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Molecular Simulation

Background

Why Simulation?

1. Predicting properties of (new) materials

2. Understanding phenomena on a molecular scale 

3. Simulating known phenomena ?

Example: computing the melting point of ice

Why bother?

This works better.

Why Simulation?

1. Predicting properties of (new) materials

2. Understanding phenomena on a 
molecular scale. 

3. Simulating known phenomena.
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The Monte Carlo Method

Aim: to compute thermal averages of 
equilibrium systems.

Where  i labels all eigenstates of the system, and

Classical limit: replace the SUM over quantum states by an 
INTEGRAL of phase space

Where H is the Hamiltonian of the system and β=1/kT

In replacing the sum by an integral, we have attributed 
a “volume” h3N to every quantum state

Problem:

We cannot compute the sum over all quantum states 
(because there are so many)

And we cannot compute the classical integral either 
(except the integration over momenta).

Consider “normal” numerical integration

100 particles, 3 dimensions, 10 points in every 
direction.

Requires 10300 points for a very poor estimate of 
the integral…

Similar problem 
(but much less 
serious):

Measure the 
depth of the 

Nile by 
quadrature…

Microsoft 
owerPoint Presentatio
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BETTER 
STRATEGY:

IMPORTANCE

SAMPLING

We wish to perform a RANDOM WALK in 
configuration space, such that

The number of times that each point is visited, is 
proportional to its Boltzmann weight.

Then

How do we achieve that?

Whatever our rule is for moving from 
one point to another, it should not 
destroy the equilibrium distribution.

That is: in equilibrium we must have
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Stronger condition:

For every pair {n,o}. 

Detailed Balance

Now we construct the transition probabilities

Then, detailed balance implies that:

Often, we choose

Then it follows that Metropolis, Rosenbluth,Rosenbluth, 

Teller and Teller choice:
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Practical issues:

1. Boundary conditions

2. Reduced units

3. Time-saving devices

In small systems, boundary effects are always large.

1000 atoms in a simple cubic crystal – 488 boundary 
atoms.

1000000  atoms in a simple cubic crystal – still 6% 
boundary atoms…

“Solution” : Periodic boundary conditions

Reduced units

Example: Particles with mass m and pair 
potential:

Unit of length: σ

Unit of energy: ε

Unit of time: 
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The most time-consuming part of any simulation is 
the evaulation of all the interactions between the 
molecules.

In general: N(N-1)/2  = O(N2)

But often, intermolecular forces have a short range:

Therefore, we do not have to consider interactions 
with far-away atoms…

Verlet list

Link list
NOTE:

Long-ranged forces require special techniques.

1. Coulomb interaction (1/r in 3D)

2. Dipolar interaction (1/r3 in 3D)

…and, in a different context:

1. Interactions through elastic stresses (1/r in 3D)

2. Hydrodynamic interactions (1/r in 3D)

3. …
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The shaky foundations of…

Molecular Dynamics

The Basis:

Fi=miai

i=1,2,...,N

N-body problem. Can only be solved numerically 

(except in very special cases)

How?

...t(t)X
!3

1t(t)X
!2

1t(t)XX(t)t)X(t 3
...

2
...

+∆+∆+∆+=∆+

...at least, in principle.  

2
...

t(t)X
!2

1t(t)XX(t)t)X(t ∆+∆+≈∆+

Naive approach: truncate Taylor expansion. 

ABSOLUTELY FORBIDDEN!
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The naive “forward Euler” algorithm 

• is not time reversible

• does not conserve volume in phase space 

• suffers from energy drift

Better approach: “Verlet” algorithm

...t(t)X
!4

1t(t)X
!3

1t(t)X
!2

1t(t)XX(t)t)X(t 4
...

3
...

2
...

+∆+∆+∆+∆+=∆+

...t(t)X
!4

1t(t)X
!3

1t(t)X
!2

1t(t)XX(t)t)X(t 4
...

3
...

2
...

+∆+∆−∆+∆−=∆−

+

)t(t(t)XX(t)2t)X(tt)X(t 42
..

∆+∆+=∆−+∆+ O

or

2
..

t(t)Xt)X(t-X(t)2t)X(t ∆+∆−≈∆+ Verlet algorithm

Verlet algorithm

• is time reversible

• does  conserve volume in phase space 

• (is “symplectic”)

• does not suffer from energy drift

...but is it a good algorithm?

i.e. does it predict the time evolution of the system 
correctly???
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Dynamics of “well-behaved” classical many-body system is 
chaotic. 

Consequence:

Trajectories that differ very slightly in their initial conditions 
DIVERGE EXPONENTIALLY (“Lyapunov instability”)

t=
0

t = τ

The Lyapunov disaster in action...

Any small error in the numerical 
integration of the equations of 
motion, will blow up 
exponentially....
always...

...and for any algorithm!!

SO:

Why should anyone believe 
Molecular Dynamics 

simulations ???
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Answers:

1. In fact, one should not...

exit Molecular Dynamics...

Answers:

1. In fact, one should not...

2. Good MD algorithms (e.g. Verlet) can also be 
considered as good Monte Carlo algorithms – they 
therefore yield reliable STATIC properties (“Hybrid 
Monte Carlo”)

What is the point of simulating dynamics, if we 
cannot trust the resulting time-evolution???

Answers:

1. In fact, one should not...

2. Good MD algorithms (e.g. Verlet) can also be 
considered as good Monte Carlo algorithms – they 
therefore yield reliable STATIC properties (“Hybrid 
Monte Carlo”)

3. All is well (probably), because of...

The Shadow Theorem....The Shadow Theorem....

For any realistic many-body system, the shadow 
theorem is merely a hypothesis.

It states that (my words):

Good algorithms generate numerical trajectories 
that are “close to” a REAL trajectory of the many-
body system.
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Question:

Does the Verlet algorithm indeed 
generate “shadow” trajectories?

Take a different look at the problem.

Do not discretize NEWTON’s equation of motion...

...but discretize the Lagrangian Equations of Motion

Intermezzo: 

Classical mechanics – the Lagrangian approach.

Newton:

Lagrange:
Consider a system that is at a 
point r0 at time t=0 and at 
point rt at time t=t, then:

The system follows a 
trajectory r(t) such that:

is an extremum.

Where the Lagrangian is defined as:

For example, if we use cartesian coordinates:

“Action”

“Lagrangian”
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What does this mean?

Consider the “true” path R(t), with R(0)=r0 andR(t)=rt.

Now, consider a path close to the true path:

Then the action S is an extremum if

(what does this equation mean??)

L(t) dt  S 1

0

 t

 tcontinuous ∫=

Discretized version

 )L(tt  S
maxi

0i
idiscrete ∑

=

∆=

) U(t- )T(t )L(t  iii =

e.g. for one coordinate in one dimension

t) U(X- 
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∆
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and hence the discretized action is

∑
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⎛
∆
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Now do the standard thing:

Find the extremum for small variations in the path, i.e. for 
small variations in all Xi.
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X

S

i
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∂

∂
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This will generate a discretized trajectory that starts at 
time t0 at X0 ,  and ends at time t1 at X1.

Discretized trajectory

“true” trajectory
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REWRITE AS:
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m
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2
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∆

+−=+

VERLET!!!

The Verlet algorithm generates 
trajectory that satisfies the 

boundary conditions of a REAL 
trajectory – both at the 

beginning and at the endpoint.
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Hence, if we are interested in statistical information 
about the dynamics (e.g. time-correlation functions, 
transport coefficients, power spectra...)

...then a “good” MD algorithm (e.g. Verlet) is fine.


