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Strong correlations in low dimensional systems

T. Giamarchi

University of Geneva, 24 Quai Ernest Ansermet, 1211 Geneva,Switzerland

Abstract. I describe in these notes the physical properties of one dimensional interacting quantum
particles. In one dimension the combined effects of interactions and quantum fluctuations lead
to a radically new physics quite different from the one existing in the higher dimensional world.
Although the general physics and concepts are presented, I focuss in these notes on the properties of
interacting bosons, with a special emphasis on cold atomic physics in optical lattices. The method
of bosonization used to tackle such problems is presented. It is then used to solve two fundamental
problems. The first one is the action of a periodic potential,leading to a superfluid to (Mott)-
Insulator transition. The second is the action of a random potential that transforms the superfluid in
phase localized by disorder, the Bose glass. Some discussion of other interesting extensions of these
studies is given.

INTRODUCTION AND CHOICE OF CONTENTS

One-dimensional systems of interacting particles are particularly fascinating both from
a theoretical and experimental point of view. Such systems have been extensively in-
vestigated theoretically for more than 40 years now. They are wonderful systems in
which interactions play a very special role and whose physics is drastically different
from the ‘normal’ physics of interacting particles, that is, the one known in higher di-
mensions. From the theoretical point of view they present quite unique features. The
one-dimensional character makes the problem simple enoughso that some rather com-
plete solutions could be obtained using specific methods, and yet complex enough to
lead to incredibly rich physics [1, 2, 3, 4, 5, 6, 7, 8, 9].

Crucial theoretical progress were made and many theoretical tools got developed,
mostly in the 1970’s allowing a detailed understanding of the properties of such sys-
tems. This culminated in the 1980’s with a new concept of interacting one-dimensional
particles, analogous to the Fermi liquid for interacting electrons in three dimensions: the
Luttinger liquid. Since then many developments have enriched further our understand-
ing of such systems, ranging from conformal field theory to important progress in the
exact solutions such as Bethe ansatz [10].

In addition to these important theoretical progress, experimental realizations have
knows comparably spectacular developments. One-dimensional systems were mostly at
the beginning a theorist’s toy. Experimental realizationsstarted to appear in the 1970’s
with polymers and organic compounds. But in the last 20 yearsor so we have seen
a real explosion of realization of one-dimensional systems. The progress in material
research made it possible to realize bulk materials with one-dimensional structures
inside. The most famous ones are the organic superconductors [11] and the spin and
ladder compounds [12]. At the same time, the tremendous progress in nanotechnology
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allowed to obtain realizations of isolated one-dimensional systems such as quantum
wires [13], Josephson junction arrays [14], edge states in quantum hall systems [15], and
nanotubes [16]. Last but not least, the recent progress in Bose condensation in optical
traps have allowed an unprecedented way to probe for strong interaction effects in such
systems [17, 18].

The goal of these lectures was therefore to present the majortheoretical tools of the
domain. However, while writing these notes, I was faced witha dilemma. Having written
a recent book on this very subject [9] it felt that writing these notes would be a simple
repetition or worse a butchering of the explanations that could be found in the book. I
have thus chosen to give to these notes a slightly different focuss than the material that
was actually presented during the course. For an introduction to the one dimensional
systems and in particular for the fermionic problems, as well as most of the technical
details, I refer the reader to [9] where all this material is described in detail and hopefully
in a pedagogical fashion suitable for graduate students. I have chosen to restrict these
notes to the description of one and quasi-one dimensional systems of bosons. Indeed the
spectacular recent progress made thanks to cold atomic gases, make it useful to have a
short summary on the subject, in complement of the material that can already be found
in [9]. Note that although these notes do cover some of the basic material for cold atoms
they cannot pretend to be an exhaustive and complete review on this rapidly developing
subject. The whole volume of this book would not be sufficientfor that. Rather they
reflect a partial selection, based on my own excitement in thefield and its connections
with the low dimensional world. I thus apologize in advance for those whose pet theory,
experiment or paper I would fail to mention in these notes.

ONE DIMENSIONAL BOSONS, AND THEIR PECULIARITIES

Bosons are particularly interesting systems to investigate. From the theoretical point of
view bosons present quite interesting peculiarities and are in fact a priori much more
difficult to treat than their fermionic counterpart. Indeed, for fermions, the free fermion
approximation is usually a good starting point, at least in high enough dimension where
Fermi liquid theory holds. Some perturbations such as disorder can be studied for the
much simpler free fermion case, the Pauli principle ensuring that even in the absence
of interactions the perturbation remains small compared tothe characteristic scales of
the free problem (here the Fermi energy). One can thus gain valuable physical intuition
on the problem before adding the interactions. For bosons, on the contrary, interactions
are needed from the start since there are radical differences between a non-interacting
boson gas and an interacting one. Bosons have another remarkable property, namely
in the absence of interactions all the particles can condense in a macroscopic state.
Interacting bosons thus constitute a remarkable theoretical challenge. One dimension
presents additional peculiarities as we will see below.

Before embarking on the subject of interacting bosons, let us first discuss how one
can obtain “one dimensional” objects. Of course the real world is three dimensional, but
all the one dimensional system are characterized by a confining potential forcing the
particles to be in a localized states The wavefunction of thesystem is thus of the form
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FIGURE 1. (left) Confinement of the electron gas in a one-dimensional tube of transverse sizel . x is the
direction of the tube. Only one transverse direction of confinement has been shown for clarity. Due to the
transverse confining potential the transverse degrees of freedom are strongly quantized. (right) Dispersion
relationE(k). Only half of the dispersion relation is shown for clarity.k is the momentum parallel to the
tube direction. The degrees of freedom transverse to the tube direction lead to the formation of minibands,
labelled by a quantum numbern. One can be in a situation where only one miniband can be excited, due
to temperature or interactions, the energy scale of which isrepresented by the gray box. In that case the
system is equivalent to a one dimensional system where only longitudinal degrees of freedom can vary.

ψ(x,y) = eikxφ(y) (1)

whereφ depends on the precise form of the confining potential For an infinite well, a
show in Fig. 1,φ is φ(y) = sin((2ny+1)πy/l), whereas it would be a gaussian function
(8) for an harmonic confinement. The energy is of the form

E =
k2

2m
+

k2
y

2m
(2)

where for simplicity I have taken hard walls confinement. Theimportant point is the fact
that due to the narrowness of the transverse channell , the quantization ofky is sizeable.
Indeed, the change in energy by changing the transverse quantum numberny is at least
(e.g.ny = 0 tony = 1)

∆E =
3π2

2ml2
(3)

This leads to minibands as shown in Fig. 1. If the distance between the minibands is
larger than the temperature or interactions energy one is ina situation where only one
miniband can be excited. The transverse degrees of freedom are thus frozen and onlyk
matters. The system is a one-dimensional quantum system.

We can thus forget about the transverse directions and modelthe bosons keeping only
the longitudinal degrees of freedom. Two slightly different starting points are possible.
One can start directly in the continuum, where bosons are described by

H =
∫

dx
h̄2(∇ψ)†(∇ψ)

2m
+

1
2

∫

dx dx′ V(x−x′)ρ(x)ρ(x′)−µ0

∫

dxρ(x) (4)
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The first term is the kinetic energy, the second term is the repulsion V between the
bosons and the last term is the chemical potential. A famous model, exactly solvable by
Bethe-ansatz [19] uses a local repulsion

V(x) = V0δ (x) (5)

Note thatV is not the real atom-atom interaction in three dimensional space but an
effective interaction where the transverse degrees of freedom have already been incor-
porated. The extension of the transverse wavefunction is ofcourse much larger than the
dimensions of the atoms themselves, so the hard core repulsion between two atoms can
be safely forgotten. The three dimensional interaction is characterized by a scattering
length [17]as by

V(x,y,z) =
4πh̄2as

m
δ (x)δ (y)δ (z) (6)

Note that for bosons the s-wave scattering is the important one since two bosons can
get close together due to the symmetry of their wave function, while for fermions this
scattering would be highly inefficient.V0 in (5) is obtained by integrating over the trans-
verse degrees of freedom of the wavefunction. Because the effective interaction depends
on the extension of the transverse wavefunction it will be possible to vary (increase) it
by increasing the confinement [20]. To be closer to the situation for cold atomic gases
one has to remember that there is also a confining potential inthe longitudinal direction
even if this one is much more shallow and therefore the chemical potential is spatially
dependent, leading to a term of the form

H =
∫

dx[Vc(x)−µ0]ρ(x) (7)

where µ(x) = 1
2mω2

0x2 is the confining potential. In the absence of interactions the
ground state of the system is given by an harmonic oscillatorwavefunction

ψ0(x) =
(mω0

h̄π

)1/4
e−

mω0
2h̄ x2

(8)

In the absence of the confining potential the bosons are in a plane wave state of momen-
tumk = 0, whereas here they are confined on a typical length of orderaK =

√

h̄/(mω0)
in presence of the harmonic potential. A similar but much tighter confinement is imposed
in the transverse directions as well, leading to the formation of the tubes as discussed
above. Typical longitudinal lengths due to the harmonic confinement are 15µm while
the transverse dimensions can be 60nm [21, 22, 23].

