Quantum Money, Teleportation and Computation

Steven Girvin

Yale University

Quantum Uncertainty

Good news or bad?

We used to think it was bad, but now...

Haggar Physicists Develop ‘Quantum Slacks’

DALLAS-At a press conference Monday, Haggar physicists announced the successful development of 'Quantum Slacks,' attractive, wrinkle-free pants that paradoxically behave like both formal and casual wear.

Classical bits

Answer to a 'true-false' or 'yes-no' question = 1 'bit' of information
'bit’=binary digit

Binary numbers: 10011= TFFTT

CLASSICAL INFORMATION

ONE BIT OF INFORMATION

READOUT CAN BE MADE

FAITHFUL

FAITHFUL READOUT

CLASSICAL INFORMATION CAN BE FAITHFULLY COPIED ('CLONED')

Recipe

- Measure 0 or 1
- Build a new 0 or 1

Cloning of Classical Systems is Possible

Quantum No Cloning Theorem

- Measurement affects the state of a quantum system
- More than one measurement is needed
- Resulting quantum uncertainty makes it impossible to make a perfect copy of a quantum system....

Quantum Teleportation

You can make a perfect copy of the quantum state of a system if you are willing to destroy the original.

Quantum Teleportation

Original Destroyed
Perfect Copy Created

Quantum Bits and Information

A quantum system with two distinct states 0,1 can exist in an infinite number of physical states intermediate between 0 and 1 .

System can be in 'both states at once' (we are uncertain which state the qubit is in), just as it can take two paths at once.

Quantum Superpositions

Each superposition state can be represented by an arrow (called the 'spin') pointing to a location on the sphere

State 1

Stern Gerlach Experiment

Silver atom has magnetic moment due to the electron 'spin'

Magnetic moment (spin) can point in any direction and can be measured by passing the atom through a magnetic field gradient.

Stern Gerlach Experiment

Silver atom has magnetic moment due to the electron 'spin'

Bizzare Result \#1

Electron spin always found to be perfectly aligned (or anti-aligned) with N-S axis:

N
N
Always this: $\uparrow \downarrow$
S

Always this:

$\mathrm{S} \rightleftarrows \mathrm{N}$

Never this: \rightleftarrows
S

Never this:
$S \uparrow \downarrow N$

Gerlach’s Postcard to Bohr

8 February 1922 'Attached [is] the experimental proof of directional quantization. We congratulate [you] on the confirmation of your theory.' (Historical note: they did not realize this was the discovery of electron spin.)

AIP Emilio Segrè Visual Archives.

"Z measurement"

Always this: $\uparrow \downarrow$
S

Always this:
$\mathrm{N} \rightleftarrows \mathrm{S}$

Never this:
$\mathrm{N} \uparrow \downarrow \mathrm{S}$

What is knowable?

Consider just 4 states:

We are allowed to ask only one of two possible questions:
Does the spin lie along the Z axis? Answer is always yes! Does the spin lie along the X axis? Answer is always yes!
($\pm 1)$
(± 1)

Measurements 1.

Measurements 2.

measurement

measurement

Result: ± 1 randomly! State is changed by measurement to lie along Z axis.

Result: +1 every time State is unaffected.

Fundamental Features of Quantum Information:

$\{0,1\}$ qubit \longrightarrow quball $\{0,0\}$

Quantum Strangeness

Result is random if prepared via one door and measured via another!

What is the state of the quball before measurement?
superposition of states : red + green

Measurement destroys the superposition.

Copying unknown state with certainty is impossible

No Cloning Theorem

Given an unknown quantum state, it is impossible to make multiple copies

Guess which measurement to make ("which door of box to open")
---if you guess wrong you change the state and you have no way of knowing if you did....

Quantum Money

indeterminancy and incompatibility can be put to good use!

Each box contains a quantum system in 1 of 4 states: $\uparrow, \downarrow, \rightarrow, \leftarrow$ (i.e., red or green inserted through door 1 or 2)
(S. Wiesner 1970)

Is it Counterfeit?

Counterfeiter attempting to 'clone' the quantum state is forced to guess at orientations

$$
P_{\text {match }}=(3 / 4)^{n}=0.056 \text { for } n=10 .
$$

Government issue detector orientations can be used to check validity (non-destructively)

Quantum Money

Bill \# 314159265358979
Lux et Veritas

Don’t leave home without it!

