Introduction to Circuit QED

Steven M. Girvin

Experiment
Michel Devoret
Luigi Frunzio
Rob Schoelkopf
+...

Theory
SMG
Leonid Glazman
Shruti Puri
Liang Jiang
Mazyar Mirrahimi
+...

Disclosure: SMG is a consultant and equity holder in Quantum Circuits, Inc. and an equity holder in IBM, Inc.
Lecture notes on circuit QED (150 pages)
2011 Les Houches Summer School

https://girvin.sites.yale.edu/lectures

Lecture series on quantum error correction and fault tolerance

arXiv:2111.08894: Introduction to Quantum Error Correction and Fault Tolerance

Videos of above lectures:
https://girvin.sites.yale.edu/video
OUTLINE:

Introduction to Circuit QED

• What is Cavity QED?
• Quantum LC Oscillators
• Josephson Junctions & Transmon Qubits
• Qubits coupled to microwave cavities
QED: Atoms Coupled to Photons

Zero-Point Fluctuations of the Vacuum Affect Atomic Spectra

Irreversible spontaneous decay into the photon continuum:

\[2p \rightarrow 1s + \gamma \quad T_1 \sim 1 \text{ ns} \]

Vacuum Fluctuations: electron mass renormalization; Virtual photon emission and reabsorption, Lamb shift lifts 2s-2p degeneracy

Cavity QED: What happens if we trap the photons in engineered discrete modes inside a cavity?

If cavity has no mode at atom’s frequency.

\[T_{1,cQED} \rightarrow 10^3 T_1 \]
μwave cQED with Rydberg Atoms

cQED at optical frequencies

The state of photons is detected, not atoms.

... measure changes in transmission of optical cavity

(H. J. Kimble, H. Mabuchi)
OUTLINE:

Introduction to Circuit QED

• What is Cavity QED?
• Quantum LC Oscillators
• Josephson Junctions & Transmon Qubits
• Qubits coupled to microwave cavities
Introduction to Circuit QED
Artificial atoms and microwave photons
How to be a quantum electrical engineer

LC oscillator

\[\Phi(t) \]

Define generalized flux

\[\Phi(t) = \int dt' V(t') \]

\[\dot{\Phi} = V \]

Faraday induction (up to a minus sign)

Electrostatic energy

\[\frac{1}{2} C \dot{\Phi}^2 \]

Magnetic energy

\[\frac{1}{2} L I^2 = \frac{1}{2L} \Phi^2 \]

Lagrangian

\[L = \frac{1}{2} C \dot{\Phi}^2 - \frac{1}{2L} \dot{\Phi}^2 \]

[Lumped element LC or single mode of a microwave cavity resonator]
\[L = \frac{1}{2} C \dot{\Phi}^2 - \frac{1}{2L} \Phi^2 \]

velocity coordinate

momentum \(Q = \frac{\delta L}{\delta \dot{\Phi}} = C \dot{\Phi} = CV \)

charge \(Q \) is momentum canonically conjugate to flux.

Hamiltonian
\[H = Q \dot{\Phi} - L = \frac{Q^2}{2C} + \frac{\Phi^2}{2L} \]

harmonic oscillator with "mass" \(m = C \)

"spring constant" \(k = 1/L \)

resonance frequency \(\omega_r = \sqrt{\frac{k}{m}} = \frac{1}{\sqrt{LC}} \)

Hamilton eqn's of motion
\[\ddot{\Phi} = \frac{\partial H}{\partial \dot{\Phi}} = \frac{Q}{C} = V \quad \checkmark \text{Faraday induction} \]
\[Q = -\frac{\partial H}{\partial \Phi} = -\frac{\Phi}{L} = -I \quad \checkmark \text{charge conservation} \]
\[\ddot{\Phi} = \frac{\dot{Q}}{C} = -\frac{1}{LC} \Phi \]

\[I = I_0 \sin(\omega_R t + \theta) \]

\[V = I_0 Z_R \cos(\omega_R t + \theta) \]

\[\text{characteristic impedance} \]

\[I = -\dot{Q} = -C \dot{V} = -\omega_R C Z_R I_0 \sin(\omega_R t + \theta) \]

\[Z_R = \frac{1}{\omega_R C} = \sqrt{\frac{L}{C}} = \sqrt{1} \]

\[Z_R \approx 50 - 500 \Omega \quad \text{because impedance of free space} \]

\[Z_0 = \sqrt{\frac{\mu_0}{\varepsilon_0}} \approx 377 \Omega \]

quantum of impedance \[Z_K = \frac{h}{e^2} \approx 25,812 \Omega \]

\[\alpha_C = \frac{\varepsilon_0}{h c} \left(\frac{1}{4\pi e_0} \right) \approx \frac{1}{137} \]

\[\frac{Z_0}{Z_K} = 2 \]
Quantizing the oscillator

\[[\hat{Q}, \hat{\Phi}] = -i\hbar \quad \hat{\Phi} = \frac{\Phi_{2PF}}{2}(a + a^\dagger) \quad \hat{Q} = -i \Phi_{2PF} (a - a^\dagger) \]

\[[a, a^\dagger] = 1 \quad Q_{2PF} \phi_{2PF} = \frac{\hbar}{2} \]