Due to the trap the density profile is thus non homogeneous. Inthe absence of
interactions it would just be the gaussian profile of (8). In presence of interactions a
similar effect occurs but the profile changes. A very simple way to see this effect is
when one can neglect the kinetic energy (so called Thomas-Fermi approximation; for
other situations see [17]). In that case the density profile is obtained by minimizing (4)
and (7), leading to

V0ρ(x)+ [Vc(x)−µ0] = 0 (9)
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the density profile is thus an inverted parabola, reflecting the change of the chemical
potential. One can express the confining length asa = aK

√

(2ρ0V0)/(h̄ω0) whereρ0 is
the density at the center of the trap. Of course dealing with such inhomogeneous system
is a complication and has consequences that I will discuss below. To treat this problem,
there are various approximations that one can make. The crudest way of dealing with
such a confinement is simply to ignore the spatial variation and remember the trap as
giving a finite size to the system.

In the model (4), the bosons move in a continuum. It is interesting to add to the system
(4) a periodic potentialVL(x) coupled to the density [24, 18, 21]

HL =

∫

dx VL(x)ρ(x) (10)

This term, which favors certain points in space for the position of the bosons, mimics
the presence of a lattice of perioda, the periodicity of the potentialVL(x). We take the
potential as

VL(x) = VL sin2(kx) =
VL

2
[1−cos(2kx)] (11)

one has thusa = π/k. The presence of the lattice can drastically change the properties
of an interacting one dimensional system as I will discuss below.

If the lattice is much higher than the kinetic energy it is better to start from a tight
binding representation [25]. In that case in each minima of the lattice one can approxi-
mate the periodic potential by an harmonic one1

2(4VL)k2x2. One has thus on each site
harmonic oscillator wavefunctions that hybridize to form aband. IfVL is large the energy
levels in each well are well separated and one can retain onlythe ground state wavefunc-
tion in each well. The system can then be represented directly by a model defined on a
lattice

H = −t ∑
i
(b†

i+1bi +h.c.)+U ∑
i

ni(ni −1)−∑
i

µini (12)

wherebi (respb†
i ) destroys (resp. creates) a boson on sitei. The parameterst, U , andµi

are respectively the effective hopping, interaction and local chemical potential. Because
the overlap between different sites is very small the interaction is really local. Since
atoms are neutral this model is a very good approximation of the experimental situation.
Such a model known as a Bose-Hubbard model has been used extensively in a variety
of other contexts (see e.g. [9] for more details and references). The effective parameters
t andU can be easily computed by a standard tight binding calculation using the shape
of the on site wave function (8) withω2

0 = 4VLk2

t = 〈ψ0(x+a)|Hkin|ψ0(x)〉

U =
∫

dxdydz|ψ(x,y,z)|4 (13)

whereψ(x,y,z) = ψ0(x)ψ⊥(y)ψ⊥(z) andψ⊥ is identical to (8) but withVL replaced by
the transverse confinementV⊥. For large lattice sizes an approximate formula is given
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by [26]

J/Er = (4/
√

π)(VL/Er)
(3/4) exp(−2

√

VL/Er)

U/Er = 4
√

2π(as/2a)(VLV2
⊥/E3

r )(1/4)
(14)

HereEr = h̄2k2/(2m) is the so called recoil energy, i.e. the kinetic energy for a mo-
mentum of orderπ/a. V⊥ the denotes the harmonic confining potential in the two trans-
verse directions of the tube. Typical values for the above parameters areas∼ 5nmwhile
a∼ 400nm [21]. The repulsion term acts if there are two or more bosons per site. It is
easy to see from (14) that, in addition to the special effectscreated by the lattice itself,
imposing an optical lattice is a simple way to kill the kinetic energy of the system while
leaving interactions practically unaffected. It is thus a convenient way to make the quan-
tum system “more interacting” and has been used as such. Of course, it is possible to
also add to (12) longer range interactions if they are present in the microscopic system.
One naively expects the two models (4) plus the lattice terms(10) and (12) to have the
same asymptotic physics, the latter one being of course muchmore well suited in the
case of large periodic potential.

Of course the above models are very difficult to solve, since the tools that one usually
uses fail because of the one dimensional nature of the problem. It is customary when
dealing with a superfluid to use a Ginzburg-Landau (GL) mean field theory where
the order parameterΨ(x) represents the condensed fraction. The time dependent GL
is the celebrated Gross-Pitaevskii (GP) equation [17]. However in one dimension it is
impossible to break a continuum symmetry even at zero temperature so a true condensate
cannot exist for an infinite size system1. This means that quantum fluctuation will play
an important role and that the GP equation is not a very good starting point. One has
thus to find other ways to deal with the interactions. The model (4) in the continuum
is exactly solvable by Bethe ansatz (BA) [19], which provides very useful physical
insight. Unfortunately the BA solution does not allow the calculation of quantities such
as asymptotic correlation functions, and thus must be supplemented by other techniques.
For the particular model of bosons with a local repulsion, one point of special interest is
the point where the repulsion between the bosons is infinite.The system is then known
as hard core bosons. In that case it becomes impossible to puttwo bosons on the same
site. This is the Tonks-Girardeau (TG) limit [28, 19]. It is easy to see that in that case this
system of hard core bosons can be mapped either to a spin chainsystem (the presence
or absence of bosons being respectively an up or down spin), or by a Jordan-Wigner
transformation to a system of spinless fermions. We will userepeatedly this analogy
between hard core bosons and fermions and the following sections. More details on the
various mappings and equivalences between spins, fermionsand bosons can be found in
[9].

1 In presence of the trap a condensate can exist, simply because of the finite size effect [27].
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BOSONIZATION TECHNIQUE

Treating interacting bosons in one dimension is a quite difficult task. One very interest-
ing technique is provided by the so-called bosonization. Ithas the advantage of giving
a very simple description of the low energy properties of thesystem, and of being com-
pletely general and very useful for many one dimensional systems. This chapter will
thus describe it in some details. For more details and physical insights on this technique
both for fermions and bosons I refer the reader to [9].

Bosonization dictionary

The idea behind the bosonization technique is to reexpress the excitations of the
system in a basis of collective excitations [29]. Indeed in one dimension it is easy to
realize that single particle excitations cannot really exit. One particle when moving will
push its neighbors and so on, which means that any individualmotion is converted into
a collective one. One can thus hope that a base of collective excitations is a good basis
to represent the excitations of a one dimensional system.

To exploit this idea, let us start with the density operator

ρ(x) = ∑
i

δ (x−xi) (15)

wherexi is the position operator of theith particle. We label the position of theith particle
by an ‘equilibrium’ positionR0

i that the particle would occupy if the particles were
forming a perfect crystalline lattice, and the displacement ui relative to this equilibrium
position. Thus,

xi = R0
i +ui (16)

If ρ0 is the average density of particles,d = ρ−1
0 is the distance between the particles.

Then, the equilibrium position of theith particle is

R0
i = di (17)

Note that at that stage it is not important whether we are dealing with fermions or bosons.
The density operator written as (15) is not very convenient.To rewrite it in a more
pleasant form we introduce a labelling fieldφl (x) [29]. This field, which is a continuous
function of the position, takes the valueφl(xi) = 2π i at the position of theith particle. It
can thus be viewed as a way to number the particles. Since in one dimension, contrary to
higher dimensions, one can always number the particles in anunique way (e.g. starting
at x = −∞ and processing from left to right), this field is always well-defined. Some
examples are shown in Fig. 2. Using this labelling field and the rules for transformingδ
functions

δ ( f (x)) = ∑
zeros off

1
| f ′(xi)|

δ (x−xi) (18)
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FIGURE 2. Some examples of the labelling fieldφl (x). If the particles form a perfect lattice of lattice
spacingd, thenφ0

l (x) = 2πx/d, and is just a straight line. Different functionsφl (x) allow to put the
particles at any position in space. Note thatφ(x) is always an increasing function regardless of the position
of the particles.

one can rewrite the density as

ρ(x) = ∑
i

δ (x−xi)

= ∑
n
|∇φl(x)|δ (φl (x)−2πn) (19)

It is easy to see from Fig. 2 thatφl (x) can always be taken as an increasing function ofx,
which allows to drop the absolute value in (19). Using the Poisson summation formula
this can be rewritten

ρ(x) =
∇φl (x)

2π ∑
p

eipφl (x) (20)

wherep is an integer. It is convenient to define a fieldφ relative to the perfect crystalline
solution and to introduce

φl (x) = 2πρ0x−2φ(x) (21)

The density becomes

ρ(x) =

[

ρ0−
1
π

∇φ(x)

]

∑
p

ei2p(πρ0x−φ(x)) (22)

Since the density operators at two different sites commute it is normal to expect that
the fieldφ(x) commutes with itself. Note that if one averages the density over distances
large compared to the interparticle distanced all oscillating terms in (22) vanish. Thus,
only p = 0 remains and this smeared density is

ρq∼0(x) ≃ ρ0−
1
π

∇φ(x) (23)

We can now write the single-particle creation operatorψ†(x). Such an operator can
always be written as

ψ†(x) = [ρ(x)]1/2e−iθ (x) (24)
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whereθ(x) is some operator. In the case where one would have Bose condensation,θ
would just be the superfluid phase of the system. The commutation relations between
theψ impose some commutation relations between the density operators and theθ(x).
For bosons, the condition is

[ψB(x),ψ†
B(x′)] = δ (x−x′) (25)

Using (24) the commutator gives

e+iθ (x)[ρ(x)]1/2[ρ(x′)]1/2e−iθ (x′)− [ρ(x′)]1/2e−iθ (x′)e+iθ (x)[ρ(x)]1/2 (26)

