
https://arxiv.org/abs/1805.00055

https://arxiv.org/abs/1008.3477

https://arxiv.org/abs/2011.12127

http://go.tum.de/603150

https://arxiv.org/abs/2004.05177

Efficientsimulation of IDquantum many body systems

Frank Pollmann, TUM

Overview:I Entanglement& area law

Efficientrepresentation:MPS5 Time evolving block decimation
4 Density-matrixrenormalization
5Discipation assisted operator evolution

Reviews /Lecture notes: Hauschild and FP '18

Schollwich' 10

Cirac etal '20

Discipation assisted operator time evolution:

Tutorials:



Many Jody Hilbertspace2=K4 with local dimension d

med" states (i,i... (N) =

=(i,e/i2) ecir), in 1...d.
↑tensor productstructure

Example S=2:1444...447, 1444...4) .... It....1)

Any state in the Hilbertspace can be written as

M =2 M...., .... in
Sin

~ How to "compress"states
to a managable size?

1. Intanglement and area law

o olo o IEH =HA*Hs

Assume thatwe only have access to A:MA*1

How to characterize measurements?

Reduced density matrix:

SA =24;Mij(i) silawith Tr) · 1=9CR1·In)x
-Tr(

S



From the def. We find (119x=9, (2)9A20 B)TrISA):1

Entangled state has mixed SA, SB (i.e., SFO (

Iron-Neumann) entanglemententropy S = -TraSA logSA

Renyientropy:Sa = - i, In in 9

swidtdecomposition:(= SVD)

Schmidt values Schmidtstates

min(NA,NiIX
14) =E,xx14,145,x,xx2) ...

<dulda =8ca' (unique up to degeneracies)

SA = 214)Pal,Si =x2 142is bal

and thus s=-EA2-log2. (normalization:Exc=1)

Examples:* Productstate us x, =1, Axx1 =0 and 3 =0

ooooo

*Dimerized State m) X22d =In, Xazd =0 and S=Ind

o ottu t

*E,(2)(a)
*Random state:Entanglement close to Smax

·= [logd-Ifor half chain
dipartition. (Page 93]



law

Ground states of (gapped) local Hamiltonians
D-1

fulfill the area law SiL [proof exists for ID, Hastings]

A oo off o o S(L)=const. ( 3)
e
L

I gapless S- log() ⑰Hilbert
space

ID area law ->Schmidtvalues decary quickly and

thus we can find a good approx.
of 14) by keeping X=const.

Xaca

Schmidt states:It) = EXaKTcl2> is
2=1

Ground states are "close"to productstates we efficient representation

Mix-pestates

↳states:Ni,...is =G"..... plic, I[n] in EK
us #Parameters - Ld

FM:H7 =14445444447

Arix-prestate (MPS):Ni....in
=A" ... Al,in, Aare xxxmatrices

us #Parameters & L.d.1 Lda

CH2:14) =E( 14++)+144)) has MPS has A=2

MPS representation A* =(08), A" =(89)



AKLT:S=1 spin chain H =9Pj,4 =55;;+ +15;S;+t
Ito):nameSamfor

↑ *1
S=1 a (IT)

-1)(

%:(t) =(T4),(0) =(+) +1)),(-) =(t)

The MPS representation is then

At =E or
,
A=0, A =-Ed-

key idea:Assume the states we are interested in can be well

approximated by MPS.

This is the case for all states that fulfill the
area law (Schrch et al. 100].

networknotation

Useful diagramatic representation of tensor networks.

Scalar a =O, vector ai =O ,
matrixajj =O

tensor operations:Cit=E9ijbjk me O-= ---

MPS: ⑭Mil
=999,42
Expectation value:Overlap.Ise C41014) -Fix

~) Scales as O(1xd)



canonicalforMS

From now on:As=A" and L-x / Pure states

MPS are notuniquely defined.*****represents same state

Bonds are directly related to the Schmidt decomposition
and A =r.1 (12=xa) [Vidal'03]

Orthonormal basis

147 =E 127 xL 127R

R 1 R...da... =Ed had
up...

Saa' =Mh1h' m =4transfermatrix 1J4=(
↑Y

[similar for the leftI ~>n =5)

=) Transfer matrices have left/righteigenvalue I with

eigenvector i

Uniquely defines the MPS up to a UII) phase and do in Ax
- Convenient to evaluate expectation values:

<41414) =( d) =in



3 Time evolving block decimation (TEBD) Cridal '03]

We know how to efficiently representone-dimensional ground states

and can calculate expectation values.

Given a Hamiltonian I, how to obtain the

ground state MPS?Time evolution?

Real and imaginary time evolution of MPS

Time evolution in real time.

14(t)) = e -iHt(4(t=0))

Time evolution in imaginary time yields GS:

14.=*si
Assume the Hamiltonian has the form H =5h2ss+13

ij+1
O O O 00

-!

h23,5+13

Decompose the Hamiltonian H =F +G

=E heist is 6 =2h(x,s+1]
I m

000;

We observe:(F", F4) =[0,04) =00-o-o--
[6,F] +0



Baber-Campbell-Harsdorff (e*.edB =e

(A+B) + E(A,B3 +..)

