Introduction to Quantum Mechanics of Superconducting Electrical Circuits

- What is superconductivity?
- What is a Josephson junction?
- What is a Cooper Pair Box Qubit?
- Quantum Modes of Superconducting Transmission Lines •See R.-S. Huang PhD thesis on Boulder 2004 web page

What is superconductivity?

See: Boulder Lectures 2000

Cooper pairs are like bosons in a BEC -- except -- size of Cooper pair spacing between electrons

Complex order parameter like BEC

$$\psi(\vec{r}) \sim \left\langle c_{\vec{k}\uparrow} c_{-\vec{k}\downarrow} \right\rangle$$
$$\psi(\vec{r}) \sim \left| \psi \right| e^{i\varphi(\vec{r})}$$

Excitation Gap for Fermions

In a semiconductor the gap is tied to the spatial lattice (only occurs at one special density commensurate with lattice)

In a superconductor, gap is tied to fermi level. Compressible.

WHY SUPERCONDUCTIVITY?

F

Energy vs. Particle Number on Grain

Josephson Tunneling I

Coherent tunneling of Cooper pairs

Restrict Hilbert space to quantum ground states of the form

$$|N_1 - 2n, N_2 + 2n\rangle$$
, $n = \dots -3, -2, -1, 0, +1, +2, +3\dots$

7

Josephson Tunneling II

Restrict Hilbert space to quantum ground states of the form

$$|N_{1} - 2n, N_{2} + 2n\rangle \Rightarrow |n\rangle, \qquad n = \dots - 3, -2, -1, 0, +1, +2, +3\dots$$

$$\dots -4 \quad -3 \quad -2 \quad -1 \quad 0 \quad +1 \quad +2 \quad +3 \quad +4 \quad \dots$$
normal state
$$normal \text{ state}$$

$$r = -\frac{E_{J}}{2} \sum_{n=-\infty}^{n=+\infty} [|n+1\rangle\langle n| + |n\rangle\langle n+1|] \qquad \qquad E_{J} = \frac{G_{t}\Delta}{8e^{2}/h} \quad \text{sc gap}$$

Tight binding model: single 'particle' hopping on a 1D lattice N.B. $E_J \propto \Delta$ not $1/\Delta$

Josephson Tunneling III
....-4 -3 -2 -1 0 +1 +2 +3 +4
Tight binding model
$$T = -\frac{E_J}{2} \sum_{n=-\infty}^{n=+\infty} [|n+1\rangle\langle n|+|n\rangle\langle n+1|]$$

'position' *n*
'wave vector' φ (compact!)
'plane wave eigenstate' $|\varphi\rangle = \sum_{n=-\infty}^{n=+\infty} e^{i\varphi n} |n\rangle = "e^{ikx} "$

$$T \left| \varphi \right\rangle = -E_{\mathrm{J}} \sum_{n'=-\infty}^{n-\infty} \left[\left| n'+1 \right\rangle \left\langle n' \right| + \left| n' \right\rangle \left\langle n'+1 \right| \right] \sum_{n=-\infty}^{n-\infty} e^{i\varphi n} \left| n \right\rangle$$

$$T \left| \varphi \right\rangle = -E_{J} \sum_{n'=-\infty}^{n'=+\infty} \left[\left| n'+1 \right\rangle \left\langle n' \right| + \left| n' \right\rangle \left\langle n'+1 \right| \right] \sum_{n=-\infty}^{n=+\infty} e^{i\varphi n} \left| n \right\rangle$$

$$T\left|\varphi\right\rangle = -\frac{E_{\mathrm{J}}}{2}\sum_{n=-\infty}^{n=+\infty}e^{i\varphi n}\left[\left|n+1\right\rangle + \left|n-1\right\rangle\right]$$

$$T\left|\varphi\right\rangle = -E_{\rm J}\cos(\varphi)\left|\varphi\right\rangle$$

Supercurrent through a JJ

'position' n'momentum' $\hbar \varphi$

> Wave packet group velocity

$$\frac{dn}{dt} = \frac{1}{\hbar} \frac{dT}{d\varphi} = \frac{E_J}{\hbar} \sin \varphi$$

current:
$$I = (2e) \frac{dn}{dt} = \frac{2e}{\hbar} E_J \sin \varphi$$
$$I = I_c \sin \varphi$$
$$I_c = \frac{2e}{\hbar} E_J \sin \varphi$$

$$\phi$$

 $I_{\rm c} \equiv \frac{2e}{\hbar} E_J$

 $T\left|\varphi\right\rangle = -E_{\rm J}\cos(\varphi)\left|\varphi\right\rangle$

Charging Energy

 $|N_1 - 2n, N_2 + 2n\rangle \Rightarrow |n\rangle, \quad n = \dots - 3, -2, -1, 0, +1, +2, +3\dots$

'Second' Quantization

$$\left|\varphi\right\rangle = \sum_{n=-\infty}^{n=+\infty} e^{i\varphi n} \left|n\right\rangle = "e^{ikx}"$$

Number Operator:

$$\hat{n} \equiv -i\frac{\partial}{\partial\varphi}$$

3

$$H = 4E_{\rm c}\hat{n}^2 - E_{\rm J}\cos(\varphi)$$
$$H = -4E_{\rm c}\frac{\partial^2}{\partial\varphi^2} - E_{\rm J}\cos(\varphi)$$

