Efficient simulation of ID quantum many body systems
Frank Pollmann, TUM

Overview : 1 Entanslemint\& area law
2 Efficient representation:MPS
3 Time evolving bock decimation
4 Density - matrix renormalization
5 Dissipation assisted operator evolution

Reviews/Lectup notes:
Hauschild and FP 'is https://arxiv.org/abs/1805.00055

Schollwöch ' 10 https://arxiv.org/abs/1008.3477
Cirac et al ' 20 https://arxiv.org/abs/2011.12127

Dissipation assisted operator time evolution:
https://arxiv.org/abs/2004.05177

Tutorials:
http://go.tum.de/603150

Many body Hilbert space $\mathscr{X}=\mathbb{C}^{d^{N}}$ with (local dimension d $m) d^{N}$ states $\left|i_{1} i_{2} \ldots i_{N}\right\rangle:=\left|i_{1}\right\rangle \otimes\left|i_{2}\right\rangle \otimes \cdots\left|i_{N}\right\rangle, i_{n}=\ldots d$. \uparrow tensor product structure

Example $S=\frac{1}{2}:|\uparrow \uparrow \uparrow \cdots \uparrow \uparrow\rangle,|\downarrow \uparrow \uparrow \ldots \uparrow\rangle \cdots \quad|\downarrow \downarrow \downarrow \ldots \downarrow \downarrow\rangle$

Ans state in the Hilbert space can be written as

$$
|\psi\rangle=\sum_{\left\{i_{n}\right\}} \psi_{i_{1} \ldots i_{L}}\left|i_{1} \ldots i_{N}\right\rangle
$$

~) How to "compress" states to a manageable size?

1. Entanglement and area law

$$
\begin{array}{ll|llll}
A & B & & |\psi\rangle \in H=H_{A} \otimes H_{B}
\end{array}
$$

Assume that we only hive access to $A: M_{A} \otimes 1$
How to characterize measurements?
Refuceal density matrix:

$$
\begin{aligned}
S_{A} & =\sum \psi_{i j j}^{*} \psi_{i j}|i\rangle\left\langle\left. i\right|_{A} \text { with } T_{x}(\cdot)=\sum\langle k| \cdot \mid k\right\rangle_{x} \\
& =T_{B} \underbrace{(\| \psi\rangle(\psi \mid)}_{\rho}
\end{aligned}
$$

From the def. we find
(1) $\rho_{A}=\rho_{A}^{+}$
(2) $S_{A} \geqslant 0$
(3) $\operatorname{Tr}\left(S_{A}\right)=1$

Entangled state has mixed $S_{A}, S_{B}($ i.e., $S \neq 0)$
(von-Neumann) entanglement entropy $S=-T_{r_{A}} S_{A} \cdot \log S_{A}$
Renyi entropy: $S_{\alpha}=-\frac{1}{1-\alpha} \ln \operatorname{Tr} S_{A}^{\alpha}$
Schmidt decomposition: (\cong SUD $)$
Schmidt values Schmidt states

$$
\begin{aligned}
& |\psi\rangle=\sum_{\alpha=1}^{\min \left(V_{A} \mid V_{\alpha}\right.} \lambda_{\alpha}^{\text {Schmidt values schmidt states }}\left|\phi_{\alpha}\right\rangle_{A}\left|\phi_{\alpha}\right\rangle_{B}^{\swarrow}, \lambda_{1} \geqslant \lambda_{2} \geqslant \ldots \geqslant \sigma \\
& \quad\left\langle\phi_{\alpha} \mid \phi_{\alpha}\right\rangle=\delta_{\alpha \alpha^{\prime}} \quad \text { (unique up to degeneracies) } \\
& S_{A}=\sum_{\alpha} \lambda_{\alpha}^{2}\left|\phi_{\alpha}\right\rangle_{A A}\left\langle\phi_{\alpha}\right|, S_{B}=\sum_{\alpha} \lambda_{\alpha}^{2}\left|\phi_{\alpha}\right\rangle_{B}\left\langle\phi_{\alpha}\right|
\end{aligned}
$$

and the $S=-\varepsilon \lambda_{d}^{2} \cdot \log \lambda_{d}^{2}$. (normalization: $\sum_{\alpha} \lambda_{\alpha}^{2}=1$)
Examples: * Product slate $m \lambda_{1}=1, \lambda_{\alpha>1}=0$ and $S=0$ 0001000

