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This series of three lecture will deal with two basic notions that are encoun-
tered in many different soft matter systems; geometric frustration and hand-
edness. The first two lectures will focus on geometric frustration. We will
introduce different kinds of geometric frustration, and discuss different possible
strategies of resolving the resulting frustration, emphasizing differences between
local and global strategies. The third lecture will introduce a quantitative path
to handed phenomena. We will discuss the history of chirality as defined by Lord
Kelvin, and the difficulties that arise when using it as a source for a quantitative
treatment of handedness. We will then present the orientation dependent gen-
eralization of this notion, and its implications. Both notions, that of geometric
frustration and that of handedness, are of exceptional use in may soft matter
systems where the constituents of a structure are ofter big enough to possess a
non-trivial internal structure.

1 Geometric frustration:
Examples and Riemannian formulation

When a multicellular tissue grows or a ductile material irreversibly deforms,
the different cells and different regions in the material may experience different
conditions and thus deform differently. However, the restriction that the tis-
sue remains connected and continuous, forces the different cells or parts of the
material to fit next to one another. As the deformation profile was not nec-
essarily programed to make the different parts snugly fit next to one another,
this will result in frustration; the inability to simultaneously satisfy all intrinsic
tendencies in the material (in the present case, matching all the rest-lengths).

This frustration is not always unwanted. It can be exploited to produce
elaborate shapes from very simple inputs, as well as to strengthen the material
against failure (for example in tempered gorilla glass covering our smart phones).
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The resolution of geometric frustration may be local (resolving the frustration
uniformly), or resolve the frustration globally, incorporating into the solution
quantities of the object as a whole, such as total volume and aspect ratio.

In what follows we shall explore natural and man-made examples of geomet-
ric frustration, and understand how to treat such phenomena quantitatively.
This will naturally require some use of differential geometry. I will introduce
the notions needed for our discussion, but will do so not in the most general
framework. The less restricted form of these derivations can be found in elemen-
tary differential geometry books (e.g. Lectures on classical differential geometry
by Struik, and Differential geometry by Pogorelov. A more mathematically ad-
vanced account may be found in An introduction to differential geometry with
applications to elasticity by Ciarlet). I also want to draw the participants’ atten-
tion to the 2002 summer school lecture notes by Randy Kamien ”The geometry
of soft materials: A primer” which also saw light as a review article in Rev.
Mod. Phys.

1.1 Examples of geometrically frustrated systems

1.1.1 Flattening the sphere

One of the most familiar notion of geometric incompatibility is that of flattening
the sphere. For hundreds of years cartographers have been faced with the chal-
lenge of accurately describing the spherical surface of the earth on flat pieces
of paper. We know that any such ”flattening” will necessarily distort distances
and shapes. There are two types of questions concerning such maps, the first
is to find the most accurate way of mapping a region in space, and the second
concerns the most accurate description of the whole globe. We will discuss both
of these notions (termed local and global notions) of incompatibility, and will
address the question of minimal distortion quantitatively.

1.1.2 Doubly curved bilayer:
The Bauhinia seed-pod geometry

Next let us consider the following geometry: Two thin elastic sheets of thickness
t are uniaxially stretched by a factor 1 + α with respect to each other along
perpendicular directions and are then glued to one another. Along each direction
we can estimate the difference in length between the center of the layers when
curved to a radius R:

lout
lin

=
R+ t/2

R− t/2
=

1 + α/2

1− α/2
⇒ κ = R−1 =

α

t
.

The curvature along the two directions is equal in magnitude but points along
opposite directions (and thus associated with opposite signs). We note that we
can keep R constant and take α to be arbitrarily small provided also diminish
the thickness t accordingly. In this limit, we do not change the two dimen-
sional geometry of each of the layers (which both start planar, and thus with