Decompose time evolution expliHt) =[explcHE]
W

=St

eist(F+6) =stFest +0(st
↳ra

UIUG

Two chains of two-site gates

-
iF8t

-
ifift

UF-je, Us =He
odd;

This is how the evolution of an MPS for one
time step looks like:

- !I
Need an algorithm to projectback to MPS form

tR?e 1193263634(3,x3
->-yo



TEBDalgorithm [Vidal'03]

①
,Apply U xdx +dix

-
= the28

11
m n I

m n
127 (m) (n) 187

14) =2048 (2) (m) (n) 10) 000

-= LE" =UmOI

②SUD" (dAxdXmatrix)
1) Is 147R

- .Yax oo
A diX dix

[xm) (nUS -E,X(am),Ts Yp, (nus]

③ Obtain new MPS"
xinsertidentity

1
=>
**=

④Truncate"

Discard smallest Schmidtvalues / states.dx -x
(i.e., keep only 1rows/columns of the tensors)

Applying this algorithm iteratively to even food bonus,
we obtain the time evolution.



Computational time scales as O(L.dx

Computational errors:* truncation error:exponential growth of X

When doing real time evolution

*Trotter error (relatively harmless):Smaller St
and higher order expansions

*Instabilities for small As (as we need to

invertit):fix by [Hastings '09]

*Canonical form for imaginary time evolution

only when SEO.
=>Generalization to 2D: Isometric tensor networks

[Zalotel & FP '20]

4 Density-matrixrenormalization group (DMRG) (wnite'92]

Variational method to find grown states of a one-dimensional Hamiltonian
within the manifold of MPS.

Original motivation:Improvementof RC (thus the name)

Here we will discuss the DMR6 algorithm in the framework of MPS.

Matrix-ProductOperators (MPOs)

Recall:MPS

Mi...i =APB...quin, As
in
are xxxmatrices

11. 1 :*4·



similarly, an operator Ican be expressed as an MPO

O.c, i...is =
MBhil... ↳3, in in

an in in
are xxxmatricesM M

C

Graphically this looks like:

I 11 I
=4-644 -vi

1 I I I

Pauli matrices
↓

Example:

H =S5+, +952m =deII
c =3:(0,0))gt(t((i) -

mVe

=(4,5,95))(8)(i)
=(Hat, Har,gTarr+grtat)(d)(i)
=g(a488+Ha +8x4)
-> Iero' +was all w

The expectation value of an MPO is given by:

A

SH) =o
A

Now we have all the tools to introduce the DMRC algorithm!
~Sequencially optimize the matrices A".
~The DMRC algorithm proceeds similarly to TEBD.



2-site DMRG algorithm:

& "2-site optimization"
Firstproject the Hamiltonian onto an effective basis
in terms of physical states on adjacent sites (m)(n) and Schmidt
states left/rightof the two sites:

oooo
12) (m) 1n) 1P>

n

HY;n,aijp = -4.
4 414X

1 "Y

Use an iterative eigensolver to find the grown state
of H48 m H4 1E) =EolELm =-, 1

-

luse Oxmup=NY141p to initiate the iteration).
m n

②SUD" (dAxdXmatrix)

=
③ Obtain new MPS"

xinsertidentity

1
I I

=>I=(,"
④Truncate"

Discard smallest Schmidtvalues / states.dx -x
(i.e., keep only 1rows/columns of the tensors)

... more to the nextbond and repeat.



5 Dissipation assisted operator evolution (DAOE)

Time evolution following a global quench is exponentially
hard One to the fast growth of entanglement.

In termalizing systems there is a paradox:

Hoits/ Eirimal,
time tenerm.

~How to truncate the entanglementwho loosing
crucial information?(e.g., physical observables).

us various approaches

DOAE:The goal is to obtain (OH) 0,10Kp =0 (one dimension).
Heisenberg picture +truncation of "complicated"contributions

TEBD in the Heisenbergpicture:

Ut ↓MPO
O(t) =

O I 1411 =4+b4 =
00000 =(OH)]

nt ~Generically volume law entanglementt

within lightcone.



Truncate entanglementusing artificial dissipation!
Every operator with local dimension d=2 can be expressed
as superposition of Parli strings:

10) =2 0i, .....18") elf -- 10), i =1,x,3,
15]

Define 1 to be the number of non-trivial Paulioperators
111841541:1 =2

1118488:1 =3

Introduce an artificial dissipation:

for *

DelS)=Sdere*)15) for ext
e* should be larger or equal to the support of
conserved quantities.

Det can be written as MP0 with small bone dimension!

Why is ita promising approach to remove entanglement
using De When calculating (O2(t)10,(0)

p =0?

~> Det removes entanglement by dumping
t

complicated operators.

me key assumption:Backflow from large to
small operators is weak!



Time evolution now combines unitary Heisenberg evolution

and the application of the dissipator Dee!

octsDementin-

⑥

Teston the filter field king chain

Obtain the diffusion constantfrom the mean square displacement (MSD):