* Dimerized state $\leadsto) \lambda_{\alpha \leq d}=\frac{1}{T_{d 1}}, \lambda_{d>d}=0$ and $s=\ln d$ $0 \rightarrow 0$
$\quad \frac{1}{\sqrt{2}} \sum_{d=1}^{\infty}|d\rangle|\alpha\rangle$
* Random state : Entanglement close to $S_{\text {max }}$

$$
S=\frac{L}{2} \log d-\frac{1}{2} \text { for half chain }
$$ bipartition. [Page 93]

Area law
Ground states of (gaped) local Hamiltonians fulfil the area law $S \sim L^{D-1}$ [proof exists for ID, Hastings]
$1 \mathrm{D} \underbrace{0.000}_{L} \quad S(L)=$ cont. $\quad(L>\xi)$
$($ sapless $S \sim \log L)$
Hilbert space

ID area law \Rightarrow Schmidt valves decay quickly and thus we can find a good approx.
of $\mid \psi)$ by keeping $\underset{x<c a^{2}}{ } x=$ canst.
Schmidt states: $|\psi| \simeq \sum_{\alpha=1}^{(} \lambda_{\alpha}|\alpha\rangle_{c}|\alpha\rangle_{R}$
Ground states are "close" to product states me efficient representation
2 Matrix -product states

\leadsto \# Parameters $\propto L d$
$F M:|\psi\rangle=|\uparrow \uparrow \uparrow T \uparrow \uparrow \uparrow \uparrow \uparrow\rangle$
Matrix -product state (MPS): $\psi_{i_{1} \ldots i_{L}}=A^{\left[i 3 i_{1}\right.} \cdots A^{\left[\omega_{3} i_{L}\right.}, A^{[n] i_{n}}$ are $X \times X$ matrices
w \# parameters $\propto L \cdot d \cdot X^{2} \ll L \cdot d \cdot 2^{L / 2}$
$G H Z:|\psi\rangle=\frac{1}{\sqrt{2}}(\mid 19 \uparrow \uparrow \uparrow)+\mid\lfloor\psi(l l))$ has MPS has $x=2$
MPS representation $A^{\hat{1}}=\left(\begin{array}{l}1 \\ 0\end{array} 0\right), A^{\downarrow}=\left(\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right)$

AKLT: $S=1$ spin chain $H=\sum P_{j, j+1}^{s=2}=\sum \vec{S}_{j} \vec{S}_{j+1}+\frac{1}{3}\left(S_{j} S_{j+1}\right)^{2}+\frac{2}{3}$
$\left|\psi_{0}\right\rangle$: м@meamed $\uparrow \uparrow{ }_{\uparrow}$

$$
\left.\underset{s=1}{\uparrow} \quad \frac{1}{\sqrt{2}}(1 \uparrow \downarrow\rangle-(\downarrow \uparrow)\right)
$$

(6): $|+\rangle=|\uparrow \uparrow\rangle,|0\rangle=\frac{1}{7_{2}}(|\langle\downarrow\rangle+|\langle\uparrow\rangle),|-\rangle=|\downarrow \downarrow\rangle$

The MPS representation is then

$$
A^{+}=\sqrt{\frac{2}{3}} \sigma^{+}, A^{0}=\frac{-1}{\sqrt{3}} \sigma^{2}, A^{-}=-\sqrt{\frac{2}{3}} \sigma^{-}
$$

Hey idea: Assume the states we are interested in can be well approximately by MPS.
This is the case for all states that fulfil the area law [Schuch of al. 'O6].

Tensor network notation
Useful diagramatic representation of tensor networks:
Scalar $a \cong 0$, vector $a_{i} \cong 0$, matrix $a_{i j} \cong-0-$
tensor operations: $c_{i k}=\sum_{j} a_{i j} b_{j k} m$

$$
-\mathrm{O}=-\mathrm{O}_{\mathrm{a}}^{-0-0-}
$$

MYS :

$$
\mathbb{T}_{T 1}=\underset{p-Q-\infty-9}{ }, d-P_{j}^{A}-\beta
$$

Overlap:

$$
\langle\psi \mid \phi\rangle=\frac{\square A A A A}{B^{x} B^{x} B^{x} B^{x} B^{\prime}}
$$

Expectation value:

$$
\langle\psi| 0|\psi\rangle=\frac{A A A A}{A^{*} A^{*} A^{x} A^{x} A^{x}}
$$

m) Scales as $\sigma\left(L \cdot x^{2} d\right)$

Canonical form of MPS
From now on: $A^{[n] i_{n}}=A^{i_{n}}$ and $L \rightarrow \infty /$ Pure states