Virial theorem \(\langle 0 | \hat{Q}^2 | 0 \rangle = \frac{1}{L^2} \left(\frac{1}{2} \hbar \omega R \right) \Rightarrow Q_{2PF} = \sqrt{\frac{\hbar}{2L^2 R}} \)

\[\langle 0 | \frac{\hat{Q}^2}{2L^2} | 0 \rangle = \frac{1}{L^2} \left(\frac{1}{2} \hbar \omega R \right) \Rightarrow \phi_{2PF} = \sqrt{\frac{\hbar}{2L^2 R}} \]

\[Q_{2PF} / \phi_{2PF} = \frac{\hbar}{2} \quad \psi(0) = \langle \phi | 0 \rangle \text{ is a minimum uncertainty packet} \]

\[\frac{Q_{2PF}}{e} = \sqrt{\frac{\hbar}{4 \pi e^2 \frac{1}{Z_R}}} = \sqrt{\frac{Z_K}{4 \pi e^2 Z_R}} \approx \sqrt{\frac{1}{4 \pi}} \approx 3 \]
Quantum Harmonic Oscillators have many important uses but:

Their level spacing is uniform making them impossible to achieve full quantum control with classical signals.

We need anharmonicity to make qubits and auxiliary controllers for oscillators:

\[H = \hbar \omega \ a \dagger a \]

\[H = \hbar \left[\omega \ a \dagger a - \frac{K}{2} a \dagger a a \right] \]

\[\omega_{12} - \omega_{01} = K \]
Quantum control paradox:

Microwave resonators
- can have very long lifetimes (1ms – 1 s) compared to qubits
- contain a large Hilbert space in a simple empty box
- can replace multiple qubits

But:
- require ancilla non-linear element (e.g. a qubit) to provide universal control

Recent theory papers:

OUTLINE:

Introduction to Circuit QED

• What is Cavity QED?

• Quantum LC Oscillators

• Josephson Junctions & Transmon Qubits

• Qubits coupled to microwave cavities
Joseph tunnel junctions act as non-linear inductors to produce anharmonic oscillators and qubits.

\[\omega_{01} \neq \omega_{12} \]

\[|0\rangle = |g\rangle \]

\[|1\rangle = |e\rangle \]

\[\omega_{01} \sim 5 - 10 \text{ GHz} \]
‘Circuit QED:’
- microwave photons inside superconducting circuits
- artificial atoms (Josephson junction qubits)

Ultra-strong photon-‘atom’ coupling:
- non-linear quantum optics at the single photon level

Hydrogen atom

\[f_{1S-2P} \approx 2.46 \times 10^{15} \text{Hz} \]
\[\tau_{2P} \approx 1.6 \text{ns} \]
\[Q/2\pi \approx 4 \times 10^6 \]
dipole \(\sim 1 \) Debye

(Not to scale!)

Superconducting oscillator/qubit

\[f_{01} \approx 7 \times 10^9 \text{Hz} \]
\[\tau_{2P} \approx 300 \mu\text{s} \]
\[Q/2\pi \approx 2 \times 10^6 \]
dipole \(\sim 3 \times 10^7 \) Debye
"Transmon" qubit

\[\hat{Q} = (2e)m \]

Dipole moment \(\sim \hat{Q} \times 1\text{mm} \)

\[H = \frac{\hat{Q}^2}{2C_\varepsilon} - E_J \cos \left(\frac{2e}{\hbar} \hat{\Phi} \right) \]

\[C_\varepsilon = C_J + C_{\text{geometric}} \]

\(\Phi = \text{SC order parameter phase} \)

\(\hbar \dot{\varphi} = 2eV = 2e \dot{\hat{Q}} \)

Josephson relation

Subtlety: \(\hat{Q} = (2e) \hat{N} \) is discrete not continuous.

For \(E_J \gg E_C \equiv \frac{e^2}{2C_\varepsilon} \), \(< \varphi > \ll 2\pi \) so can expand the cosine and safely ignore the subtleties.