If we assume quite reasonably that the fieldθ commutes with itself ([θ(x),θ(x′)] = 0),
the commutator (26) is obviously zero forx 6= x′ if (for x 6= x′)

[[ρ(x)]1/2,e−iθ (x′)] = 0 (27)

A sufficient condition to satisfy (25) would thus be

[ρ(x),e−iθ (x′)] = δ (x−x′)e−iθ (x′) (28)

It is easy to check that if the density were only the smeared density (23) then (28) is
obviously satisfied if

[
1
π

∇φ(x),θ(x′)] = −iδ (x−x′) (29)

One can show that this is indeed the correct condition to use [9]. Equation (29) proves
that θ and 1

π ∇φ are canonically conjugate. Note that for the moment this results from
totally general considerations and does not rest on a given microscopic model. Such
commutation relations are also physically very reasonablesince they encode the well
known duality relation between the superfluid phase and the total number of particles.
Integrating by part (29) shows that

πΠ(x) = h̄∇θ(x) (30)

whereΠ(x) is the canonically conjugate momentum toφ(x).
To obtain the single-particle operator one can substitute (22) into (24). Since the

square root of a delta function is also a delta function up to anormalization factor
the square root ofρ is identical toρ up to a normalization factor that depends on the
ultraviolet structure of the theory. Thus,

ψ†
B(x) = [ρ0−

1
π

∇φ(x)]1/2∑
p

ei2p(πρ0x−φ(x))e−iθ (x) (31)

where the indexB emphasizes that this is the representation of abosoniccreation oper-
ator. A similar formula can be derived for fermionic operators [9]. The above formulas
are a way to represent the excitations of the system directlyin terms of variables defined
in the continuum limit, and (31) and (22) are the basis of the bosonization dictionary.
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The fact that all operators are now expressed in terms of variables describingcollective
excitations is at the heart of the use of such representation, since as already pointed
out, in one dimension excitations are necessarily collective as soon as interactions are
present. In addition the fieldsφ andθ have a very simple physical interpretation. If one
forgets their canonical commutation relations, order inθ indicates that the system has a
coherent phase as indicated by (31), which is the signature of superfluidity. On the other
hand order inφ means that the density is a perfectly periodic pattern as canbe seen
from (22). This means that the system of bosons has “crystallized”. As we now see, the
simplicity of this representation in fact allows to solve aninteracting system of bosons
in one dimension.

Physical results and Luttinger liquid

What is the Hamiltonian of the system? Using (31), the kinetic energy becomes

HK ≃
∫

dx
h̄2ρ0

2m
(∇eiθ )(∇e−iθ ) =

∫

dx
h̄2ρ0

2m
(∇θ)2 (32)

which is the part coming from the single-particle operator containing less powers of∇φ
and thus the most relevant. Using (4) and (22), the interaction term becomes

Hint =
∫

dxV0
1

2π2(∇φ)2 (33)

plus higher order operators. Keeping only the above lowest order shows that the Hamil-
tonian of the interacting bosonic system can be rewritten as

H =
h̄

2π

∫

dx[
uK

h̄2 (πΠ(x))2+
u
K

(∇φ(x))2] (34)

where I have put back thēh for completeness. This leads to the action

S/h̄ =
1

2πK

∫

dx dτ[
1
u
(∂τφ)2+u(∂xφ(x))2] (35)

This hamiltonian is a standard sound wave one. The fluctuation of the phaseφ represent
the “phonon” modes of the density wave as given by (22). One immediately sees that
this action leads to a dispersion relation,ω2 = u2k2, i.e. to a linear spectrum.u is the
velocity of the excitations.K is a dimensionless parameter whose role will be apparent
below. The parametersu andK are used to parameterize the two coefficients in front of
the two operators. In the above expressions they are given by

uK =
πh̄ρ0

m
u
K

=
V0

h̄π

(36)
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This shows that for weak interactionsu ∝ (ρ0V0)
1/2 while K ∝ (ρ0/V0)

1/2. In establish-
ing the above expressions we have thrown away the higher order operators, that are less
relevant. The important point is that these higher order terms will not change the form
of the Hamiltonian (like making cross terms betweenφ and θ appears etc.) butonly
renormalize the coefficientsu andK (for more details see [9]). For galilean invariant
system the first relation is exactly satisfied regardless of the strength of the interaction
[29, 30, 9].

The low-energy properties of interacting bosons are thus described by an Hamilto-
nian of the form (34)providedthe properu andK are used. These two coefficientsto-
tally characterize the low-energy properties of massless one-dimensional systems. The
bosonic representation and Hamiltonian (34) play the same role for one-dimensional
systems than the Fermi liquid theory plays for higher-dimensional systems. It is an ef-
fective low-energy theory that is the fixed point of any massless phase, regardless of the
precise form of the microscopic Hamiltonian. This theory, which is known as Luttinger
liquid theory [31, 29], depends only on the two parametersu andK. Provided that the
correct value of these parameters are used,all asymptotic properties of the correlation
functions of the system then can be obtainedexactlyusing (22) and (24).

In the absence of a good perturbation theory (e.g. in the interaction) such as (36),
it is difficult to compute these coefficients. One has two waysof proceeding. Either
one is attached to a particular microscopic model (such as the Bose-Hubbard model for
example). In which case the Luttinger liquid coefficientsu andK are functions of the
microscopic parameters. One thus just needs two relations involving these coefficients
that can be computed with the microscopic model and determine these coefficients, thus
allowing to computeall correlation functions. How to do that depends on taste andin-
tegrability or not of the model. If the model is integrable byBethe-ansatz such as the
Lieb-Liniger model one computes thermodynamics from BA andobtainsu andK that
way [29, 30]. If the model is not exactly solvable one can still use numerics such as
exact diagonalization, monte-carlo or DMRG technique to compute these coefficients.
Because they can be extracted from thermodynamic quantities, their determination suf-
fers usually from very little finite size effects compared toa direct calculation of the
correlation functions. The Luttinger liquid theory thus provides, coupled with the nu-
merics, an incredibly accurate way to compute correlationsand physical properties of a
system. For more details on the various procedures and models see [9].

But, of course, a much more important use of Luttinger liquidtheory is to justify the
use of the boson Hamiltonian and fermion–boson relations asstarting points for any
microscopic model. The Luttinger parameters then become some effective parameters.
They can be taken as input, based on general rules (e.g. for bosonsK = ∞ for non
interacting bosons andK decreases as the repulsion increases, for other general rules
see [9]), without any reference to a particular microscopicmodel. This removes part of
the caricatural aspects of any modelization of a true experimental system. This use of
the Luttinger liquid is reminiscent of the one made of Fermi liquid theory. Very often
calculations are performed in solids starting from ‘free’ electrons and adding important
perturbations (such as the BCS attractive interaction to obtain superconductivity). The
justification of such a procedure is rooted in the Fermi liquid theory, where one does not
deal with ‘real’ electrons but with the quasiparticles, which are intrinsically fermionic in
nature. The massmand the Fermi velocityvF are then some parameters. The calculations
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in d = 1 proceed in the same spirit with the Luttinger liquid replacing the Fermi liquid.
The Luttinger liquid theory is thus an invaluable tool to tackle the effect of perturbations
on an interacting one-dimensional electron gas (such as theeffect of lattice, impurities,
coupling between chains, etc.). I will illustrate such use in the following sections, taking
as examples the effects of a periodic potential and a disordered one.

Let us now examine in details the physical properties of sucha Luttinger liquid. For
this we need the correlation functions. I briefly show here how to compute them using the
standard operator technique. More detailed calculations and functional integral methods
are given in [9]. A building block to compute the various observables is

Gφφ (x,τ) = 〈Tτ [φ(x,τ)−φ(0,0)]2〉 (37)

whereTτ is the standard time ordering operator, andτ the imaginary time [32]. We
absorb the factorK in the Hamiltonian by rescaling the fields (this preserves the com-
mutation relation)

φ =
√

Kφ̃

θ =
1√
K

θ̃
(38)

The fieldsφ̃ and θ̃ can be expressed in terms of bosons operator[bq,b
†
q′] = δq,q′ . This

ensures that their canonical commutation relations are satisfied. One has

φ(x) = − iπ
L ∑

p6=0

(

L|p|
2π

)1/2 1
p

e−α|p|/2−ipx(b†
p+b−p)

θ(x) =
iπ
L ∑

p6=0

(

L|p|
2π

)1/2 1
|p|e

−α|p|/2−ipx(b†
p−b−p)

(39)

whereL is the size of the system andα a short distance cutoff (of the order of the inter-
particle distance) needed to regularize the theory at shortscales. The above expressions
are in fact slightly simplified and zero modes should also be incorporated [9]. This will
not affect the remaining of this section and the calculationof the correlation functions.