2



glue 

rubber sheets 

stretch 

a 

Figure 2: Chiral strips constructed through the achiral summation of identical blocks which
are symmetric under reflection. Two identical rubber sheets are uniaxially stretched
and glued together to form a rubber bilayer as done in [1]. Narrow strips cut from
the bilayer curve out of plane to accommodate the di�erence in rest length between
the layers [?]. The bilayer’s intrinsic structure is symmetric under reflection. When
the boundaries of the cut-out preserve this symmetry (II), the resulting equilibrium
shape is also symmetric under reflection. If the boundaries of the cut-out break this
symmetry, the resulting structure need not possess symmetry under reflection (III and
IV). These structures display a well defined handedness yet may be considered the
achiral sum of six identical copies of the elementary unit II, which is symmetric under
reflection. The sum is achiral as nothing distinguishes the boundary between two
adjacent building blocks. The seeming contradiction is resolved by associating the
chirality of the elementary unit II with a pseudo tensor that displays equal amounts of
left and right handedness in perpendicular directions. This directional dependence of
the chirality is observed in the v-shaped cut-out (I) as well as in the relative positioning
of cut-outs II, III and IV where the elementary unit II can be seamlessly continued in to
manifestly Right or Left handed helical structures. Each arm of the V cut-out manifests
one component of the chirality tensor over the other, however this does not imply a
loss of the other, This can be seen in V and VI in which the aspect ratio of a strip is
inverted, manifesting the orthogonal component of opposite sign.

.

2

Figure 1: Constructing the doubly curved bilayer through gluing two oppositely
tensed thin rubber sheets.

zero Gaussian curvature, K = 0). However, the desired geometry is associated
with a non-vanishing Gaussian curvature K = κ1κ2 = −R−2. Gauss’ theorema
egregium which relates the metric properties of a surface to its allowed confor-
mation in space through the Gaussian curvature thus precludes the ability to
simultaneously conform to the 2D geometry and the prescribed curvatures.

1.1.3 Bend-Splay coupling in 2D nematic liquid crystals

A two dimensional nematic liquid crystal is characterized by a unit vector field
n̂ named the director which is indicative of a local preferred orientation of
the constituents in the liquid. The constituents in a nematic liquid crystal,
named nematogens, have a broken symmetry and are typically elongated rod-
like structures. In its ground state a nematic liquid crystal attempts to align
the nematogens, leading to a uniform and constant director field. However,
this configuration may be distorted by imperfections, boundary conditions, and
other external forces. The energetic cost of such deformations is given by the
Frank free energy:

F = 1
2Ks(∇ · n̂)2 + 1

2Kb ((n̂ · ∇)n̂)
2
.

The first term is called the splay term, and the second is called the bending
term. We could define s = |∇ · n̂| and b = |(n̂ · ∇)n̂| to obtain the energy in
compact form:

F = 1
2Kss

2 + 1
2Kbb

2.

A third term (called the saddle splay) can be written as the divergence of a
function, and for simplicity was omitted above. In three dimensions the above
terms naturally extend to their three dimensional forms and an additional term,
named twist (or helicity) appears, 1

2KT (n̂ · ∇ × n̂)2.
For an unconstrained liquid crystal it is easy to see that the Frank energy

in 2D yields a trivial minimizer where s = 0 and b = 0. However if we now
consider a nematogen of a slightly more structured form, say having a slight
longitudinal bend, things may look different. Such a liquid crystal will possess
a non-vanishing preferred spontaneous bend. Its Frank energy, given by

F = 1
2Kss

2 + 1
2Kb(b− b0)2,
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favors a zero splay configuration with a constant bend of value b0, and one
may näıvely expect that we should only consider small perturbations about this
ground state. However, as we next show, there exists no ground state with
vanishing splay and a constant bending.

Setting n̂ = (cos(θ), sin(θ)), the vanishing splay requirement amounts to
θy = tan(θ)θx. This gives for the bending the expression

b = θx/ cos(θ) = θy/ sin(θ).

This can be immediately shown to be incompatible with the no splay condition
as

θxy = −b sin(θ)θy = −b2 sin2(θ) 6= b2 cos2(θ) = b cos(θ)θx = θyx.

The uniformly bent ground state is therefore frustrated and the ground state
will inevitably contain some splay or display non-uniform bending.