Quantum Cryptography

Eavesdropper
(After Artur Ekert)

One-time pad

plaintext	0	1	0	0	1	0	1	1	0	1
key	0	1	1	1	1	0	1	0	1	0
cryptogram	0	0	1	1	0	0	0	1	1	1

Perfectly secure if the key is:

-RANDOM
 -AS LONG AS THE MESSAGE -NEVER REUSED

Addition mod 2: $\quad 0+0=0,0+1=1,1+0=1,1+1=0$

Key distribution problem

KEY	0	0	1	0	1	1	0

KEY	0	0	1	0	1	1	0

Solution: Distribute Key as Quantum Money

Quantum Key Distribution

Alice sends Bob some quantum money

Bob chooses random detector orientations but gets half of them wrong

Quantum Key Distribution

Alice announces the correct detector orientations

Bob discards the ones he got wrong

Quantum Key Distribution

Alice announces the contents of a random subset of the boxes

Bob checks to see if he got the same result. If yes, then no eavesdropper has corrupted the data by opening the boxes and then cloning.

Quantum Key Distribution

Bob and Alice use the remaining orientations as the key because their measurements are guaranteed to agree.

The key: $111 \quad 0$....

Quantum Key Distribution via photon beams through air or optical fibers

Quantum Teleportation

You can make a perfect copy of the quantum state of a system if you are willing to destroy the state of the original (required by no cloning theorem.)

EPR: 'spooky action at a distance'

In order to read beam A , it must be "messed up" first by mixing it with beam B. Once \mathbf{A} \& \mathbf{B} is known, its state can be read and duplicated. When C - a copy of Beam \mathbf{B} - is subtracted from A \& B, a teleported replica of beam A emerges.

It is important not to make errors during teleportation

Quantum Computation

Physical Realizations of Qubits

-trapped ions (Boulder, Ann Arbor,...)
-liquid phase NMR
-quantum dots (electrons or excitons)
-electrons on liquid helium
-Superconducting Josephson junctions
-Superconducting Cooper pair boxes

Quantum Mechanics of Superconducting Electrical Circuits

R. Schoelkopf group, Yale

NMR language

microwave pulse

free evolution (analogous to gyroscopic precession)

Quantum control of qubits

$\pi / 2$
pulse

$\sqrt{\mathrm{NOT}}$

π

pulse

Rotating the Qubit Orientation followed by Z measurement

"Where a calculator on the ENIAC is equipped with 18,000 vacuum tubes and weighs 30 tons, computers in the future may have only 1,000 vacuum tubes and perhaps only weigh one and a half tons."

Popular Mechanics, 1949

Many thanks to: Ren-Shou Huang, Alexandre Blais, Krishnendu Sengupta, Aash Clerk, Doug Stone, Andreas Wallraff, David Schuster, Robert Schoelkopf, Michel Devoret

We still have a long way to go.

Experimentalist

References

http://pantheon.yale.edu/~smg47

http://research.yale.edu/boulder
http://cam.qubit.org
http://www.theory.caltech.edu/people/preskill

The End

ELEMENTARY QUANTUM INFORMATION UNIT: QUBIT

Discrete quantum energy levels ENERGY

RELAXATION TIME AT OPTIMAL POINT

PRINCIPLE OF RAMSEY EXPERIMENT

RAMSEY FRINGES

Summary and Conclusions

-Quantum parallelism is powerful but difficult
-Algorithms are limited
-Engineering issues:
-decoherence, fidelity of operations
-isolation, interaction, readout of qubits
-scalability to large sizes
-Quantum control of single solid state qubits
has been demonstrated for the first time
-10^{4} Ramsey fringes; $T_{1} \sim 2 \mu \mathrm{~s} ; T_{2} \sim 0.5 \mu \mathrm{~s}$
-Two-bit gates now in progress

Many thanks to:
Michel Devoret, Rob Schoelkopf Aashish Clerk, Ren-shou Huang, K. Sengupta

Special thanks to Michel Devoret for several of the transparesocies.

When it comes to quantum mechanics you have to think different

What the counterfeiter sees

Original:

As seen and cloned by counterfeiter:

$$
P_{\text {match }}=(3 / 4)^{n}=0.056 \text { for } n=10 \text {. }
$$

Fundamental features of

 classical information:$0 \quad 1$

Classical Information:

- Easily stored and read out

Easily copied

Is it Counterfeit?

Bill \# 314159265358979

Lux et Veritas

Government issue detector orientations for this bill (kept in a secret book by the Treasury Department)

$$
\begin{array}{cccccccccc}
\text { Z } & \text { X } & \text { Z } & \text { X } & \text { Z } & \text { Z } & \text { X } & \text { X } & \text { Z } & \text { X } \\
\hline \dagger & \rightarrow & \uparrow & \boxed{\emptyset} & \downarrow & \dagger & \rightarrow & \boxed{ } & \uparrow & \longrightarrow \\
0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9
\end{array}
$$