It is easy to check by a direct substitution of (39) in (34) that Hamiltonian (34) with
K = 1 is simply

H̃ = ∑
p6=0

u|p|b†
pbp (40)

The time dependence of the field can now be easily computed from (40) and (39). This
gives

φ(x,τ) = − iπ
L ∑

p6=0

(

L|p|
2π

)1/2 1
p

e−α|p|/2−ipx(b†
peu|p|τ +b−pe−u|p|τ) (41)
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The correlation function (37) thus becomes

Gφφ (x,τ) = K〈Tτ [φ̃(x,τ)− φ̃(0,0)]2〉0

= 2K[〈φ̃(0,0)φ̃(0,0)〉0−Y(τ)〈φ̃(x,τ)φ̃(0,0)〉0

−Y(−τ)〈φ̃(0,0)φ̃(x,τ)〉0] (42)

whereY is the step function. One then plugs (41) in (42). The calculation is thus reduced
to the averages of factors such as

〈b†
pbp′〉0 = δp,p′ fB(εp = u|p|) (43)

and factors such asbb† = 1−b†b that can be easily reduced to the above form.fB is the
standard Bose factor. AtT = 0 sinceεp > 0 (remember thatp 6= 0 for the bosons modes)
fB(εq) = 0. Thus, (42) becomes (taking the standard limitL → ∞)

Gφφ (x,τ) = K
∫ ∞

0

dp
p

e−α p[1−e−u|τ|pcos(px)]

=
K
2

log

[

x2 +(u|τ|+α)2

α2

]

(44)

Thus, up to the small cutoffα, this is essentially log(r) wherer is the distance in space–
time. This invariance by rotation in space–time reflects theLorentz invariance of the
action. One can introduce

r =
√

x2 +y2
α

yα = uτ +αSign(τ)
(45)

The same calculation withθ instead ofφ gives exactly the same result with 1/K instead
of K. One can either do it directly or notice that the Hamiltonianis invariant byφ → θ
andK → 1/K. The above calculations have been performed at zero temperature. It is
easy to obtain the correlation at finite temperature using the same methods. It can also
be derived using the conformal invariance of the theory. Such conformal invariance can
also be nicely used to obtain the correlations for systems offinite size [33, 30]. Other
correlations and further details can be found in [9].

In order to compute physical observable we need to get correlations of exponentials
of the fieldsφ andθ . To do so one simply uses that for an operatorA that is linear in
terms of boson fields and a quadratic Hamiltonian one has

〈TτeA〉 = e
1
2〈TτA2〉 (46)

Thus, for example

〈Tτei2φ(x,τ)e−i2φ(0,0)〉 = e−2〈Tτ [φ(x,τ)−φ(0,0)]2〉

= e−2Gφφ (x,τ) (47)
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FIGURE 3. The densityρ(x) can be decomposed in components varying with different Fourier
wavevectors. The characteristic scale to separate these modes is the inter particle distance. Only the two
lowest harmonics are represented here. Although they have very different spatial variations both these
modes depends on thesamesmooth fieldφ(x). (a) the smooth variations of the density at lengthscale larger
than the lattice spacing. These are simply−∇φ(x)/π . (b) The density wave corresponding to oscillations
of the density at a wavevectorQ = 2πρ0. These modes correspond to the operatorei±2φ(x).

If we want to compute the fluctuations of the density

〈Tτρ(x,τ)ρ(0)〉 (48)

we obtain, using (22)

〈Tτρ(x,τ)ρ(0)〉 = ρ2
0 +

K
2π2

y2
α −x2

(x2+y2
α)2 +ρ2

0A2cos(2πρ0x)
(α

r

)2K

+ρ2
0A4 cos(4πρ0x)

(α
r

)8K
+ · · · (49)

Here, the lowest distance in the theory isα ∼ ρ−1
0 . The amplitudesAi are non-universal

objects. They depend on the precise microscopic model, and even on the parameters
of the model. Contrary to the amplitudesAn, which depend on the precise microscopic
model, the power-law decay of the various terms areuniversal. They all depend on
the unique Luttinger coefficientK. Physically the interpretation of the above formula is
that the density of particles has fluctuations that can be sorted compared to the average
distance between particlesα ∼ d = ρ−1

0 . This is shown on Fig. 3. The fluctuations of
long wavelength decay with a universal power law. These fluctuations correspond to the
hydrodynamic modes of the interacting boson fluid. The fact that their fluctuation decay
very slowly is the signature that there are massless modes present. This corresponds to
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the sound waves of density described by (34). However the density of particles has also
higher fourier harmonics. The corresponding fluctuations also decay very slowly but this
time with a non-universal exponent that is controlled by theLL parameterK. This is also
the signature of the presence of a continuum of gapless modes, that exists for Fourier
components aroundQ = 2nπρ0 as shown in Fig. 3. In the Tonks-Girardeau limit, this
mode is simply the low energy mode corresponding to transferring one fermion from
one side of the Fermi surface to the other, leading to a 2kF momentum transfer. In
higher dimensions and with a true condensate such a gapless mode would not exist,
and only the modes close toq∼ 0 would remain (the Goldstone modes corresponding
to the phase fluctuations). The other gapless mode is thus theequivalent of the roton
minimum that only exists at a finite energy in high dimensionsbut would be pushed to
zero energy in a one dimensional situation [34, 35, 36]. As wediscussed the coefficient
K goes to infinity when the interaction goes to zero which meansthat the correlations in
the density decays increasingly faster with smaller interactions. This is consistent with
the idea that the system becoming more and more superfluid smears more and more its
density fluctuations.

Let us now turn to the single particle correlation function

G(x,τ) = 〈Tτψ(x,τ)ψ†(0,0)〉 (50)

At equal time this correlation function is a direct measure on whether a true condensate
exists in the system. Its Fourier transform is the occupation factorn(k). In presence of a
true condensate, this correlation function tends toG(x→ ∞,τ = 0) → |ψ0|2 the square
of the order parameterψ0 = 〈ψ(x,τ)〉 when there is superfluidity. Its Fourier transform
is a delta function atq = 0, as shown in Fig. 4. In one dimension, no condensate can
exist since it is impossible to break a continuous symmetry even at zero temperature, so
this correlation must always go to zero for large space or time separation. Using (31)
the correlation function can easily be computed. Keeping only the most relevant term
(p = 0) leads to (I have also put back the density result for comparison)

〈Tτψ(r)ψ†(0)〉 = A1

(α
r

)
1

2K
+ · · ·

〈Tτρ(r)ρ(0)〉 = ρ2
0 +

K
2π2

y2
α −x2

(y2
α +x2)2 +A3cos(2πρ0x)

(

1
r

)2K

+ · · ·
(51)

where theAi are the non-universal amplitudes. For the non-interactingsystemK = ∞
and we recover that the system possesses off-diagonal long-range order since the single-
particle Green’s function does not decay with distance. Thesystem has condensed
in the q = 0 state. As the repulsion increases (K decreases), the correlation function
decays faster and the system has less and less tendency towards superconductivity. The
occupation factorn(k) has thus no delta function divergence but a power law one, as
shown in Fig. 4. Note that the presence of the condensate or not is not directly linked to
the question of superfluidity. The fact that the system is a Luttinger liquid with a finite
velocityu, implies that in one dimension an interacting boson system has always a linear
spectrumω = uk, contrary to a free boson system whereω ∝ k2. Such a system is thus
a true superfluid atT = 0 since superfluidity is the consequence of the linear spectrum
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FIGURE 4. Momentum distributionn(k) for the bosons as a function of the momentumk. (left) For
non-interacting bosons all bosons are ink = 0 state, thusn(k) ∝ δ (k) (thick line). (right) As soon as
interactions are introduced a true condensate cannot exist. The δ function is replaced by a power law
divergence with an exponentν = 1− 1/(2K) (solid line). In a Mott insulating phase or a Bose glass
phase, the superfluid correlation functions decay exponentially leading to a rounding of the divergence
and a lorentzian like shape forn(k). This is indicated by the dashed line.

[37]. Note that of course when the interaction tends to zerou → 0 as it should to give
back the quadratic dispersion of free bosons.

An even better criterion for the occurrence of superfluidityor other ordered phases
is provided by the susceptibilities. They are the Fourier transforms of the correlation
functions

χ(ωn,k) =

∫

dxdτχ(x,τ) (52)

It is easy to see by simple dimensional analysis that if the correlation decays as a pow-
erlaw χ(r) ∼ (1/r)µ then the susceptibility behaves as max(ω,k,T)µ−2. The suscep-
tibilities give direct indications on the phase that the system would tend to realize, if
many chains were put together and coupled by a mean-field interaction. An RPA calcu-
lation would then directly lead to the stabilization of three dimensional order, stabilizing
the phase with the most divergent susceptibility. From (51)the charge and superfluid
susceptibilities diverge as

χρ = T2−2K

χψ = T2− 1
2K

(53)

This leads thus to the “phase diagram” of Fig. 5. Let me again emphasize that there
is no true long range order in the system but only algebraically decaying correlations.
Such a phase diagram indicates the dominant tendency of the system. Note also that
the superfluid susceptibility isnot identical ton(k), since this one only contains the
correlation at equal time. Its divergence is different and,as shown in Fig. 4 is given by

n(k) ∝ k
1

2K−1 (54)
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FIGURE 5. “Phase diagram” for (incommensurate) one-dimensional bosons, as a function of the pa-
rameterK. The phase indicated corresponds to the most divergent susceptibility, while a phase in paren-
thesis corresponds to a subdominant divergence. The valueK = 1 corresponds to the Tonks-Girardeau
limit where the bosons are hard core and behave very similarly to spinless fermions. The region where
n(k) has a singularity atk = 0 is indicated on the bottom graph.

