11,
023030.
Astafiev, O., Inomata, K., Niskanen, A. O., Yamamoto, T., Pashkin, Yu. A., Naka-
mura, Y., and Tsai, J. S. (2007). Single artificial-atom lasing. Nature, 449, 588–590.
Astafiev, O., Zagoskin, A.M., A.A. Abdumalikov, Jr., Pashkin, Yu. A., Yamamoto,
T., Inomata, K., Nakamura, Y., and Tsai, J.S. (2010). Resonance fluorescence of a
single artificial atom. Science, 327, 840–843.
Averin, D.V., Zorin, A.B., and Likharev, K.K. (1985). Bloch oscillations in small
Josephson junctions. Sov. Phys. JETP , 61, 407.
Averin, D. V. and Bruder, C. (2003). Variable electrostatic transformer: Controllable
coupling of two charge qubits. Phys. Rev. Lett., 91, 057003.
Barends, R., Kelly, J., Megrant, A., Sank, D., Jeffrey, E., Chen, Y., Yin, Y., annd
J. Mutus, B. Chiaro, Neill, C., O’Malley, P., Roushan, P., Wenner, J., White, T. C.,
Cleland, A. N., and Martinis, JohnM. Coherent Josephson qubit suitable for scalable
quantum integrated circuits. arXiv:1304.2322.
Baur, M., Fedorov, A., Steffen, L., Filipp, S., da Silva, M. P., and Wallraff, A. (2012,
Jan). Benchmarking a quantum teleportation protocol in superconducting circuits
using tomography and an entanglement witness. Phys. Rev. Lett., 108, 040502.
Baur, M., Filipp, S., Bianchetti, R., Fink, J.M., Göppl, M., Steffen, L., Leek, P.J.,
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Córcoles, A. D., Gambetta, Jay M., Chow, Jerry M., Smolin, John A., Ware,
Matthew, Strand, Joel, Plourde, B. L. T., and Steffen, M. (2013, Mar). Process
verification of two-qubit quantum gates by randomized benchmarking. Phys. Rev.

A, 87, 030301.
da Silva, Marcus P., Bozyigit, Deniz, Wallraff, Andreas, and Blais, Alexandre (2010).
Schemes for the observation of photon correlation functions in circuit qed with linear
detectors. Phys. Rev. A, 82, 043804.
Dalidovich, Denis and Kennett, Malcolm P. (2009). Bose-hubbard model in the
presence of ohmic dissipation. Phys. Rev. A, 79, 053611.
Deleglise, Samuel, Dotsenko, Igor, Sayrin, Clement, Bernu, Julien, Brune, Michel,
Raimond, Jean-Michel, and Haroche, Serge (2008). Reconstruction of non-classical
cavity field states with snapshots of their decoherence. Nature, 455, 510–514.
Deppe, Frank, Mariantoni, Matteo, Menzel, E. P., Marx, A., Saito, S., Kakuyanagi,
K., Tanaka, H., Meno, T., Semba, K., Takayanagi, H., Solano, E., and Gross, R.
(2008). Two-photon probe of the Jaynes-Cummings model and controlled symmetry
breaking in circuit QED. Nature Physics , 4, 686–691.
Devoret, M. (1997). Quantum Fluctuations, Chapter , pp. 351–385. Elsevier, Ams-
terdam.
Devoret, Michel, Girvin, Steven, and Schoelkopf, Robert (2007). Circuit-qed: How
strong can the coupling between a Josephson junction atom and a transmission line
resonator be? Annalen der Physik , 16, 767–779.
Devoret, MH and Martinis, JM (2004). Superconducting qubits. In Quantum Entan-



136 References

glement and Information Processing (ed. Esteve, D and Raimond, JM and Dalibard,
J), Volume 79, pp. 443–485. Les Houches Session 79th on Quantum Entanglement
and Information Processing, Les Houches, France, June 30-July 25, 2003.
Devoret, M. H., Esteve, D., Grabert, H., Ingold, G.-L., Pothier, H., and Urbina,
C. (1990). Effect of the electromagnetic environment on the coulomb blockade in
ultrasmall tunnel junctions. Phys. Rev. Lett., 64, 1824–1827.
Devoret, Michel H. and Martinis, John M. (2005). Experimental Aspects of Quan-