Typically \(\frac{E_J}{E_C} \sim 10^2 \)

\[\hat{\Phi} \text{ is angular momentum} \]

\[\hat{N} \text{ conjugate to angle } \varphi \]
The Josephson relation and Hamiltonian

\[H = 4E_c \hat{n}^2 - E_J \cos \phi \]

\[\hat{n} = -i \frac{\partial}{\partial \phi} \]
Josephson Tunnel Junctions

Normal tunnel junction

Superconducting tunnel junction

Unique ground state for N pairs on an island

Total number of Cooper pairs that have tunneled uniquely determines the low-energy quantum state of a pair of islands.
Josephson Tunnel Junctions

\[|\psi\rangle = \sum_{m=-\infty}^{+\infty} \psi_m |m\rangle \]

Exactly the same Hilbert space as a 1D tight-binding model (integer position)

\[|\varphi\rangle = \sum_m e^{i\varphi_m} |m\rangle \]

plane waves in 1st BZ (only)

linear momentum \(-\pi < \varphi < +\pi\)

Total number of Cooper pairs that have tunneled uniquely determines the low-energy quantum state

integer \(m \leftrightarrow \varphi\) compact
Josephson Tunnel Junctions

\[|\psi\rangle = \sum_{m=-\infty}^{+\infty} \psi_m |m\rangle \]

Exactly the same Hilbert space as a 1D tight-binding model (integer position)

Or:
a quantum rotor (integer angular momentum)

Or:
position basis \(|m\rangle\)
plane waves in 1st BZ (only) \(|\varphi\rangle = \sum_{m} e^{i\varphi m} |m\rangle\)
linear momentum \(-\pi < \varphi < +\pi\)

Total number of Cooper pairs that have tunneled uniquely determines the low-energy quantum state

angular momentum basis \(|m\rangle\)
position basis \(|\varphi\rangle = \sum_{m} e^{i\varphi m} |m\rangle\)
angular position \(-\pi < \varphi < +\pi\)

integer \(m \Leftrightarrow \varphi\) compact
Josephson Tunnel Junction as a capacitor
(N.B. ignoring offset charge)

\[Q = (2e)m \]

\[U = \frac{Q^2}{2C} = 4 \frac{e^2}{2C} m^2 = 4E_c m^2 \]

Quantum Rotor

\[T = \frac{L^2}{2I} = -\frac{1}{2I} \frac{d^2}{d\phi^2} \]

\[T \left| m \right> = \frac{m^2}{2I} \left| m \right> \]

Unique ground state for N pairs on an island

Total number of Cooper pairs that have tunneled uniquely determines the low-energy quantum state of a pair of islands.

Superconducting tunnel junction

\[+Q \quad \begin{array}{c} \text{Unique ground state for N pairs on an island} \\ \text{Total number of Cooper pairs that have tunneled} \\ \text{uniquely determines the low-energy quantum state} \\ \text{of a pair of islands.} \end{array} \]
Cooper Pair Tunneling (Josephson Effect)

\[H_j = -\frac{E_j}{2} \sum_m \left\{ |m+1\rangle \langle m| + |m\rangle \langle m+1| \right\} \]

[tight-binding hopping matrix element that changes position by \(\pm 1 \)]

\[H_j = -E_j \cos \varphi \]
[gravitational potential producing a torque that changes the angular momentum by \(\pm 1 \)]

Unique ground state for \(N \) pairs on an island

Quantum Rotor

Total number of Cooper pairs that have tunneled uniquely determines the low-energy quantum state of a pair of islands.
OUTLINE:

Introduction to Circuit QED
 • What is Cavity QED?
 • Quantum LC Oscillators
 • Josephson Junctions & Transmon Qubits
 • Qubits coupled to microwave resonators
Transmon Qubit in 3D Cavity

$g = \frac{\vec{d} \cdot \vec{E}_{\text{rms}}}{h}$

Huge dipole moment: strong coupling

$|\vec{d}| = 2e \times 1 \text{ mm} \approx 10^7 \text{Debye!!}$

$V_{\text{dipole}} = g \sigma^x (a + a^\dagger)$

$g \sim 100 \text{ MHz}$

$Q_{\text{ZPF}} \sim \frac{1}{2e \sqrt{16\pi\alpha}} \sim 1 - 3$
$H = \omega_r a^\dagger a + \frac{\omega_q}{2} \sigma^z + g\sigma^x [a + a^\dagger] + H_{\text{damping}}$

[Rabi]

$H = \omega_r a^\dagger a + \frac{\omega_q}{2} \sigma^z + g[a\sigma^+ + a^\dagger\sigma^-] + H_{\text{damping}}$

[Jaynes-Cummings]