As we already discussed, for a purely local interaction, when the repulsion becomes
infinite the system becomes equivalent to free spinless fermions. Indeed two particles
cannot be on the same site and the particles are totally free except for this constraint. In
that case the decay of the density (51) should be the one of free fermions, i.e. 1/r2. This
can be realized ifK = 1. Note that the Green function of the bosonsdoes notbecome the
correlation function of spinless fermions since they stillrepresent different statistics. In
particular the boson correlation function still diverges at k = 0 even in the TG limit. In
that limit sinceK = 1 then(k) has a square root divergence. For a purely local repulsion,
K = 1 is the minimal value thatK can reach. Of course, longer range repulsion between
bosons can make the system reach smaller values ofK. More details and mapping on
other systems (classical and quantum such as spin chains) can be found in [9]. Testing
these predictions in cold atomic systems is complicated by the presence of the harmonic
trap [21, 22, 23, 38]

MOTT TRANSITION

Basic Ideas

Let us now investigate the effects of a lattice on such a bosonic system [29, 39, 40,
41, 42, 43]. For noninteracting bosons the lattice just provides a renormalization of
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FIGURE 6. (a) If there is one particle per lattice site and the repulsion among particles is strong, a plane
wave state for the particles is energetically unfavorable since the density is uniform. It is better to localize
the particles on each site. Such a state is a Mott insulator since hopping would cost an energy of the order
of the interactionU among particles. (b) If the system is doped the extra particles or holes can propagate
without any energy cost from the interactions and gain some kinetic energy∼ t. The system is then in
general superfluid again.

the kinetic energy as shown in (14). When interactions are present, a lattice leads to
a radically new physics. In particular when the density of carriers is commensurate with
the lattice, another interaction induced phenomenon occurs. In that case the system can
become an insulator. This is the mechanism known as Mott transition [44, 45], and is
a metal-insulator transition induced by the interactions.The physics of a Mott insulator
is well-known and illustrated in Fig. 6. If the repulsionU among the particles is much
larger than the kinetic energyt, then the plane wave state is not very favorable since it
leads to a uniform density where particles experience the maximum repulsion. It is more
favorable to localize the particles on the lattice sites to minimize the repulsion and the
system is an insulator for one particle per site. If the system is weakly doped compared to
a state with one particle per site the holes can propagate without experiencing repulsion,
the system is thus in general a superfluid again but with a number of carriers proportional
to the doping. The above argument shows that, in high dimensions, one usually needs a
finite (and in general of the order of the kinetic energy) repulsion to reach that state. For
further details on the Mott transition in higher dimension see [46, 47]. It is important
to note that one particle per site is not the only commensurate filling where one can in
principle get a Mott insulator, but that every commensuratefilling can work, in principle,
depending on the interactions. This is illustrated in Fig. 7. It is indeed easy to see that
for large enough onsite (U ) and nearest neighbor (V) repulsion a quarter-filled system is
an ordered Mott insulator. As I will discuss in more details below, and as is clear from
Fig. 7, in order to stabilize a structure with a certain spacing between the particles one
needs interactions that can reach at least to such a distance. In particular for cold atoms,
since the interactions are mostly local, one can expect a Mott insulator to be possible for
one (or any integer) number of fermions per site. Other insulating phases (1 boson each
two sites etc.) would need longer range interactions.

To study the Mott transition, we thus consider the application of a periodic potential
of period wavevectorQ = 2π/a. This can be realized by taking

VL(x) = ∑
n

V0
n cos(Qnx) (55)
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FIGURE 7. (a) In a model with onsite interactions (U) a Mott insulator only exists for one particle per
site. (b) Nearest neighbor interactionsV can stabilize the insulating state for up to one particle every two
sites. And so on with longer ranger interactions. The longerthe range of the interaction, the higher the
commensurability for which one can have a Mott insulator provided the interactions are large enough.

In fact in cold atomic gases it is easy to realize systems withonly one harmonic as
was shown in (10). In that casen = 1 is the only existing Fourier component. In the
lattice potential is very large, then as we already discussed the kinetic energy gets very
small and one has a rather trivial insulating case. In the Bose-Hubbard language this
corresponds to the limitU ≫ t. The particles are nearly “classically” localized. The case
where either the lattice or the interactions are small is much more subtle.

Bosonization solution

Using (55) and the expression (22) for the density, we see that terms such as
∫

dxei(Qn−2pπρ0)xe−i2pφ(x) (56)

appear. Because the fieldφ(x) is a smooth field varying slowly at the scale of the
interparticle distance, if oscillating terms remain in theintegral they will average out
leading to a negligible contribution. The corresponding operator would then disappear
from the Hamiltonian. In order for such terms to be relevant,one needs to have no
oscillating terms in (56). This occurs if

nQ= 2πρ0p (57)

If we useρ0 = 1/d whered is the distance between particles one has

nd = pa (58)

The corresponding term contributing to the Hamiltonian is

HL ∝ V0
n

∫

dx cos(2pφ(x)) (59)
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The periodic potential has thus changed for commensurate fillings the simple quadratic
hamiltonian (34) of the Luttinger liquid into a sine-GordonHamiltonian (34) plus (59).
This sine-Gordon Hamiltonian describes in fact in one dimension the physics of any
Mott transition [9].

Although the term (59) has been derived here for a weak potential, it appears also
in the opposite limit of a strong barrier if the filling is commensurate, showing that the
two limits are in fact smoothly connected. Indeed if one starts from the Bose-Hubbard
model, the lattice potentialVL is not present anymore, but the position of the particles is
quantizedx j = ja where j is an integer. It means that when one writes the interaction
term one should pay special attention to this when going to the continuum limit. The
fields φ are smooth so for them one hasφ(x j) → φ(x) and one can take for them the
continuum limit. This is not the case for the oscillating factors in (22). Such terms are of
the forme2pπρ0x j . Sinceρ0 = 1/a they oscillate fast and replacingx j → is impossible in
such terms. If one was simply doing it, the fact that the oscillating factors should vanish
in order to avoid the integral overx to be killed would impose for the interaction term

U ∑
j

n j(n j −1) →Uρ2
0a

∫

dx∑
p,p′

ei(p+p′)2πρ0xe−i2(p+p′)φ(x) (60)

to choose oppositep = −p′ in (22) for each of the densities. This is the normal interac-
tion, that conserves the total momentum of the particles. However due to the discreteness
of x j other terms are possible. Let us choose for one densityp = 0 (n j → ρ0) and for the
other one keep the term withp. Then the interaction term becomes

Ua2ρ2
0 ∑

j
e2pπρ0x j e−i2pφ(x j ) →Ua2ρ2

0 ∑
j

e2pπρ0x j e−i2pφ(x) (61)

Now normally such terms would be killed by the oscillating factor, but if 2pπρ0a= 2πn
then the exponential term is always one, and the corresponding interaction remains in
the continuum limit

Uρ2
0a

∫

dxe−i2pφ(x) (62)

which is exactly the same condition and operator than the ones leading to (59). On a
physical basis, these interactions, known as the umklapp process [48], do not conserve
the momentum. However on a lattice momentum needs only to be conserved modulo
one vector of the reciprocal lattice, the extra momentum being transferred as a whole
to the periodic structure. Note that the main difference between the weak and strong
lattices is the strength of this umklapp process. For the weak lattice (59) the strength
of the umklapp is simply the amplitude of the periodic potential. For very large lattice,
the umklapp strength becomes now proportional to the interactionU . Of course such a
representation works if the interaction remains reasonably weak compared to the kinetic
energyt, otherwise the amplitudes of the operators cannot be determined directly as
discussed above.

Doping causes a slight deviation from the condition (58). This can be seen in two
ways. The simplest is to use the fact that the density is slightly different than the
commensurate density that leads to the relation (59). Part of the oscillating term remain,
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but if the deviation is quite small these oscillations will only be important at very large
lengthscales. One should thus keep the corresponding term.In that case the umklapp
term (61) becomes

Hu = gu

∫

dx cos(2pφ(x)−δx) (63)

wherep is the order of the commensurability andδ is the doping, i.e. the deviation of the
density from the commensurate value. Another way to recoverthis result is to start from
the commensurate case and apply a chemical potential. Usingthe boson representation
(22) the chemical potential term becomes

µ0

∫

dx
1
π

∇φ(x) (64)

The chemical potential can be absorbed by a redefinition of the fieldφ . Introducing

φ̃(x) = φ(x)+
K
u

µ0x

θ̃(x) = θ(x)
(65)

the Hamiltonian is now quadratic again iñφ while the commensurate umklapp (58) is
now changed into (63). We see again that an incommensurate filling is washing out
the cosine, therefore leading back to a Luttinger liquid state. However if the deviations
from commensurability are small the doping is only acting for lengthscales larger than
1/δ that can be quite large compared to the lattice spacing. Thisleads to an interesting
physics that I examine below. For more details on the Mott transition and the difference
between working with a fixed density and a fixed chemical potential see [9]. The Hamil-
tonian (63) thus provides a complete description of the Motttransition and the Mott
insulating state in one dimension. To change the physical properties of a commensurate
system one has thus two control parameters. One can vary the strength of the interactions
while staying at commensurate filling, or vary the chemical potential (or filling) while
keeping the interactions constant. One can thus expect two different classes of transition
to occur.