tum Computing, Volume 3, Chapter Implementing Qubits with Superconducting
Integrated Circuits, pp. 163–203. Springer.
Devoret, M. H. and Schoelkopf, R. J. (2013). Superconducting circuits for quantum
information: An outlook. Science, 339(6124), 1169–1174.
Dewes, Andreas, Lauro, Romain, Ong, Florian R., Schmitt, Vivient, Milman, Perola,
Bertet, Patrice, Vion, Denis, and Esteve, Daniel (2012, Apr). Quantum speeding-up
of computation demonstrated in a superconducting two-qubit processor. Phys. Rev.
B , 85, 140503.
DiCarlo, L., Chow, J. M., Gambetta, J. M., Bishop, Lev S., Johnson, B. R., Schuster,
D. I., Majer, J., Blais, A., Frunzio, L., Girvin, S. M., and Schoelkopf, R. J. (2009).
Demonstration of two-qubit algorithms with a superconducting quantum processor.
Nature, 460, 240–244.
DiCarlo, L., Reed, M.D., Sun, L., Johnson, B.R., Chow, J.M., Gambetta, J.M., Frun-
zio, L., Girvin, S.M., Devoret, M.H., and Schoelkopf, R.J. (2010). Preparation and
measurement of three-qubit entanglement in a superconducting circuit. Nature, 467,
574–578.
Doucot, B., Feigelman, M. V., and Ioffe, L. B. (2003). Topological order in the
insulating Josephson junction arrays. Phys. Rev. Lett., 90, 107003.
Doucot, B., Feigelman, M. V., Ioffe, L. B., and Ioselevich, A. S. (2005). Protected
qubits and chern-simons theories in Josephson junction arrays. Phys. Rev. B , 71,
024505.
Duty, T, Johansson, G, Bladh, K, Gunnarsson, D, Wilson, C, and Delsing, P (2005).
Observation of quantum capacitance in the cooper-pair transistor. Phys. Rev.

Lett., 95, 206807.
Eichler, C., Bozyigit, D., Lang, C., Baur, M., Steffen, L., Fink, J.M., Filipp, S., and
Wallraff, A. (2011a). Observation of two-mode squeezing in the microwave frequency
domain. Phys. Rev. Lett., 107, 113601.
Eichler, C., Bozyigit, D., Lang, C., Steffen, L., Fink, J., and Wallraff, A. (2011b).
Experimental state tomography of itinerant single microwave photons. Phys. Rev.

Lett., 106, 220503.
Eichler, C., Lang, C., Fink, J. M., Govenius, J., Filipp, S., and Wallraff, A. (2012,
Dec). Observation of entanglement between itinerant microwave photons and a
superconducting qubit. Phys. Rev. Lett., 109, 240501.
Esteve, D and Vion, D (2005). Solid state quantum bit circuits. In Nanophysics:

Coherence and Transport (ed. Bouchiat, H and Gefen, Y and Gueron, S and Mon-
tambaux, G and Dalibard, J), Volume 81, pp. 537+. Les Houches Session 81st on
Nanophysics - Coherence and Transport, Les Houches, France, June 28 - July 30,
2004.



References 137

Filipp, S., Maurer, P., Leek, P. J., Baur, M., Bianchetti, R., Fink, J. M., Göppl, M.,
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M., Steffen, L., and Wallraff, A. (2009). Using sideband transitions for two-qubit
operations in superconducting circuits. Phys. Rev. B , 79, 180511(R).
Leek, P. J., Fink, J. M., Blais, A., Bianchetti, R., Goeppl, M., Gambetta, J. M.,
Schuster, D. I., Frunzio, L., Schoelkopf, R. J., and Wallraff, A. (2007). Observation
of Berry’s phase in a solid-state qubit. Science, 318, 1889–1892.
Leggett, AJ (1980). Macroscopic quantum systems and the quantum theory of mea-
surement. Progress of Theoretical Physics Suppl., 69, 80–100.
Leghtas, Zaki, Kirchmair, Gerhard, Vlastakis, Brian, Devoret, Michel H., Schoelkopf,
Robert J., and Mirrahimi, Mazyar (2013, Apr). Deterministic protocol for mapping
a qubit to coherent state superpositions in a cavity. Phys. Rev. A, 87, 042315.
Leghtas, Zaki, Kirchmair, Gerhard, Vlastakis, Brian, Schoelkopf, Robert, Devoret,
Michel, and Mirrahimi, Mazyar (2012). Hardware-efficient autonomous quantum
error correction. arXiv:1207.0679.
Lehnert, K. W., Bladh, K., Spietz, L. F., Gunnarsson, D., Schuster, D. I., Delsing,
P., and Schoelkopf, R. J. (2003). Measurement of the excited-state lifetime of a
microelectronic circuit. Phys. Rev. Lett., 90, 027002.
Lei, Soi-Chan and Lee, Ray-Kuang (2008). Quantum phase transitions of light in the
dicke-bose-hubbard model. Phys. Rev. A, 77, 033827.
Lieb, M. and Hartmann, M.J. (2010). Bose-hubbard dynamics of polaritons in a
chain of circuit quantum electrodynamics cavities. New J. Phys., 12, 093031.
Likharev, K.K. and Zorin, A.B. (1985). Theory of the bloch-wave oscillations in small
Josephson junctions. J. Low Temp. Phys., 59, 347.
Lupascu, A, Harmans, CJPM, and Mooij, JE (2005). Quantum state detection of a
superconducting flux qubit using a dc-SQUID in the inductive mode. Phys. Rev.