MPS are not uniquely defined: $\underset{T}{A} \rightarrow \frac{X A X^{-1}}{I}$ represents sane state
Bonds are directly related to the Schmidt decomposition and $A=\Gamma \cdot \Lambda\left(\Lambda_{\alpha+}=\lambda_{\alpha}\right)$ [Vidal '03]
orthonormal basis

[similar for the Reft]

$$
\leadsto \frac{1 \Gamma}{\wedge \Gamma^{*}}=\pi 6
$$

\Leftrightarrow Transfer matrices have left/right eigenvalue I with eigen vector 11

Uniquely defines the MPS up to a $U(1)$ phase and $d g$ in λ_{α}. -Convenient to craluate expectation valves:

3 Time evolving block decimation (TEBD) [Vidal '03]
We know how to efficient represent one-dimensional grand states and can calculate expectation values.

Given a Hamiltonian H, how to obtain the ground state MPS? Time evolution?

Real and imaginary time evolution of MPS
Time evolution in real time :

$$
|\psi(t)\rangle=e^{-i H t}|\psi(t=0)\rangle
$$

Time evolution in imaginary time yields G5:

$$
\left|\psi_{0}\right\rangle=\lim _{\tau \rightarrow \infty} \frac{e^{-H \tau\left|\psi_{i}\right\rangle}}{\left.\| e^{-H \tau} \mid \psi_{i}\right) \|}
$$

Assume the Hamiltonian has the form $H=\sum_{j} h^{[j, j+1]}$

Decompose the Hamiltonian $H=F+G$

$$
I=\sum_{\text {eves }} h^{[\langle j \mathrm{j}+1]}, G=\sum_{\text {out }} h^{[j, j+1]}
$$

We observe: $\left[F^{j}, F^{k}\right]=\left[G^{j}, G^{k}\right]=\sigma$

$$
0-0<0
$$

$$
[G, F] \neq \theta
$$

Baker-Campboll-Harsory $\left[e^{\varepsilon A} \cdot e^{\varepsilon B}=e^{\varepsilon(A+B)+\frac{\varepsilon^{2}}{2}[A, B]+\cdots}\right]$
Decompose time evolution $\exp (-i H t)=[\exp (-i H t / N)]^{N}$

$$
e^{-i \delta t(F+G)}=\underbrace{e_{U_{G}}^{-i \delta t F} \cdot \underbrace{-i \delta t G}}_{U_{F}}+\sigma\left(\delta t^{\prime}\right)
$$

Two chains of two-site gates

$$
U_{F}=\prod_{\text {evan }} e^{-i F^{[i j} \delta t}, \quad U_{G}=\prod_{\text {odd }} e^{-i G^{[i j} \delta t}
$$

This is how the evolution of an MPS for one time step looks like :

Need an algorithm to project back to MPS form

TEBD algorithm [Vidal '03]
(1) "Apply U"

$$
\int^{d x} x d x
$$

$$
\alpha \frac{\theta_{n}}{R_{n}}=\alpha \Lambda_{m}^{[a]} \prod_{n}^{[b]} \Lambda_{n}^{[b]} \Gamma^{[c]} \Lambda^{[c]}{ }_{n}
$$

$$
-\frac{\tilde{\theta}}{T-}=\frac{\theta}{\frac{\theta}{\square i}} \quad\left[\tilde{\Theta}_{d \gamma}^{m n}=U_{m^{\prime} n^{\prime}}^{m n} \Theta_{d \gamma}^{m^{\prime} n^{\prime}}\right]
$$

(2)
(3) "Obtain new MPS" \quad insert identity

$$
\Rightarrow \tilde{\Gamma}_{\Gamma}^{[\omega]}=\frac{\left(\Lambda^{4}\right)^{-1} X}{T}, \quad \tilde{\Gamma}^{[c]}=Y^{\left(\Lambda^{[c]}\right)^{-1}}, \tilde{\Lambda}^{[\omega]}
$$

(4) "Truncate"

Discard smallest schmidt values / states: $d x \rightarrow x$ (i.e., beep only x rows/columns of the tensors)

Applying this algorithm iteratively to even /od bonds, we obtain the time evolution?