Let us first deal with the transition where the filling is kept commensurate and in-
teraction strength is varied (Mott-U transition). In that caseδ = 0 and (63) is just a
sine-Gordon Hamiltonian. As is well known this Hamiltonianhas a quantum phase tran-
sition atT = 0 as a function of the Luttinger parameterK, and thus as a function of
the strength (and range) of the interactions. This transition is a Berezinskii–Kosterlitz–
Thouless (BKT) transition [49]. I will not explain here how to analyze such a transition,
but simply remind how one can get renormalization equationsgiving the phase diagram.
The idea is to vary the cutoffα of the theory to eliminate short distance degrees of free-
dom, and capture the large distance physics. Parametrizingthe cutoff asα(l) = αel one
can establish how the parameters in the Hamiltonian must vary whenl is varied in order
to keep the long distance physics invariant. The renormalization equations forK and the
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strength of the umklapp term (59) are

dK
dl

= − p2K2

8πα2u
(V0

n )2

dV0
n

dl
= (2− p2K)V0

n

(66)

The second equation can be understood by looking at the scaling dimension of the
second order perturbation theory in (59). Such a term behaves as

(V0
n )2

∫

dxdτ
∫

dx′dτ ′〈Tτei2pφ(x,τ)e−i2pφ(x,τ)〉 (67)

Using the fact that the correlation decay as a power law with an exponent 2p2K the
scaling dimension of this integral isL4−2p2K . Such dimension leads directly to the second
equation in (66). The first equation is more subtle to obtain [9]. Clearly these equations
define two regions of parameters. IfK is large,V0

n decrease whenl increases which
means that the periodic potential is less and less important. On the contrary, ifK is
small,V0

n increases and the cosine terms is more and more relevant in the Hamiltonian.
The critical value isKc = 2/p2 wherep is the order of the commensurability. For larger
values ofK the cosine is irrelevant and the system is massless. ForK < Kc the cosine
is relevant and the system is massive. This opening of a gap corresponds to the Mott
transition and the system becomes an insulator. The larger the commensurability the
smallerK needs to be for the system to become insulating. From (58) we see that for
the bosonsp = 1 corresponds to a commensurability of one (or 2, 3, ..., which would
correspond to highern) boson per site (n = 1). This is shown in Fig. 8. In that case the
critical value isKc = 2, which corresponds to strong but finite repulsion. This means that,
contrarily to the higher dimensional case above a certain threshold ofinteractionseven
aarbitrary weaklattice will lead to a Mott insulator. This is a very surprising result, and
quite different from our intuition or the behavior in higherdimension where one only
gets a Mott insulator when the kinetic energy is small. For one boson each two sites one
hasp = 2 as shown in Fig. 8. The critical value isKc = 1/2. As discussed this cannot
be reached for a local interactions, but nearest neighbor repulsion allows to reach this
value and to get a Mott phase. Since for local interactions 1≤ K < ∞, one recovers,
directly from the Luttinger theory the argument that one cannot obtain an ordered phase
with a separation of the particles larger than the range of the interaction. The critical
properties of the transitions are the ones of the BKT transition: K jumps discontinuously
from the universal valueKc at the transition in the superfluid (non-gapped) regime to
zero in the Mott phase (since there is a gap). Since the velocity is not renormalized it
means using that the compressibility goes to a constant at the transition and then drops
discontinuously to zero inside the Mott phase. A summary of the critical properties
of the Mott transition is given in Fig. 9. In the Mott phase thesingle-particle Green’s
function decays exponentially since the fieldθ is dual to the fieldφ which is ordered.
The characteristic length of decay isξ = u/∆ where∆ is the Mott gap. At the transition
the single-particle Green’s function decays with auniversalexponent 1/(2Kc) (1/4 for
one boson per site, 1 for one boson every two sites, etc.). Note that in the LL phase the
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FIGURE 8. Commensurabilities for the boson system. (Bottom) Bosons in the continuum. The lattice
is reintroduced as a periodic potential. (Top) The bosons are defined directly on a lattice. The two
descriptions lead to the same physics. (a) A commensurability of one boson per site. For the periodic
potential it means that the density modulation has the same period than the external periodic potential.
This is the only insulating phase that can be stabilized withlocal interactions. (b) A commensurability of
one boson every two sites. In that case the period of the density modulation is twice the one of the external
potential.

system is a perfect conductor (superfluid). A measure is given by the charge stiffness
that is the Drude part of the conductivityσ(ω) = Dδ (ω). A finite charge stiffness
means thus a perfect conductor for dc transport. The charge stiffness of the LL is finite
D = ucKc. It jumps discontinuously to zero at the Mott-U transition. In the Mott phase,
the system is incompressible. For more details see [9].

Let me briefly comment on the physics of the doped system (Mott-δ transition) [50].
As can be seen from (63) the doping destroys the cosine and thus the Mott phase. It
is clear that the oscillating term will kill the cosine at a lengthscale of order 1/δ . One
has the competition between two terms: the cosine that wouldlike to keepφ as constant
as possible and the doping (or the chemical potential) that would like to tilt φ so that
φ = Kµ0x/u as can be seen from (64). The way this competition takes placeis not to
give an homogeneous slope toφ , but to keepφ commensurate (i.e. locked into one of the
minima of the cosine) over a region of order 1/δ and then create a soliton connecting two
adjacent minima of the cosine. This is shown in Fig. 10. Thesesolitons act in fact like
spinless fermions with some interaction between them. Thiscan be seen by mapping
the sine-Gordon Hamiltonian (34) plus (63) to a spinless fermion model (known as
massive Thiring model [9]). The remarkable fact is thatcloseto the Mott-δ transition
the solitons become non-interacting, and one is simply led to a simple semi-conductor
picture of two bands separated by a gap (see Fig. 10). The Mott-δ transition is thus of
the commensurate-incommensurate type [51, 52, 53, 54]. This image has to be used with
caution since the solitons are only non-interacting for infinitesimal doping (or for a very
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FIGURE 9. Phase diagram close to a commensurability of orderp (p = 1 for one boson per site and
p = 2 for one boson every two sites). Int denotes a general (that is, not necessarily local) repulsive
interaction.µ is the chemical potential,δ the doping and∆ the Mott gap. MI and LL are respectively
the Mott insulator the Luttinger liquid (massless) phases.The critical exponentKc and velocityuc at the
transition depend on whether it is a Mott-U or Mott-δ transition. (After [42].)

FIGURE 10. Profile of the fieldφ(x) in presence of a commensurate potential and a finite dopingδ .
In the absence of commensurate potential the doping would impose a slopeφ(x) = δx (dashed line).
In the presence of the commensurate potential cos(2φ(x)) it is more favorable energetically to maintain
commensurability as much as possible and to proceed from oneof the minima of the cosine to the next by
making a soliton (full line). The size of such solitons isξ ∝ u/∆ where∆ is the Mott gap. These soliton
behave for very small doping as spinless fermions.
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special value of the initial interaction) and has to be supplemented by other techniques
[50]. Nevertheless it provides a very appealing description of the excitations and a
good guide to understand the phase diagram and transport properties. The transition
by varying the chemical potential occurs when the chemical potential equals the charge
gap. The density in the incommensurate phase varies asn∼ (µ −µc)

1/2 . Theuniversal
(independent of the interactions) value of the exponentsKδ

c = 1/p2 is half of the one
of Mott-U transition, as shown in Fig. 9. Since at the Mott-δ transition the chemical
potential is at the bottom of a band the velocity goes to zero with doping. This leads to
a continuous vanishing of the charge stiffnessD ∼ δ/∆ whereδ is the doping and∆ the
Mott gap and a divergent compressibility. For more details see [9].

Extensions

As we saw in the previous section, the fact that interactionsare able to lead to a Mott
insulator phase has several important consequences. We have now a fairly good under-
standing of the properties of this phase in the pure and homogeneous one dimensional
case. There are of course many open questions and active research subjects connected to
this problem. There are too numerous to be all mentioned here, so I will simply briefly
mention two of them.

First, in cold atomic gases, in addition to the optical lattice there is usually the har-
monic confining potential (7). As was already discussed, it acts as a chemical potential.
The density is thus non-uniform, and there is thus no meaningas looking at the system as
wholly in a commensurate Mott state or not. However as we saw,upon small doping, a
Mott insulator prefers to keep the commensurability as muchas possible and makes dis-
comensurations between two commensurate regions. In presence of the trap one can thus
expect a similar behavior, and to have sequences of incommensurate regions separated
by commensurate ones. How these regions are organized is an interesting question, that
has been intensely studied [55, 56, 57, 58, 59]. Another important question connected to
this problem is how to probe for the existence of such an insulating state. As discussed
before measuring the momentum distributionn(k) gives direct information, since it has
a divergence atq = 0 for a superfluid phase and none in the insulating one [18, 21,60].
However,n(k) is only providing limited information, and would also be much less in-
formative in the case of fermion where one has essentially a broadened step at the Fermi
energy regardless of whether the system is superconductingor insulating. It is thus im-
portant to study other probes of the Mott phase such as noise [61, 62] or shaking of
the lattice [21, 63]. Understanding the physics of such shaken lattices is an interesting
problem for which I refer the reader to the literature [64, 65, 35, 66].

Another interesting class of problems is to determine how the 1D Mott insulating
properties can affect the physics of the system when there isnot a single chain but
many chains coupled together. More generally it is important to determine how the one-
dimensional physics is changed when one goes from a purely one-dimensional system
to a two- or three-dimensional situation. Such a crossover between the one dimensional
properties and the three dimensional ones is particularly important since many systems
are made of coupled one dimensional chains [9, 67]. Cold atomic systems provide a very

Strong correlations in low dimensional systems February 4,2008 25



controlled way to probe for such a physics, since it is possible to control the strength of
the optical lattice in each direction.