1.1.4 2D axially symmetric exponential growth

Last let us consider a circular ring of N cells that produces a new layer of ΛN
cells, where Λ > 1 every generation. Had Λ been equal to unity this would have
resulted in a cylindrical tube. The restriction that Λ > 1 requires the perimeter
of the next generation to be longer. This growth of the perimeter occurs at an
increasing rate. The most a circular perimeter can grow between layer of height
∆h is ρ(s+∆h)−ρ(s) = 2π∆h, which occurs when the growth is planar. Beyond
this point no axially symmetric solution can continue to increase the perimeter
at an accelerating rate. This is known as the finite horizon of the pseudosphere.
Beyond this point, growth must lead to a strong symmetry breaking of the
configuration.

1.2 Formulation of the problem via Riemanian geometry

We now come to make these notions of frustration quantitative within the frame-
work of Riemannian geometry. The main tool in Riemannian geometry is the
Riemannian metric, g. This is the tool with which infinitesimal distances are
defined. The metric is given with respect to a set of coordinates xα:

ds2 = gijdx
idxj ,
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where above, and hereon-after we assume the Einstein summation convention
where repeated indices in a product are summed over. On a smooth Riemannian
manifold every point locally looks like Euclidean space. A general Riemannian
space differs from Euclidean space in that the former does not require to support
the parallel postulate which holds in Euclidean space (that to every straight
line and every point not on the line there exists a single straight line that
passes through the point and never intersects the line). This gives Riemannian
manifolds all their exotic behavior. In particular it allows for something called
non-holonomy or non-trivial parallel transport. For pedagogical reasons, in what
follows next we will consider the notion of connection, covariant derivative, and
parallel transport for surfaces embedded in 3D. Each of these notions can, of
course, be defined in arbitrary dimensions and without the need to resort to an
embedding.

Let us consider a surface in Euclidean three dimensional space,

r(x) =
(
r1(x1, x2), r2(x1, x2), r3(x1, x2)

)
.

The metric is obtained by examining infinitesimal displacements along the sur-
face (dx1, dx2):

ds2 = dr · dr =
dr

dxα
· dr
dxβ

dxαdxβ = gαβdx
αdxβ .

The inverse metric is also a useful tool in geometry

gαβ = (gαβ)−1, i.e. gαβg
βγ = gγβgβα = δγα.

A vector on the surface in our specific embedded context should be thought
of as the possible velocity vector of a particle moving on the surface. It is a
vector in R3 that is locally tangent to the surface. Such a vector can be defined
through its contravariant (marked by upper indices) components, or through its
covariant (marked by lower indices) components:

v = vα∂αr = vβg
αβ∂αr = vβ∂

βr

where ∂αr = ∂r/∂xα and ∂αr = gαβ∂βr. We now are able to differentiate the
components of a vector. We recall that the component of the vector at different
points are defined with respect to different basis vectors. It thus will surprise
us that a correction term should be introduced to compensate for this effect.

∂αv = ∂αv
β∂βr + vβ∂α∂βr = (∂αv

β + Γβαγv
γ)∂βr = (∇αvβ)∂βr,

where we have defined the Christoffel symbol: ∂α∂βr = Γγαβ∂γr. This compen-
sated differentiation is called the covariant derivative. Similarly one can show
that for the covariant components the covariant derivative reads

∇αvβ = ∂αvβ − Γγαβvγ . (1)

One can also easily show that the Chrisftoffel symbol can be calculated directly
from the metric:

Γγαβ = 1
2g
γδ(∂αgβδ + ∂βgαδ − ∂δgαβ). (2)
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The Christoffel symbol is the central tool in defining the connection on the
manifold, that is in determining how to compare vector in different locations,
or alternatively in determining how to parallel translate vectors. The notion of
parallel translation of a vector along a path is trivial in Euclidean space, ”one
only needs to keep the direction of the vector constant”. This is because the
connection in this case is trivial and directions can be defined globally. This
is the case of general Riemannian geometry in which directions are cannot be
defined globally. One can formulate the notion of parallel transport locally: Two
parallel vectors in Euclidean space form with a given straight line a constant
angle. Similarly, to infinitesimally translate a vector vα along a path γ we simply
construct at every point a geodesic curve that is locally tangent to the curve
γ, and keep a constant angle between the vector and the geodesic. Unlike the
case in Euclidean space, parallel translating a vector around a closed loop in a
general Riemannian manifold results in a rotation which is proportional to the
area enclosed by the loop. The local manifestation of this non-holonomy is the
non-commutativity of second derivatives