$H = \omega_r a^\dagger a + \frac{\omega_q}{2} \sigma^z + \chi \sigma^z a^\dagger a + H_{\text{damping}}$

[Dispersive]

Strong Dispersive Limit
Strong Dispersive Hamiltonian

\[H = \omega_r a^\dagger a + \frac{\omega_q}{2} \sigma^z + \chi \sigma^z a^\dagger a + H_{\text{damping}} \]

resonator qubit dispersive coupling

\[\chi >> \kappa, \Gamma \]

Cavity frequency = \(\omega_r + \chi \sigma^z \)

'Cstrong-dispersive' limit

\[2\chi \sim 2 \times 10^3 \kappa \]

[Cavity frequency can be used to readout state of qubit]
Using (not so) strong dispersive coupling to measure the state of the qubit

Additional notes:
The S matrix for reflection of microwave photon from a resonator is derived in the separate PDF document ‘Reflection from a resonator’
Can read out qubit state by measuring cavity resonance frequency

Choose $\chi \sim \kappa$

$E_{\text{out}}(\omega) = e^{i\theta(\omega)}E_{\text{in}}(\omega)$
State of qubit is entangled with the ‘meter’ (microwave phase).
Then ‘meter’ is read with amplifier.

\[
|\psi_{\text{in}}\rangle = \{a |\uparrow\rangle + b |\downarrow\rangle\}|\alpha\rangle
\]
\[
|\psi_{\text{out}}\rangle = a |e^{+i\theta \alpha}\rangle |\uparrow\rangle + b |e^{-i\theta \alpha}\rangle |\downarrow\rangle
\]

\[
E_{\text{out}}(\omega) = e^{i\theta(\omega)} E_{\text{in}}(\omega)
\]
Quadrature amplitudes X, Y are canonically conjugate, leading to quantum vacuum noise.
Using (not so) strong dispersive coupling to measure the state of the qubit

Quantum limited amplifiers developed...

Data from: M. Hatridge et al., Science 339, 178 (2013)

Readout fidelity > 99.5% in ~ 300 nsec
Using strong-dispersive coupling to measure the photon number distribution in a cavity

Strong Dispersive Hamiltonian

\[
H = \omega_r a^\dagger a + \frac{\omega_q}{2} \sigma^z + \chi \sigma^z a^\dagger a + H_{\text{damping}}
\]

\(\chi \gg \kappa, \Gamma \)

resonator qubit dispersive coupling

Reinterpretation of same Hamiltonian:

Quantized Light Shift of Qubit Transition Frequency

\[
H = \omega_r a^\dagger a + \frac{1}{2} \sigma^z \left[\omega_q + 2 \chi a^\dagger a \right] + H_{\text{damping}}
\]

Spectrum of qubit depends on cavity photon number
Using strong-dispersive coupling to measure the photon number distribution in a cavity

Measure photon number in high Q storage cavity via dispersive coupling to transmon.

Readout transmon state via dispersive coupling to low Q readout resonator.
quantized light shift of qubit frequency
(coherent microwave state)

\[\frac{\omega_q + 2 \chi a^\dagger a}{2} \sigma^z \]

N.B. power broadened
100X

Readout Voltage (mV)

spectroscopy frequency (GHz)
- quantized light shift of qubit frequency (coherent microwave state)

\[\frac{\omega_q + 2\chi a^+ a}{2} \sigma_z \]

N.B. power broadened 100X

Microwaves are particles!
- quantized light shift of qubit frequency
(coherent microwave state)
\[
\frac{\omega_q + 2 \chi a^\dagger a}{2} \sigma^z
\]

New low-noise way to do axion dark matter detection by QND photon counting
 Photon number parity

\[\hat{P} = (-1)^{a^\dagger a} = \sum_{n=0}^{\infty} \left| n \right>(-1)^n \left< n \right| \]

Remarkably easy to measure using our quantum engineering toolbox

and

Measurement is 99.8% QND
Measuring Photon Number Parity

- use quantized light shift of qubit frequency

\[\frac{\omega_q + 2\chi a^\dagger a}{2} \sigma^z \]

\[e^{-i2\chi \hat{n}_t \frac{\sigma^z}{2}} = e^{-i\pi \hat{n} \frac{\sigma^z}{2}} \]

\[\hat{n} = 1, 3, 5, \ldots \]
\[\hat{n} = 0, 2, 4, \ldots \]
400 consecutive parity measurements (99.8% QND)
Summary of Lecture I:

Introduction to Circuit QED

• What is Cavity QED?
• Quantum LC Oscillators
• Josephson Junctions & Transmon Qubits
• Qubits coupled to microwave cavities
 • Control and measurement of both qubit and cavity