If the transverse optical lattice is large it can be treated by the same tight binding
approximation than the one leading to (12). The most important term describing the
coupling between the chains is the interchain tunnelling traducing the fact that single
particles are able to hop from one chain to the next

H⊥ = −
∫

dx ∑
〈µ,ν〉

t⊥,µ,ν [ψ†
µ(x)ψν(x)+h.c.] (68)

where〈µ,ν〉 denotes a pair of chains, andt⊥,µ,ν is the hopping integral between these
two chains. These hopping integrals are of course directly determined by the overlap of
the orbitals of the various chains. In addition to the singleparticle hopping, there are
of course also in principle direct interactions terms between the chains. Such terms can
be density-density or spin-spin exchange. However they areeasy to treat using mean
field approximation. For example a spin-spin termSµSν can be viewed, in a mean field
approximation, as an effective ‘classical’ field acting on chainν: SµSν →〈Sµ〉Sν . Thus,
at least for an infinite number of chains for which one could expect a mean field approach
to be qualitatively correct, the physics of such a term is transparent: it pushes the system
to an ordered state. Note that for cold atoms since the interactions are short range such
terms do not normally exist and (68) is the only term couplingthe chains. For other cases
see [9].

The single particle hopping is more subtle to treat. For fermions no mean field
description is possible since a single fermion operator hasno classical limit. It is thus
impossible to approximateψ†

µ(x)ψν(x) as〈ψ†
µ(x)〉ψν(x), which makes the solution of

the problem of coupled chains quite complicated [68, 69, 70,71]. For bosons one is in a
slightly better situation since the single boson operator has a mean field value. However
even in that case there is a direct competition between this interchain hopping that would
like to stabilize a three dimensional superfluid phase and the 1D Mott insulating term that
would favor an insulating state. As a function of the strength of the interchain hopping
there is thus a deconfinement transition where the system goes from a 1D insulator made
of essentially uncoupled chains, to a an anisotropic 3D superfluid. Such a transition
has been studied both theoretically [72, 36] and experimentally [21, 73] and i refer the
reader to these references for more details. Quite generally such a transition is relevant
in various other type of systems as well [9, 67].

DISORDER EFFECTS: BOSE GLASS

We have examined in the previous section the effects of a periodic potential on an
interacting bosonic system. Another important class of potential, leading to radically
new physics, is the case of a disordered potential. Here again the bosonization solution
is a powerful tool to tackle this problem.
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FIGURE 11. (a) A classical particle of energyE smaller than the disorderV(x) at a given point is
totally blocked. (b) A quantum mechanical system of the sameenergy can pass through the barrier by
tunnel effect. One could therefore naively think that quantum systems are much less localized by disorder
than their classical equivalents. In fact it is exactly the contrary that happens.

Disorder in quantum systems

Disorder for quantum problems is a longstanding problem. Incondensed matter, some
level of disorder is unavoidable, and it is thus necessary todeal with it. The naive
expectation is to think that the disorder will have weaker effects for a quantum system
than for a classical one. Indeed, as shown in Fig. 11 one can imagine that waves in a
quantum system have more ease to pass the barriers induced bythe disorder since they
can use tunnel effect. It was thus a major surprise when Anderson showed [74] that it was
in fact exactly the opposite effect that occurred for non-interacting quantum particles.
Indeed because of the constructive interferences of two paths that are deduced by time
inversion there is an additional probability for a particleto be backscattered by the
disorder [75]. Loosely speaking one should add the wave functions, and thus squaring
them getting a factor of four, instead of the naive factor of two of two paths that would
not interfere. The main effect is that the wavefunctions of the system, instead of being
plane waves, now decay exponentially in space. This phenomenon, known as Anderson
localization is strongly dependent on dimension. Simple scaling arguments show that
all states should be localized in one and two dimensions [76]. In three dimensions, a
mobility edge in energy exists below which states are localized and above which they
are extended. An important characteristic of such states isthus the localization length
ξ characterizing the spatial decay of the localized states. This phenomenon is now well
understood for noninteracting particles. For Fermions, i.e. electrons is condensed matter,
interactions do exist. However because of the Pauli principle, the important electrons, at
the Fermi level have a large kinetic energyEF . If this energy is large compared to their
interaction it is very reasonable to assume that the noninteracting limit is a good starting
point. Indeed, the corresponding predictions for the localization localization have been
spectacularly confirmed experimentally [75].

Treating the combined effects of interactions and disorderis a particularly challenging
problem, even for fermions. Indeed because of the disorder the motion of the particles
becomes much slower than the one of free particles. From ballistic it becomes diffusive
at best, which means that two particles can spend more time close to each other. There is
thus an extremely strong reinforcement of the interactionsby the disorder [77, 78]. This
leads to singularities and to a physics that is still under debate. Here again the effect
of the dimension is crucial, since the singularities increase with lowering dimension.
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FIGURE 12. A cartoon of free versus interacting bosons in the presence of disorder (represented by the
dashed line). (a) Free boson all condense in a large enough well of the random potential. Since the density
is infinite, this situation is unstable when interactions are added. (b) the repulsion prevents the bosons to
condense in the same site. Their behavior is thus much closerto fermions, where various minima of the
random potential have to be used. Since one can still pile up many bosons in the same minima, the deep
minima of the random potential are well smoothed by the bosons.

One can expect one dimension, where disorder lead to all state being localized and
the interaction leads to the Luttinger liquid state, to be particularly special. I will not
dwell further on this problem here and refer the reader to theabove literature for further
references.

The case of bosons is even more interesting. Indeed in that case the noninteracting
case cannot even be used as a reasonable starting point. To understand this let us simply
look at a disorder that would take two values±V0 on each site. Let us assume that one can
find a region of space of lengthL0, as shown in Fig. 12. Such a region always exists with
a probabilitye−L0/Lc whereLc is the characteristic correlation length of the disorder. The
lowest energy of one boson confined to this region can be readily computed. Because
the boson is confined to a region of sizeL0 its momentum isp∼ π/L0 instead of zero,
since the wavefunction has to essentially vanish at the edges of the region. Thus the total
energy is

∆E =
1

2m

(

π
L0

)2

−V0 (69)

It is thus easy to see that provided thatL0 is large enough this energy is lower than
putting the boson in the lowest plane wave state withp= 0 where the kinetic energy and
average disorder energy would both be zero. Thus one boson will simply go into this
finite size region. But then for noninteracting bosons they all condense in the same state.
For noninteracting bosons, the superfluid is thus destroyedfor arbitrarily weak disorder,
and all the particles go to a region of finite size, forming a puddle. The effect of the
interactions on such a state is of course crucial, since a macroscopic number of particles
N (proportional to the total size of the systemL) condense into a finite size regionL0 the
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density is infinite. Any infinitesimal repulsion makes thus this state unstable. For bosons
one has thus to include interactions from the start to get a meaningful answer.

Disordered interacting bosons

Let us now turn to the problem of such an interacting disordered bosonic gas. In
one dimension this problem was solved in [79]. Building on this microscopic solution
scaling analysis were developped to investigate this question in higher dimensions [39].
Here also the bosonization representation is particularlyuseful to deal with the effects of
disorder on the one-dimensional boson gas. The disorder canbe introduced as a random
potential coupled to the density. For simplicity I stick here to the incommensurate case.
The disorder is

Hdis =

∫

dx V(x)ρ(x) (70)

whereV(x) is a random variable. One should fix the distribution forV(x) which of
course depends on the problem at hand. However if the disorder is weak so that the
characteristics of the boson system vary slowly at the lengthscale of variation of the
disorder, central limit theorem shows that one can approximate the distribution by a
gaussian one. Using the representation (22) of the density one has (keeping only the
lowest, that is, most relevant harmonics)

Hdis =

∫

dx V(x)[−1
π

∇φ(x)+ρ0(e
i(2πρ0x−2φ(x)) +h.c.)] (71)

This expression shows one remarkable fact. Different Fourier components of the disor-
der act quite differently on the density, and it is importantto distinguish these Fourier
components. The natural separation between these different terms is againQ ∼ 2πρ0,
i.e. the average distance between the bosons.

The first term is

H f = −
∫

dx V(x)
1
π

∇φ(x) (72)

since the fieldφ is smooth at the length scale of the distance between particles, this term
couples essentially to the smooth variations of the disorder V(x) varying at a lengthscale
much larger than the distance between particles. Note the analogy with the chemical
potential term (64). This term is analogous so a slowly varying chemical potential. It is
easy to see that this term can be again trivially absorbed [79, 9] in a redefinition of the
field φ by

φ̃(x) = φ(x)+
K
u

∫ x

0
dyV(y) (73)

This means that the smeared densityρ(x) = − 1
π ∇φ(x) follows the variation of the

potential as shown in Fig. 13 Note that the coefficient that relates the change of density
to the change of potential is of course the compressibility of the bosons, which is now
finite due to the interactions. This term is thus a very classical effect where the bosons
go in puddles in the holes of the random potential.
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FIGURE 13. The Fourier component of the random potentialV(x) with wavevector small compared to
the inverse particle distance act as a random chemical potential. This term increases or decreases smoothly
the density. For weak disorder this term does not lead to any localization of the bosons and does not affect
the currents or the superfluid correlations. For the TG limit, it would be the equivalent of the forward
scattering for the Fermions (see text). The density is indicated by the gray area, while a schematic position
of the bosons is given.