∇α∇βvγ −∇β∇αvγ = Rδγαβvδ,

where the Riemannian curvature tensor appearing above reads

Rδγαβ = ∂αΓδβγ − ∂βΓδαγ + ΓνβγΓδαν − ΓνγαΓδβν . (3)

We now note that the central formulas above (3), (2) and (1) rely only on
knowledge of the metric and do not require the specific embedding we used to
understand the intuition behind these notion. Given a Riemannian metric we
can paralle transport vector, define curvature, and use covariant differentiation
as we wish.

In order to discuss physical properties of a manifold we will need to parame-
terize it. Naturally, many of the calculated quantities will depend on the specific
parametrization. In particular, the components of the metric tensor and and of
the christtoffel symbols will differ between different parametrizations. However,
we will see that all relevant scalar quantities will be parametrization indepen-
dent. If we contract a contravariant vector field vα with a covariant vector field
uα the resulting scalar field vαuα = φ will be independent of the parametrization
used (despite the fact that the component of both vector fields will depend on
the parametrization). This will also bring us to conclude that when formulated
properly, if a vectorial equation holds with respect to one parametrization, it
will hold true for every parametrization despite the fact that the components
of the vectors will strongly depend on the parametrization. Higher indexed
quantities, such as the metric, are called tensors and should be thought of as
an external product of vectors. We note in passing that the Christoffel symbol
is not a tensor in this sense (and thus is not allowed into covariant equations),
however the difference of two Christoffel symbols with respect to two different
metrics is a tensor.
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1.3 Existence and uniqueness of an embedding for flat
metrics

Let us now consider a three dimensional flat manifold, again given by the map-
ping r(x). One could think of this structure as endowing space with curvilinear
coordinates. Recalling that the Christoffel symbol reads

∂i∂jr = Γkij∂kr, (4)

As we know that parallel transport is trivial in Euclidean space, we expect the
Riemann curvature tensor to vanish. We can ask if that is a sufficient condition
on the metric to produce such a flat manifold. The way to answer such a question
is constructive. We try to reconstruct the manifold from knowledge of the metric
alone. One could think of the definition of the Christoffel symbol above as a
first order PDE for Vα = ∂αr. Such a set of PDE’s allows a solution only
if ∂α∂βV = ∂β∂αV. Thus given a metric gij , and corresponding Christoffel
symbols Γijk we can reconstruct from these a three dimensional structure in
Eculidean space provided that

0 = ∂j∂k∂ir− ∂k∂j∂ir = (∂jΓ
m
ik − ∂kΓmij + ΓlikΓmlj − ΓlijΓ

m
lk)∂mr = Rmijk∂mr.

Which again implies vanishing of all coordinates of the Riemann curvature ten-
sor. Thus a Riemannianly flat (vanishing curvature) 3D manifold can be has a
unique realization in 3D Euclidean space (up to rigid motions).

1.4 Generation of incompatibility in non-uniform isotropic
expansion

We now come to exemplify how difficult it is to construct a flat metric through
a specific example. Consider a strain-free body, parameterized by Cartesian
coordinates, i.e. g = I. Allow every point in the body to expand isotropically
but non-homogeneously by a factor λ(x), thus giving rise to a reference metric
ḡ = λ2I. Such expansion may result for example from thermal expansion, or
in growth induced by turgor pressure in plants’ cells. We now ask a simple
question: what isotropic growth profiles will result in a compatible reference
metric, i.e. will be realizable by an Euclidean metric, g, and will therefore not
induce residual stress?

