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Goal: Study quantum non-equilibrium vibrational dynamics of 
small molecules following a sudden photoemission event

e−

Experimental demonstration of a highly hardware efficient quantum ‘boson 
sampling’ simulator using microwave quanta to represent vibrational quanta

First-generation experiments: Chris Wang (Schoelkopf lab)

Phys. Rev. X 10, 021060 (2020)
Phys. Rev. X 13, 011008 (2023)
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Programmable quantum simulator desiderata:

1.  Universal control 
• Create initial non-classical states
• Synthesize arbitrary Hamiltonian dynamics

2. Efficient and non-trivial measurements 
• Probe the simulation results
• State tomography beyond capabilities 

typically available in the system being 
simulated
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Universal control and measurement of hybrid qubit-
oscillator systems in circuit QED.

ancilla 
qubit

cavity mode
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Qubit-Cavity Strong Dispersive Coupling
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Example 1: SNAP gate set:
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Cavity-controlled qubit rotations     +     Cavity displacements:

(Recall this from Lecture 2)



QuantumInstitute.Yale.edu Quantum.Yale.edu

6

ISA Example 2: Phase-Space Displacements
Qubit-Controlled Cavity Displacement + Qubit Rotations
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ISA Example 2: Qubit-Controlled Cavity Displacement + Qubit Rotations
Fast Universal Control of an Oscillator with Weak Dispersive 
Coupling to a Qubit, A. Eickbusch et al. (Devoret Lab)                      
                   Nature Physics 18, 1464 (2022)
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https://www.nature.com/nphys
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Universal Gate Set (Lie algebra does not close):
Composing conditional displacements and qubit rotations
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Non-Commuting Geometry of Oscillator Phase Space  Bloch Sphere: Conditional Displacements⊗
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ISA Example 2: Qubit-Controlled Cavity Displacement + Qubit Rotations
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(Echoed) Controlled-Displacement ISA:

Photon Fock State Generation

[Wigner function and characteristic function phase space 
tomography plots will be explained later.]

Fast Universal Control of an Oscillator with Weak Dispersive 
Coupling to a Qubit, A. Eickbusch et al. (Devoret Lab)                      
                   Nature Physics 18, 1464 (2022)

https://www.nature.com/nphys
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(Echoed) Controlled-Displacement ISA:

Squeezed states

Binomial QEC code word states GKP QEC code word states

Fast Universal Control of an Oscillator with Weak Dispersive 
Coupling to a Qubit, A. Eickbusch et al. (Devoret Lab)                      
                   Nature Physics 18, 1464 (2022)

https://www.nature.com/nphys
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Universal control and measurement of hybrid qubit-
oscillator systems in circuit QED.

ancilla 
qubit

cavity mode
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Characteristic Fun
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How do we measure the overlap of the state with a displaced version of itself?
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Measure phase kickback of 
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zz
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Interpretation:
Think of this, not as a controlled displacement, but as a rotation of the qubit 
around the z axis by an angle dependent on the position and momentum of 
the oscillator.

Bosonic State Tomography with the Characteristic Function (related to density matrix:                                         )
 --Using the controlled displacement gate

( , ) | |x x x xρ ′ = ′ Ψ Ψ



Co-Design Center for Quantum Advantage  https://bnl.gov/quantumcenter Quantum.Yale.edu

13

Bosonic State Tomography with the Wigner Function (also related to density matrix and characteristic function)

* * ˆ2 †
2
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Fourier transform of 
Characteristic Function

Expectation value of 
displaced photon 
number parity operator

Theory                                  Experiment

Vlastakis et al. (Schoelkopf 
group), Science (2013)

Milul et al., (S. Rosenblum group)
arXiv:2302.06442;  See also J. Home ion-trap cats.

World’s largest Schrodinger Cat:

Interference fringes in Wigner 
function prove coherent 
superposition (of coherent states)

1
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α α + ± −  

α+α−

https://arxiv.org/abs/2302.06442
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State Tomography in the Fock Basis:

Efficient Boson Sampling from the Photon Number Distribution

 -via binary search for the photon number 
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Qubit-Cavity Strong Dispersive Coupling
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Measure cavity photon number by its 
effect qubit transition frequency. [QND]

Is the photon number equal to 
1?  Yes or no?
13? Yes or no?

[If there are, say, 256 possible photon numbers, 
the answer is likely  to be ‘no’ most of the time.]

Inefficient sampling implies 
large query complexity.]
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Measure any arbitrary binary function of the 
photon number. [QND]

Is the photon number equal to 
either 1 or 3?  
Yes or no?



Co-Design Center for Quantum Advantage  https://bnl.gov/quantumcenter Quantum.Yale.edu

17

Example:  binary search for photon number
More convenient than phase estimation—

no feedforward required + obtain most significant bits first

( )
max

ˆ
2

0

1

2

3

0

,

[1010101010101010]
[1100110011001100]
[1111000011110000]
[111111 ]

ˆ ˆ {0,1}

1100000000

x
ci P

c

n

c m m j
m

U

P

e

cc P

c
c
c
c

π σ
π

−

=

=

=
=
=
=

≡ ∈∑















cavity ψ

0qubit ( )
2cU π ( )

1c
U π ( )

0cU π

2a 1a 0a

Walsh-Hadamard transform

Parity

Binary digits in measured  photon number

3 2 1 0

3 3

2 3 2

1 3 2 1

0 3 2 1 0

[ ]b b b b
b
b
b a a
b

a

aa

a
a

a
a

a

=
= ⊕

⊕ ⊕
⊕

=
⊕= ⊕

2 maxcircuit cost: 
efficient boson sampling
(exponential gain)

log n

( )
3cU π

3a



Co-Design Center for Quantum Advantage  https://bnl.gov/quantumcenter Quantum.Yale.edu

18

Using this control and measurement toolbox for

hardware-efficient simulation of physical models containing bosons. 