B , 71, 184506.
Mabuchi, H. and Doherty, A. (2002). Cavity quantum electrodynamics: Coherence
in context. Science, 298, 1372.
Mahan, Gerald D. (2000). Many-Particle Physics (3rd edn). Springer.
Majer, J., Chow, J. M., Gambetta, J. M., Koch, Jens, Johnson, B. R., Schreier, J. A.,
Frunzio, L., Schuster, D. I., Houck, A. A., Wallraff, A., Blais, A., Devoret, M. H.,
Girvin, S. M., and Schoelkopf, R. J. (2007). Coupling superconducting qubits via a
cavity bus. Nature, 449, 443–447.
Makhlin, Y., Schön, G., and Shnirman, A. (2001). Quantum-state engineering with



142 References

Josephson-junction devices. Rev. Mod. Phys., 73, 357.
Makin, M. I., Cole, Jared H., Tahan, Charles, Hollenberg, Lloyd C. L., and Greentree,
Andrew D. (2008). Quantum phase transitions in photonic cavities with two-level
systems. Phys. Rev. A, 77, 053819.
Mallet, Franois, Ong, Florian R., Palacios-Laloy, Agustin, Nguyen, François, Bertet,
Patrice, Vion, Denis, and Esteve, Daniel (2009). Single-shot qubit readout in circuit
quantum electrodynamics. Nature Phys., 5, 791.
Manucharyan, V. E., Boaknin, E., Metcalfe, M., Vijay, R., Siddiqi, I., , and Devoret,
M. (2007). Microwave bifurcation of a Josephson junction: Embedding-circuit re-
quirements. Phys. Rev. B , 76, 014524.
Manucharyan, Vladimir E., Koch, Jens, Brink, Markus, Glazman, Leonid I., and
Devoret, Michel H. (2009a). Coherent oscillations between classically separable
quantum states of a superconducting loop. arXiv:0910.3039 .
Manucharyan, Vladimir E., Koch, Jens, Glazman, Leonid, and Devoret, Michel
(2009b). Fluxonium: Single cooper-pair circuit free of charge offsets. Science, 326,
113–116.
Mariantoni, Matteo, Wang, H., Bialczak, Radoslaw C., Lucero, Erik, Neeley, M.,
OConnell, A.D., Sank, D., Weides, M., Wenner, J., Yamamoto, T., Yin, Y., Zhao,
J., Martinis, John M., and Cleland, A.N. (2011a). Photon shell game in three-
resonator circuit quantum electrodynamics. Nature Physics , 7, 287–293.
Mariantoni, Matteo, Wang, H., Yamamoto, T., Neeley, M., Bialczak, Radoslaw C.,
Chen, Y., Lenander, M., Lucero, Erik, OConnell, A. D., Sank, D., Weides, M., Wen-
ner, J., Yin, Y., Zhao, J., Korotkov, A. N., Cleland, A. N., and Martinis, John M.
(2011b). Implementing the quantum von neumann architecture with superconduct-
ing circuits. Science, 334, 61.
Marquardt, Florian (2007). Efficient on-chip source of microwave photon pairs in
superconducting circuit qed. Phys. Rev. B , 76, 205416.
Marquardt, F. and Bruder, C. (2001). Superposition of two mesoscopically distinct
quantum states: Coupling a cooper pair box to a large superconducting island. Phys.
Rev. B , 63, 054514.
Marthaler, M., Schön, Gerd, and Shnirman, Alexander (2008). Photon-number
squeezing in circuit quantum electrodynamics. Phys. Rev. Lett., 101, 147001.
Martinis, JM, Devoret, MH, and Clarke, J (1985). Energy level quantization in the
zero-voltage state of a current-biased Josephson junction. Phys. Rev. Lett., 55, 1543
– 1546.
Martinis, JM, Nam, S, Aumentado, J, Lang, KM, and Urbina, C (2003). Decoherence
of a superconducting qubit due to bias noise. Phys. Rev. B , 67, 094510.
Martinis, JM, Nam, S, Aumentado, J, and Urbina, C (2002). Rabi oscillations in a
large Josephson-junction qubit. Phys. Rev. Lett., 89, 117901.
McGrayne, Sharon Bertsch (2011). The Theory That Would Not Die: How Bayes