To answer this question we write down the components of the Riemannian
curvature tensor of the metric ḡ in terms of the expansion factor λ and its
derivatives. Taking independent linear combination of the covariant components
of the Riemannian curvature tensor (essentially the components of the Ricci
tensor Ricciij = Rkikj) yields the following compatibility conditions:

2(∂1λ)2 − λ∂1∂1λ− λ4λ =0, 2∂1λ∂2λ− λ∂1∂2λ = 0,

2(∂2λ)2 − λ∂2∂2λ− λ4λ =0, 2∂1λ∂3λ− λ∂1∂3λ = 0,

2(∂3λ)2 − λ∂3∂3λ− λ4λ =0, 2∂2λ∂3λ− λ∂2∂3λ = 0,
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where 4 = ∇ · ∇ = ∂2
1 + ∂2

2 + ∂2
3 is the standard Laplacian operator. It

takes straightforward algebra and integration to find that the only non-constant
solution of the above equations is

λ =
C2

|x− x0|2
,

for some constants C and x0. Every other isotropic expansion profile of an ini-
tially Euclidean 3D body will give rise to a non-Euclidean metric and inevitably
result in a residually stressed body. This result, may be surprising when con-
sidering growth profiles. However it is a consequence of a well-known geometric
result whereby all conformal mappings in R3 are inversions of a sphere. It im-
plies that any growth that does not result in residual stress requires delicate
global control, or some mechanical feedback.

1.5 Differential geometry of surfaces in three dimension

When coming to describe surfaces we will need to resort to slightly more compli-
cated structures; namely the first and second fundamental forms. For surfaces
embedded in three dimensions we distinguish between intrinsic properties (es-
sentially the metric and quantities that can be derived from it) and extrinsic
properties that can be changed without altering the metric, such as the principal
curvature in a specific location. The latter properties will be said to depend on
the specific embedding.

Given a surface r(x1, x2) and a surface normal N̂ we construct the first and
second fundamental forms via

aαβ = ∂αr · ∂βr, bαβ = ∂α∂βr · N̂.

The second fundamental form measures curvature per unit of coordinate length.
This is related to true length through the metric. A third tensor called the
shape operator cαβ = gαγbγβ gives curvatures in real units, independent of the
parametrization. Two scalar quantities can be calculated from it; Its determi-
nant is the Gaussian curvature K = det(c) = κ1κ2, and its trace is the mean
curvature, H = 1

2 (κ1 + κ2). Gauss’ theorema egregium identifies the Gaussian
curvature with the Riemannian curvature which can be calculated from the met-
ric alone. This theorem naturally restricts the allowable pairs of fundamental
forms. For example, the Eulidean metric g = I cannot support a uniformly
curved configuration b = κI, or as we discussed in the examples a saddle like
negative Gaussian curvature.

In addition to Gauss’ equation there are two more differential restrictions
on the fundamental forms These can be written compactly as

∇αbβγ = ∇βbαγ .

The compatibility conditions for surfaces are called the Gauss-Peterson-Mainardi-
Codazzi (GPMC) equations. Similarly to the case of Riemannian curvature
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satisfaction of these equations is a necessary and sufficient condition for the
existence of a unique surface with a given first and second fundamental forms.
An exceptionally elegant derivation of these equations starts with a surface and
extends it along its normal vector:

r(x1, x2, x3) = ρ(x1, x2) + x3N̂(x1, x2)

The resulting metric g3D can be expressed in terms of the 2D metric and cur-
vature tensors, a and b:

g3D =

a− 2x3b
0
0

0 0 1

+O((x3)2)

Calculating the Riemannian curvature tensor of g3D reproduces the GPMC
equations.

1.6 Homework assignment (optional)

Derive the compatibility condition for splay-free bending in a 2D liquid crystal.