$$
\begin{aligned}
& \text { "SUD" } \quad(d x \times d x \text { matrix }) \\
& \tilde{\theta}=\frac{X \tilde{\Lambda} Y}{000} \frac{|\beta\rangle_{L} \tilde{\Lambda}_{\beta}|\beta\rangle_{R}}{000} \\
& {\left[\tilde{\Theta}_{(\alpha m)(n \gamma)}=\sum_{\beta=1}^{d \cdot x} X_{(\alpha m), \beta} \tilde{\Lambda}_{\beta} Y_{\beta,(n \gamma)}\right]}
\end{aligned}
$$

$$
\begin{aligned}
& |\psi\rangle=\sum \Theta_{\alpha \gamma}^{m n}|\alpha\rangle|m\rangle|n\rangle|\gamma\rangle \\
& \begin{array}{lllll}
|l| & |m\rangle & |n\rangle & |8\rangle \\
\hline 0 & 0 & 0 & 0 & 6 \\
\hline
\end{array}
\end{aligned}
$$

Computational time scales as $O\left(L \cdot d^{3} X^{3}\right)$
Computational errors: x truncation error: exponential growth of x when doing real time evolution

* Trotter error (relatively harmless) : Smaller δt and higher order expansions
* Instabilities for small Λ_{β} (as we need to invert it) : Pix by [Hastings '09]
* Canonical form for imaginary time evolution only when $\delta \tau \rightarrow 0$.
* Generalization to $2 D$: Isometric tensor net works [zaleti \& FP '20]

4 Density - matrix renormalization group (DMRG) [white 'ga]
Variational method to find ground states of a one-dimensional Hamiltonian within the manifold of MPS.

Original motivation: Improvement of RG (thus the name)
Here we will discos the DMRG algorithm in the framework of MPS.

Matrix - Product Operators (MPOs)
Recall: MPS

$$
\psi_{i_{1} \ldots i_{L}}=A^{L_{13} i_{1}} \cdots A^{\omega_{1} i_{L}}, A^{n_{n 3} i_{n}} \text { are } x_{\times} X \text { matrices }
$$

Similarly, an operator $\hat{\theta}$ can be expressed as an MPO

Graphically this looks like:

Example:
$\downarrow^{\text {Pauli matrices }}$

$$
\begin{aligned}
& H=-\supset \sum_{i} \sigma_{i}^{z} G_{i+1}^{z}+g \sum_{i} G_{i}^{x} \leadsto M=\left(\begin{array}{ccc}
1 & \sigma^{2} & g \sigma^{x} \\
0 & 0 & -9 \sigma^{2} \\
0 & 0 & \mathbb{1}
\end{array}\right) \\
& L=3:(1,0,0)\left(\begin{array}{ccc}
1 & \sigma^{2} & 9 \sigma^{x} \\
0 & 0 & -56^{2} \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{ccc}
1 & \sigma^{2} & 9 \sigma^{x} \\
0 & 0 & -3 \sigma^{2} \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{ccc}
1 & \sigma^{2} & 9 \sigma^{x} \\
0 & 0 & -\sigma^{2} \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)_{V_{V^{2}}} \\
& =\left(\mathbb{1}, \sigma^{2}, g \sigma^{x}\right)\left(\begin{array}{ccc}
1 & \sigma^{2} & 9 \sigma^{x} \\
0 & 0 & -3 \sigma^{2} \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{ccc}
1 & \sigma^{2} & 9 \sigma^{x} \\
0 & 0 & -3 \sigma^{2} \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right) \\
& =\left(\|\odot\|,\left\|\odot \sigma^{z}, g\right\| \bullet \sigma^{x}-\partial \sigma^{2} \otimes \sigma^{2}+g \sigma^{x} \oplus \|\right)\left(\begin{array}{ccc}
1 & \sigma^{2} & 9 \sigma^{x} \\
0 & 0 & -3 \sigma^{2} \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right) \\
& =g\left(\left\{\| \| \bullet \sigma^{x}+\mathbb{1} \bullet \sigma^{x} \oplus \mathbb{1}+\sigma^{x} \oplus \mathbb{1} \bullet \mathbb{1}\right)\right. \\
& -\partial\left(\mathbb{1} \oplus \sigma^{2} \oplus \sigma^{2}+\sigma^{2} \oplus \sigma^{2} \otimes \mathbb{1}\right)
\end{aligned}
$$

The expectation value of an MPO is given by:

Now we have all the tools to introduce the DMRG algorithm! \leadsto Sequencially optimize the matrices $A^{i_{n}}$.
\leadsto The DMRG algorithm proceeds similarly to TEBD.