Rule Cracked the Enigma Code, Hunted Down Russian Submarines, and Emerged

Triumphant from Two Centuries of Controversy. Yale University Press.
Menzel, E. P., Deppe, F., Mariantoni, M., Caballero, M.A. Araque, Baust, A., Niem-
czyk, T., Hoffmann, E., Marx, A., Solano, E., and Gross, R. (2010). Dual-path state
reconstruction scheme for propagating quantum microwaves and detector noise to-



References 143

mography. Phys. Rev. Lett., 105, 100401.
Metcalfe, M., Boaknin, E., Manucharyan, V., Vijay, R., Siddiqi, I., Rigetti, C., Frun-
zio, L., Schoelkopf, R. J., and Devoret, M. H. (2007). Measuring the decoherence
of a quantronium qubit with the cavity bifurcation amplifier. Phys. Rev. B , 76,
174516.
Meystre, P. and III, M. Sargent (1998). Elements of Quantum Optics. Spinger-Verlag.
Mooij, J. E., Orlando, T. P., Levitov, L., Tian, Lin, van der Wal, Caspar H., and
Lloyd, Seth (1999). Josephson Persistent-Current Qubit. Science, 285, 1036–1039.
Moon, K and Girvin, SM (2005). Theory of microwave parametric down-conversion
and squeezing using circuit QED. Phys. Rev. Lett., 95, 140504.
Murch, K. W., Vool, U., Zhou, D., Weber, S. J., Girvin, S. M., and Siddiqi, I. (2012,
Oct). Cavity-assisted quantum bath engineering. Phys. Rev. Lett., 109, 183602.
Murch, K. W., Weber, S. J., Beck, K. M., Ginossar, E., and Siddiqi, I. (2013). Reduc-
tion of the radiative decay of atomic coherence in squeezed vacuum. Nature, 499,
62–65.
Na, Neil, Utsunomiya, Shoko, Tian, Lin, and Yamamoto, Yoshihisa (2008). Strongly
correlated polaritons in a two-dimensional array of photonic crystal microcavities.
Phys. Rev. A, 77, 031803.
Nakamura, Y., Pashkin, Yu. A., and Tsai, J. S. (1999). Coherent control of macro-
scopic quantum states in a single-cooper-pair box. Nature, 398, 786–788.
Nataf, Pierre and Ciuti, Cristiano (2010). No-go theorem for superradiant quan-
tum phase transitions in cavity qed and counter-example in circuit qed. Nature

Communications , 1, 72.
Neeley, Matthew, Ansmann, M., Bialczak, Radoslaw C., Hofheinz, M., Katz, N.,
Lucero, Erik, O’Connell, A., Wang, H., Cleland, A. N., and Martinis, John M.
(2008). Transformed dissipation in superconducting quantum circuits. Phys. Rev.

B , 77, 180508.
Neeley, Matthew, Bialczak, Radoslaw C., Lenander, M., Lucero, E., Mariantoni, Mat-
teo, O’Connell, A. D., Sank, D., Wang, H., Weides, M., Wenner, J., Yin, Y., Ya-
mamoto, T., Cleland, A. N., and Martinis, JohnM. (2010). Generation of three-qubit
entangled states using superconducting phase qubits. Nature, 467, 570.
Niemczyk, T., Deppe, F., Huebl, H., Menzel, E.P., Hocke, F., Schwarz, M. J.,
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