1.7 Homework assignment solution:
Splay-free bending in 2D liquid crystals

We start by setting as before n̂ = (cos(θ), sin(θ)), and express the splay and
bend terms explicitly:

s =∇ · n̂ = ∂xnx + ∂yny = − sin(θ)θx + cos(θ)θy

b =|(n̂ · ∇)n̂| =
(
sin(θ)2(cos(θ)θx + sin(θ)θy)2 + cos(θ)2(cos(θ)θx + sin(θ)θy)2

) 1
2

= cos(θ)θx + sin(θ)θy
(5)

These relations may of course be inverted to yield

θy = cos(θ)s+ sin(θ)b , θx = − sin(θ)s+ cos(θ)b . (6)

Requiring equality of the second mixed derivatives, θxy = θyx, gives

0 =s2 + b2 + nysy + nxsx − nxby + nybx

=s2 + b2 + n̂ · ∇s− n̂×∇b = 0.
(7)

The fulfillment of this equation is necessary for the existence of a director field
with a given bend and splay functions. For example we can show that the restric-
tion to spatially uniform solutions (in which all derivatives vanish identically)
results in

0 = s2 + b2,

allowing only the trivial solution.
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It is important to state that equation (7) is not a compatibility equation
in the classical sense as it contains the function θ (whose existence is sought)
explicitly. Only completely eliminating it from the above equation will result in
an autonomous condition. We next do this for the splay-free case.

Setting s = 0 and η = 1/b equation (7) reduces to

1 = sin(θ)ηx − cos(θ)ηy. (8)

Equation (8) yields

sin(θ) =
ηx ± ηy

√
η2
x + η2

y − 1

η2
x + η2

y

, cos(θ) =
−ηy ± ηx

√
η2
x + η2

y − 1

η2
x + η2

y

. (9)

These equations in turn may be substituted into the definitions of the splay and
bend

0 = s = ∂x cos(θ) + ∂y sin(θ), 1/η = ∂x sin(θ)− ∂y cos(θ).

The resulting two second order PDE contain only the variable η and their sat-
isfaction is necessary for the existence of a director field n̂ with vanishing splay
and bending given by b = 1/η . The converse is also established, i.e. the sat-
isfaction of these equations is also sufficient in order to show the existence of
such a director field.
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2 Elasticity of frustrated structures

The purpose of this lecture is to complement the discussion of elasticity of the
previous lectures and extend it to residually stressed solids. While the physical
quantities we will deal with will be identical to those discussed in previous
lectures, in the context of residually stressed solids it is of great use to formulate
these in purely geometric means.

2.1 examples of frustrated elastic systems

We would like to start by reviewing several instances of residually stressed sys-
tems. The first structure is that of tempered glass. Almost all modern smart
phones are covered with “Gorilla glass” an exceptionally thin tempered glass
sheet. This greatly strengthens the glass against scratching and breakage. The
side windows in our car are also tempered. In the case of car windows one not
only wants to strengthen the glass against breakage but also to make sure that
when the glass does break it leaves behind no large shreds.

In order to understand how tempering serves both these purposes we need
to understand what is the mechanical state of tempered glass. The process of
glass tempering usually follows in two steps. In the first step the glass in its final
form is heated to allow flow. It is then cooled abruptly using forced air drafts.
This solidifies the outer surfaces of the glass while the bulk of the glass remains
molten and hot. During the gradual cooling the bulk shrinks. However, as the
external surfaces have already solidified the bulk is held tensed. This tension
is balanced by a corresponding compression on boundary. As brittle failure
advances cracks under tension, compressing the exposed boundary of a body
implies that in order to propagate a crack through the material one needs to
first overcome the surface compression. However, this compression is balanced
by very strong tension in the interior of the material. If for some reason this
tensed region would be exposed, and thus allow a crack to nucleate the tensed
interior would propagate the crack without any external forces. This often
results in many cracks.

(a) (b) (c) 

Figure 2: (a) A broken tempered glass. (b) Prince Rupert’s drops, an extreme
example of tempered glass. (c) A torn plastic sheet.

Torn thin plastic sheets provide another example of frustrated elastic struc-
tures. The tearing process is completely symmetric across the thin sheet. This
”up/down” symmetry leads to inducing no curvatures. However, the resulting

11



torn edge is very bent and ruffled. This is due to the differential elongation
near the crack tip. Regions closest to the torn edge have elongated the most
along the tear direction, while region far away from the tear experience no irre-
versible deformation. This differential stretching induces a hyperbolic metric on
the sheet. It is the embedding of this sheet that necessitates the ruffling of the
edge. Such sheets, which are associated with a non-Euclidean metric yet have
no intrinsic bending tendencies (much like thin plates) are called non-Euclidean
plates, and will be treated in what follows.