2-site DMRG algorithm:
(1) "2-site optimization"

First project the Hamiltonian onto an effective basis in terms of physical states on ajaccant sites $(\mathrm{m})(\mathrm{n})$ and Schmidt states left/right of the two sites:

Use an iterative eigensolver to find the ground state of $H^{\text {eff }} m H^{\text {elf }}|\tilde{\theta}\rangle=E_{0}|\tilde{\theta}\rangle \leadsto \tilde{\theta}=\longrightarrow$ (use $\Theta_{d m n}=\alpha \frac{\wedge \Gamma \wedge \Gamma \Lambda_{\beta}}{T_{m}} n_{n}$ to initiate the iteration).
(2)

$$
\begin{aligned}
& \text { "SUD" } \quad \begin{array}{l}
(d x \times d x \text { matrix }) \\
\tilde{\theta} \\
\tilde{\theta}
\end{array}=\frac{X \tilde{\Lambda} Y}{?}
\end{aligned}
$$

(3) "Obtain new MPS" \quad insert identity

$$
\Rightarrow \frac{\tilde{\Gamma}^{[\omega]}}{\Gamma}=\frac{\left(\Lambda^{4}\right)^{-1} X}{\Gamma}, \quad \tilde{\Gamma}^{[c]}=\frac{Y\left(\Lambda^{(c)}\right)^{-1}}{T}, \tilde{\Lambda}^{[\omega]}
$$

(4) "Truncate"

Discard smallest schmidt values/states: $d x \rightarrow x$ (i.e., beep only x rows/columns of the tensors)
... move to the next band and repeat.

5 Dissipation assisted operator evolution (DAOE)
Time evolution following a global quench is exponentially hard doe to the fast growth of entanglement.

In ermaliving systems there is a paradox:

\leadsto How to truncate the entanglement w/o loosing Crucial information? (e.s., physical observables).
~) Various approaches
[White et al.: PRB 2018]
[Schmitt, Heyl: SciPost 2018]
[Krumnow et al.: arXiv:1904.11999]
[Wurtz et al.: Ann. Phys. 2018]
[Parker et al., PRX 2019]

DOAE: The goal is to obtain $\left\langle O_{2}(t) O_{1}(0)\right\rangle_{\beta=0}$ (one dimension). Heisenberg picture + truncation of "complicated" contributions
$T \in B D$ in the Heisenberg picture:

Truncate entanglement using artificial dissipation!
Every operator with local dimension $d=2$ can be expressed as superposition of Pauli strings:

$$
|0\rangle=\sum O_{i_{1} i_{2} \cdots i_{L}} \underbrace{\left.\left.\left.\mid \sigma^{i_{1}}\right) \otimes \mid \sigma^{i_{2}}\right) \cdots \otimes \mid \sigma^{i_{c}}\right)}_{1 S\rangle}, i=1, x, y_{1}, ?
$$

Define l to be the number of non-trivial Pauli operators

$$
\begin{array}{l|lll}
1 \mid & 0^{x} 1 \sigma^{y} \mid & : l=2 \\
1 \mid & 16^{y} \sigma^{2} \mid \sigma^{5} & : l=3
\end{array}
$$

Introduce an artilicial dissipation:

$$
D_{l^{*}}(S)= \begin{cases}1 S) & \text { for } l \leq e^{*} \\ \left.e^{-\gamma\left(l-e^{*}\right)} \mid S\right) & \text { for } l>l^{*}\end{cases}
$$

l^{*} should be larger or equal to the support of conserved quantities.
$D_{l^{*}}$ can be written as MPO with small bond dimension!
Why is it a promising approach to remove entanglement using $D_{p^{*}}$ when calculations $<\sigma_{2}(t) \mid \sigma_{1}(0)_{\beta=0}$?
$\leadsto D_{e}$ * removes entanglement by damping complicated operators.
m) Key assumption: Backflow Prom large to small operators is weak!

Time evalution now combines unitary Heisenbers evolution and the application of the dissipator $D_{p} p$!

Test on the tilted pipld lsing chain

Obtain the dippusion constant from the mean square displacement (MSD):

$$
C(x, t) \equiv\left\langle q_{x} \mid \tilde{q}_{0}(t)\right\rangle \quad \rightarrow \quad d^{2}(t) \equiv \sum_{x} C(x, t) x^{2} \quad(\mathrm{MSD})
$$