 $H\Psi_{j}(\varphi)=E_{j}(\varphi)\Psi_{j}(\varphi)$

 $\Psi_{j}(\varphi)$ Describes quantum amplitude for (quantum) phase

Weak Charging Limit: Josephson Plasma Oscillations

$$E_{\rm c} \ll E_{\rm J}$$

Simple harmonic oscillator

$$H = 4E_{\rm c}\hat{n}^2 - E_{\rm J}\cos(\varphi)$$
$$H = -4E_{\rm c}\frac{\partial^2}{\partial\varphi^2} - E_{\rm J}\cos(\varphi)$$
$$H \approx -4E_{\rm c}\frac{\partial^2}{\partial\varphi^2} + E_{\rm J}\left[-1 + \frac{\varphi^2}{2}\right]$$

spring constant $K = E_{\rm J}$

mass
$$M = \frac{1}{\hbar^2 8E_c}$$

$$\hbar\omega_{\rm J} = \sqrt{8E_{\rm c}E_{\rm J}}$$

Weak Charging Limit: Josephson Plasma Oscillations

 $E_c \ll E_1$ (heavy 'mass', small quantum fluctuations) spring constant $K = E_{I}$ mass $M = \frac{1}{\hbar^2 8E_c}$ $\hbar\omega_{\rm I} = \sqrt{8E_{\rm c}E_{\rm I}}$ Weak anharmonicity can be used to form qubit and readout levels

Strong Charging Limit: Cooper Pair Box

Random offset charge due to built in asymmetry

THE BARE JOSEPHSON JUNCTION: SIMPLEST SOLID STATE ATOM

Josephson junction with no wires to rest of world:

IMPERFECTIONS OF JUNCTION PARAMETERS

CAN IN PRINCIPLE MAKE JUNCTION PERFECT, BUT MEANWHILE.....

JUNCTION PARAMETER FLUCTUATIONS

	param.	dispers.	noise	sd@1Hz
$Q_r = Q_r^{stat} + \Delta Q_r(t)$	Q_r^{stat}	random!	$\Delta Q_r/2e$	~10 ⁻³ Hz ^{-1/2}
$E_{J} = E_{J}^{stat} + \Delta E_{J}\left(t\right)$	$E_J^{\ stat}$	10%	$\Delta E_J / E_J$	10 ⁻⁵ -10 ⁻⁶ Hz ^{-1/2}
$E_{C} = E_{C}^{stat} + \Delta E_{C}(t)$	E_{C}^{stat}	10%	$\Delta E_C / E_C$	<10 ⁻⁶ Hz ^{-1/2} ?

Oth order problem: get rid of randomness of static offset charge!

2 solutions: - control offset charge with a gate or - make E_J/E_C very large RF-SQUID (flux qubit) Cur. Biased J. (phase qubit)

SENSITIVITY TO NOISE OF VARIOUS QUBITS

	junction noise			port noise				
qubits	ΔQ_r	ΔE_J	ΔE_C	technical	quantum	back- action		
<u>charge</u>	A	A		And a second sec	Arra	Arr I		
flux		E E E	THE F	J.J.J.J.	A State			
phase		THE SECOND	A	THE REAL	A A A A A A A A A A A A A A A A A A A	A A A A A A A A A A A A A A A A A A A		
charge qubit flux qubit phase qubit								

COOPER BOX STRATEGY

 $T = -E_J \cos \varphi = -\frac{E_J}{2} \sum_{n=-\infty}^{n=+\infty} \left[\left| n+1 \right\rangle \left\langle n \right| + \left| n \right\rangle \left\langle n+1 \right| \right] \Rightarrow -\frac{E_J}{2} \sigma^x$

SPLIT COOPER PAIR BOX

Split Cooper Pair Box

$$H = -2E_C \left(1 - 2N_g\right) \sigma^x + \frac{E_J}{2} \sigma^z + \text{constant....}$$

JJ is actually a SQUID

$$E_{\rm J} = E_{\rm J}^{\rm max} \cos\left(2\pi \frac{\phi}{\phi_0}\right)$$

(Buttiker '87; Bouchiat et al., 98)

Superconducting Tunnel Junction as a Covalently Bonded Diatomic 'Molecule'

(simplified view at charge deg. point)

Cooper Pair Josephson Tunneling Splits the Bonding and Anti-bonding 'Molecular Orbitals'

Bonding Anti-bonding Splitting

Dipole Moment of the Cooper-Pair Box (determines polarizability)

RESPONSES OF BOX IN EACH LEVEL

 $=\frac{\partial E_k}{\partial U}$

 $rac{\partial^2 E_k}{\partial U^2}$

 Q_k

loop current $I_k = \frac{\partial E_k}{\partial \phi}$ island charge box inductance $L_k = \left(\frac{\partial^2 E_k}{\partial \phi^2}\right)^{-1}$ box capacitance

Dephasing, decoherence, decay

$\hbar \approx 0.658 \times 10^{-15} \text{ eV-s}$

1 nV acting on charge e for 1 μ s = 10⁻¹⁵ eV-s

Spins very coherent but hard to couple and *very* hard to measure.

'Atomic spectral line'

RELAXATION TIME AT OPTIMAL POINT

PRINCIPLE OF RAMSEY EXPERIMENT

RAMSEY FRINGES

Courtesy M. Devoret