The oscillations atq ∼ 2πρ0 of the density are deeply affected. In the pure system
these correlations were decaying as a powerlaw. Now they behave as

〈ei2φ(x,τ)e−i2φ(y,τ ′)〉 → ei 2K
u

∫ x
y dzV(z)〈ei2φ(x,τ)e−i2φ(y,τ ′)〉pure (74)

If one takes a gaussian disorder with a distribution

p(V(x)) ∝ e−D
−1
f

∫

dxV(x)2
(75)

which leads to averages such asV(x)V(x′) = D f δ (x− x′), then the average of the
expression 74) gives

e−
DK2

u2 |x−y|〈ei2φ(x,τ)e−i2φ(y,τ ′)〉pure (76)

leading to an exponential decay of the correlations of the density waves. This is due to
the fact that this disorder introduces a random phase in the position of the oscillations of
the density.

Paradoxically such a term doesnot lead to any localization of the bosons. Indeed if
one computes the current of bosons, it is given byJ = ∂τφ . The transformation (73)
thus leaves the current invariant and identical to the ones of pure bosons. From the
point of view of the transport the system remains a superfluid. Note also that the field
θ is unchanged by the transformation (73), which means that the superfluid correlations
are identical to the ones of the pure system. A particularly transparent interpretation
of this term can be inferred by looking at the TG limit, or simply at the comparison
between the bosonized expressions for the bosons and the spinless fermions systems.
As already noted in the Tonks regime 2πρ0 → 2kF , wherekF is the Fermi wavevector.
Such a disorder thus corresponds toforward scatteringwhere a fermion around±kF
remains around the same point of the Fermi surface. It is now obvious that such a forward
scattering cannot essentially change the current and cannot lead to localization.
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Much more interesting effects arise from the other term, namely

Hdis =
∫

dx V(x)ρ0(e
i(2πρ0x−2φ(x)) +h.c.)] (77)

Becauseφ is a smooth field it is easy to see that this term corresponds now to coupling
of Fourier components of the disorder with components around q ∼ ±2πρ0. One can
thus rewrite

V(x) = ∑
k

Vke
ikx

= ∑
|q|≪Q

VQ+qei(q+Q)x +h.c.

= eiQxξ (x)+h.c. (78)

whereQ = 2πρ0 and the above equation definesξ (x). Contrarily toV(x) ξ (x) is a
smooth field with averages over disorder of the form

ξ (x)ξ ∗(y) = Dbδ (x−y)

ξ (x)ξ (y) = 0
(79)

If ξ (x) was simply constant, (77) would correspond to a commensurate periodic poten-
tial, and one would be back to the case of the Mott transition explained in the previous
section. The fact thatV(x) is random makes the phase of the periodic modulation vary
from different positions. We thus see that for the quantum system of bosons, this com-
ponent of the disorder acts a little bit in a similar way than aperiodic potential, trying
to pin the charge density wave of bosons. However, because ofthese phases fluctuations
the pinning is not perfect and varies from place to place, leading to a distorted charge
modulation. This is shown in Fig. 14. One can also get a simpleinterpretation for this
term by going to the Tonks limit. Indeed in that case this termrepresents a scattering
by the disorder with a momentum close to±2kF . It is thus a backscattering term, where
a right moving fermion is transformed into a left moving one and vice versa. It is thus
clear that such a term affects the current. Exact solutions for noninteracting fermions
indeed shows that this term is the one responsible for Anderson localization.

In order to solve for the generic boson system, we can, as for the Mott transition,
write the renormalization equations for the disorder and the interactions. The procedure
to obtain them is detailed in [79, 9]. One finds.

dK
dl

= −K2

2
D̃b

dD
dl

= (3−2K)D̃b

(80)

whereD̃b = Db/(π2u2ρ0) andDb is the backward scattering.
The phase diagram can be extracted from these equations, exactly in the same spirit

than what was done for the Mott transition in the previous section. The disorder is
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FIGURE 14. The Fourier components of the disorderV(x) with wavevector close toQ = 2πρ0 is the
one responsible for the localization and the formation of the Bose glass. The full line shows the disorder,
while the dashed line would be a periodic potential of wavevectorQ. The disorder matches the periodicity
of the bosons, thus acting in a similar way than a Mott potential, but different portions of the system are
shifted compared to the perfect periodic position. Thus although there is pinning of the bosons, the density
arrangement is not perfect. Note that for this disorder the smeared density at wavelengthes much smaller
thanQ is essentially constant as indicated by the gray box. This mechanism of localization is thus quite
different than the simple formation of puddles of bosons.

irrelevant forK > 3/2, that is, weakly repulsive bosons. One finds a localized phase
for K < 3/2, that is, if the repulsion between the bosons is strong enough. On the
separatrix between the two phases the parameterK takes the universal valueK∗ = 3/2.
Thus, the correlation functions decay withuniversalexponents. For example, the single-
particle correlation function decays with an exponent 1/3. This calculation thus point
out the existence for the bosons of a localized phase. This phase, nicknamed Bose glass,
whose existence can be established microscopically in one dimension [79] has been
generalizable to higher dimensions as well [39]. In one dimension, one can compute the
critical properties of the transition between the superfluid and the Bose glass. I refer the
reader to [79, 9] for more details on that point. In particular the superfluid stiffnessD
jumps discontinuously to zero in the Bose glass phase andD/u = K takes the universal
value 3/2 at the transition. At the transition the disorder is marginal. Because of the
dual nature of the phasesφ andθ the fact that the phaseφ is now pinned means that
the superfluid correlations decay exponentially, with a characteristic length that is the
localization length. One thus expects a lorentzian shape for the n(k) instead of the
divergent powerlaw behavior of a Luttinger liquid. The correlation length diverges at
the transition to the superfluid phase. Other methods can be used to extract information
on the localized phase [80].

This transition from the superfluid to the Bose glass is a direct consequence of the
interaction effects between the bosons. In particular the fact that one has a strongly
correlated system is hidden in the conjugation relation between the phaseφ and θ
which forces the density fluctuations to be directly relatedto the superfluid ones. In
higher dimensions, although the excitations of the superfluid phaseθ can be described
by sound waves, this would not imply much for the fluctuationsof the density. In the
Bose glass phase, the localization is very similar to the onefor spinless fermions. The
bosonic nature of the particles is not so important any more.To summarize, in order
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to be able to observe the localization for quantum interacting bosons, it is important to
fulfill the following conditions

1. Have a disorder with sizeable Fourier component close to the interboson periodic-
ity. Having a too smooth potential is of little help, since itcan lead to some puddle
separation if the disorder is strong but this is a very “classical localization”. The
Bose glass phase can also occur for weak disorder.

2. Have repulsive enough interactions between bosons. IfK < 3/2 even an infinites-
imal disorder is able to localize. Of course one wants the localization length to be
smaller than the size of the system, to observe the localization. The larger the dis-
order, the larger of course the value ofK at which the system localizes. One does
not want to make the disorder too strong though (not strongerthan the chemical
potential) otherwise one is back to the puddle localizationmentioned above.

How to reach such limits in a realistic cold atomic system is of course a very challenging
question. Current system seem not one dimensional enough and/or with too smooth
disorder to be in this quantum limit [81]. One is close however and there is thus little
doubts that such a state will be reached in a near future.

There are many directions in which these questions of disorder acting on bosonic
systems can be further studied. First for the disordered problem numerical studies have
confirmed the analytical predictions and allowed to furtherstudy the phase diagram
directly in terms of the microscopic parameters [40, 82, 83]. It is clear that similar studies
taking into account the peculiarities of the system (trap etc.) would be very interesting
in the context of cold atomic gases.

Second, in the previous section we saw the effect of a periodic potential. We saw that
it is very efficient into opening a gap and leading to a Mott insulating phase, but only if
the filling is commensurate with the periodicity. On the other hand, a random potential
is slightly efficient in giving an insulating phase, but can act regardless of the density
of bosons. A particularly interesting intermediate case isthe case of quasi-periodic po-
tentials. These potentials lead to a new universality classfor the superfluid-insulator
transition [84, 85]. Similarly one expects very interesting effects when combining disor-
der and commensurability [39, 40, 86] or going for more than one bosonic mode inside
the tube. I refer for example the reader to the literature forother examples of interesting
problems such as going to systems of coupled chains [87, 88].It will be very interesting
to see if some of these effects can be directly tested in a coldatomic gas context.

CONCLUSIONS AND PERSPECTIVES

I have shown in these brief notes some of the properties of interacting particles in one
dimension. I have focussed principally on interacting one dimensional bosons. Many
more examples both on bosons and on other systems can be foundin [9]. Among the
many efficient methods both analytical and numerical to tackle one dimensional systems,
I have chosen to present here a short account the bosonization method. It is one of the
most versatile and physically transparent method. In addition to providing direct insight
on the low energy properties of the system, it can also complement very well other angles
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of approach such as numerical ones. Here again the avid reader will find other methods
explained in [9]. I have shown application of this method to two problems of importance
in the rapidly growing field of cold atoms in optical lattices: the Mott transition induced
by the presence of a periodic potential on interacting bosons, and the localization of
interacting bosons in the presence of a random potential.

Despite an history of more than 40 years the one dimensional world thus continues to
offer fascinating challenges. In that respect cold atomic gases have opened a cornucopia
of possibilities to test for this fascinating physics. Thisis due both to the level of control
offered by such system but also by their ability to deal with bosons, fermions or mixtures
of them at will. It is clear that they have raised many more questions than the theorist
had answers ready for, hence offering new playgrounds and challenges. Under such an
experimental pressure, there is thus little doubts that onecan expect spectacular progress
in the years to come.
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