2.2 Elasticity of amorphous frustrated structures

Having observed how easily (and almost inevitably) geometric frustration arises
in continuous systems we may ask how can one treat such bodies elastically. For
example, how can we describe elastic deformations in a differentially growing
tissue. The abstract framework for such a description is that of hyperelasticity.
In this framework the stress is assumed to be derived from an elastic energy
function that depends only on the local deformation. Such ideally elastic mate-
rial can show no history dependence are non-dissipative, and their constitutive
relation (between stress and strain) is local. The main hurdle to overcome when
applying this description to frustrated systems is the inability to define a stress-
free configuration with respect to which strains will be measured. The classical
theory of elasticity starts by defining the displacement vector mapping a stress-
free configuration x to a deformed configuration r, namely u = r− x, and uses
this displacement vector to define the strain tensor via

εij = 1
2 (∂iuj + ∂jui + ∂iuk∂juk) ,

where ∂i = ∂/∂xi. However, when no stress-free configuration exists such a
measure of the deformation is not available to us. We note however that

εij = 1
2 (∂i(rj − xj) + ∂j(ri − xi) + ∂i(rk − xk)∂j(rk − xk)) ,

= 1
2

(
∂irj − δji + ∂jri − δji + (∂irk − δik)(∂jrk − δjk)

)
= 1

2

(
∂irj − δji + ∂jri − δji + (∂irk − δik)(∂jrk − δjk)

)
= 1

2

(
∂irk∂jrk − δji

)
= 1

2 (gij − Iij) .

Thus the strain may be interpreted as a difference between the metric in the
deformed state and the Euclidean metric of the stress-free reference state. If
one maps the above definition of the strain to an alternative coordinate system
x′ such that ∂xi/∂x′j = Λij we obtain

ε′ij = 1
2

(
g′ij − ḡij

)
,

where g′ij = Λki gklΛ
l
j and ḡij = Λki Λkj . Note that the Riemann curvature of both

metric tensors g and ḡ are expected to vanish as they both describe metrics of
bodies in Euclidean space. This new way of writing the strain, while slightly
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more cumbersome to write, allows an immediate generalization of the elastic
description to frustrated objects. The strain is simply the difference between
the realized metric of the body g and some reference metric ḡ. As g describes a
realization of a body in Euclidean space its Riemannian curvature tensor has to
vanish. We recall that such a metric defines a configuration of the body uniquely
(up to rigid motions), and thus can be used to fully describe the state of the
examined body. We do not, however, pose any restrictions on ḡ. In particular
whenever the Riemann curvature of the metric ḡ is non-vanishing the object it
describes has no stress free configuration.

The above leads to a generalization of the principle of hyper-elasticity:
The elastic energy stored within a deformed elastic body can be written as a
volume integral of a local elastic energy density that depends only on (i) the local
value of the metric tensor and (ii) local metrial properties that are independent
of the configuration.

Under the assumptions that both space and the elastic body are homoge-
neous and isotropic and that strains are small we obtain

E =

∫
Ω

W(g, ḡ)
√
|ḡ|dx1dx2dx3,

where the energy density is given by

W = Aijklεijεkl +O(ε3),

and the elasticity tensor may be expressed entirely in terms of the reference
metric and the two elastic response coefficients: the Young’s modulus, Y and
the Poisson ratio ν:

Aijkl = Y
1+ν

(
1

2

(
ḡikḡjl + ḡilḡjk

)
+ ν

1−2ν ḡ
ij ḡkl

)
.

The stress may be obtained from the elastic energy density

Sij =
∂W
∂εij

= Aijklεkl = Y
1+ν

(
εij + ν

1−2ν ḡ
ijεkk

)
.

This description recovers the familiar elastic description of regular bodies when
substituting ḡ = I. However, its main advantages is in cases where ḡ is non-
Euclidean, where it gives rise to residual stress.