Experimental simulation of the optical spectra of vibrating molecules

Franck-Condon factors as a boson sampling problem

1n

2n

3n

4n

5n

6n
7n

8n
Huh et al. Nature Photonics 9 615 (2015)
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Warm up example: the suddenly displaced harmonic oscillator

Photon emission ejects a bonding electron suddenly 
changing the equilibrium spacing of the two nucleiA B
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Nuclear wave function has no time to change. 
Sudden projection onto eigenstates of the 
new Hamiltonian.
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Warm up example: the suddenly displaced harmonic oscillator
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Nuclear wave function has no time to change. 
Sudden projection onto eigenstates of the 
new Hamiltonian.
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Warm up example: the suddenly displaced harmonic oscillator
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Using Bosons to Simulate Bosons

Microwave 
photons

Molecular
vibrations

Molecular Vibrational Spectroscopy

A B

Ancilla transmons

Modes protected by mirror 
reflection symmetry
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Using Bosons to Simulate Bosons

Microwave 
photons

Molecular
vibrations

Ground PES

Excited PES

1q

2q

1 2 )( ,V q q

Molecular Vibrational Spectroscopy bend

e−

Reflection symmetry destroyed
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First-generation experiment:
Chris Wang (Schoelkopf lab)
Phys. Rev. X 10, 021060 (2020)

1. Obtain nuclear PES from solving fermionic 
problem on classical computer.

2. Approximate nuclear PES as quadratic

3. But allow for different frequencies, 
displacement, squeezing, and orientation of 
symmetry axes (reflection symmetry destroyed) 
of PES between electronic ground and excited 
states.

4. Sudden approximation: Perform unitary 
transformation between eigenstates of ground 
and excited state Hamiltonians. 

1q

2q

1 2 )( ,V q q

Doktorov et al. J. Mol. Spec. 64 302-326 (1977)



Co-Design Center for Quantum Advantage  https://bnl.gov/quantumcenter Quantum.Yale.edu

25

Huh et al. Nature Photonics 9 615 (2015)

Requirements:  

number-resolved detection             Wang et al. Phys. Rev. X 10, 021060 (2020)

non-Gaussian state preparation               Heeres et al. Nat. Comm. 8 1 (2017)

Gaussian operations: beamsplitters, squeezing, displacements Gao et al. PRX 8 2 (2018)

bosonic modes

Challenging in conventional quantum optics

(rotations between modes)
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Circuit implementation of the Franck-Condon simulation 

Phys. Rev. X 10, 021060 (2020)

dokÛ Unitary basis change between 
ground and excited PES

Non-Gaussian 
state preparation
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Histogram the measured photon numbers ,
from many shots to obtain the probability distribution 
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Experimentally simulated photoelectron processes via
efficient boson sampling (photons represent phonons)

,

1
2 ij ij

i j
pD q= −∑

single-bit 0.049D =

sampling 0.152D =

[Chris Wang]

Phys. Rev. X 10, 021060 (2020)

L1 distance between exact and 
experimental distributions:
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3 2 1 0 3 2 1 0[ ], , , ), ( , , ,, ] [ )( b b bm c c c cn b=

Typical photodetectors are not number resolving and are destructive.  
Here we have efficient QND single-shot boson number sampling.  
We measure which of D=256 photon states the two cavities are in by 
QND measurement of the ‘digits’ in the binary representation of the photon number:

Circuit complexity cost is only log D, not D.   (Exponential gain, true boson sampling)

Phys. Rev. X 10, 021060 (2020)
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 ( )2
2 2 2H O H O Bh B eν + −→ +

‘exact’ (cyan), single bit extraction (purple) and sampling (red) measurement 

Phys. Rev. X 10, 021060 (2020)

Microwave bosons to simulate vibrational bosons is highly advantageous.  
Would have required >8 qubits and ~103 gates in an ‘ordinary’ quantum computer.
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Conical Intersections and vision

rhodopsin

retinal (vitamin A)

cis trans

Polli et al. Nature (2010).

Conical intersections of 
molecular nuclear 

potential energy surfaces
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APS Carin Cain

https://physics.aps.org/articles/v16/s14

Quantum Circuit Tackles “Diabolical” Photochemical Process
January 26, 2023• Physics 16, s14

Microwave Boson Simulation Experiment: Chris Wang 
(Schoelkopf lab)
Phys. Rev. X 13, 011008 (2023)

Breakdown of Born-Oppenheimer adiabatic approximation
Environmental dissipation

trans/cis photoisomerization in retinal chromophore

Conical Intersections activate human vision

• Nonadiabatic effects
• Anharmonicities
• Dissipation

Challenges
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Schoelkopf Lab

& many others!

I. Chuang L. Jiang S. Girvin

J. Freeze V. Batista P. Vaccaro

B. Lester Y. Y. Gao Y. Zhang

L. Frunzio

R. Schoelkopf

Chris Wang
Actual Chemists

Jacob Curtis

QuantumInstitute.yale.edu
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Devoret Lab
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