In the absence of external forces the field of residual stress must be self
balancing. This property poses restrictions on the possible states of residual
stress within a body. The restrictions for the field of residual stress may be
obtained by considering a scalar field χ with a non vanishing gradient vi = ∇iχ,
which satisfies

∇ivj = ∇i∇jχ = 0, (10)

where the covariant derivative above is taken with respect to the metric g. For
all such test functions χ the quadratic form Sijvivj must average to zero when
integrated over the entire body, i.e.,∫

Ω

vivjS
ij
√
|ḡ|dx1dx2dx3 = 0. (11)
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The proof follows immediately from integration by parts and explicit substitu-
tion of the divergence equation for the stress. In particular, as the integrand is
a quadratic form in the gradient, vi, every non trivial residual stress field must
contain both tension and compression.

2.3 Incompatibility and residual stress:
A uniformly frustrated system

In this section we demonstrate the main difference between residual stress and
residual strain. While the latter is a local property, the former depends also on
global properties such as the domain size and shape.

Let ḡ be a reference metric corresponding to a uniform Gaussian curvature,
K̄. We now seek an elastic energy minimizing configuration in the space of con-
stant Gaussian curvature, K = const. We assume the domain of consideration
and the parametrization such that both the reference metric and the embedding
metric g are uniformly close to the Euclidean metric, |ḡ−I| ≤ δ, and |g−I| ≤ δ.

To leading order in δ the divergence equation reduces to the cartesian diver-
gence equation.

∂iS
ij = 0,

which implies the existence of a scalar function Φ (Airy stress potential) such
that

∂1∂1Φ = S22, ∂2∂2Φ = S11, ∂1∂2Φ = −S12.

For simplicity we now consider a material with a vanishing Poisson ratio and
set the Young’s modulus to unity. In such a case the Bilaplacian of the scalar
function reads

42Φ = K̄ −K = −∆K,

where we have made use of the linearized Gaussian curvature (in leading order
in δ) where by

K = − 1
2 (∂1∂1g22 + ∂2∂2g11 − 2∂1∂2g12).

Note the symmetry between embedding a hyperbolic surface in Euclidean space
and the embedding of a flat surface on a positively curved space. We now
consider a strip of length L and width w such that w << L << Lgeo where
Lgeo is the smallest geometric lengthcale associated with the curvatures; 1√

K

and 1√
K̄

. Assuming that away from the boundaries the solution will not depend

on the coordinate along the long direction, x2, we obtain

S11 = S12 = 0, S22 = −∆K

2

(
(x1)2 − w2

12

)
.

The value of the constant above was set to by requiring the stress to have a
vanishing average in the range −w/2 ≤ x1 ≤ w/2. Upon integration we obtain
for the elastic energy

E ∝ w5L(∆K)2.
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The above scaling reads E ∝ w4A for strips of constant width and varying area,
and scales as E ∝ α2A3 for strips of constant aspect ratio α = w/L. One can
also solve the above equations is cylindrical geometry to recover the constant
aspect ratio scaling E ∝ A3 under the assumption of axial symmetry.

2.4 Dimensionally reduced theory for frustrated thin sheets

We studying slender three dimensional bodies having one small dimension we
would like to describe their state and response through surface properties. This
is the motivation behind dimensionally reduced 2D elasticity models such as the
Foppl Von Karman theory or the Koiter theory for thin plates. For frustrated
this structures we can follow similar lines and obtain a dimensionally reduced
functional for frustrated thin elastic structures.

For a given thin body we choose a parametrization such that x3 = 0 defines
the mid-surface in the body and the x3 variable extend perpendicularly to the
surface. This leads to a consideration of the body as composed of laminae (each
characterized by its x3 value). In this case the metric reads:

ḡ =

ḡ11 ḡ12 0
ḡ21 ḡ22 0
0 0 1

 .

Here x3 ∈ [−t/2, t/2], where t is the local thickness. We define the reduced two
dimensional reference fundamental forms

āαβ = ḡαβ |x3=0 , b̄αβ = − 1
2∂3āαβ

∣∣
x3=0

.

Using the reference fundamental forms we may express the three dimensional
elastic energy in terms of a two dimensional energy density

E =

∫ ∫ ∫
W(g, ḡ)

√
|ḡ|dx1dx2dx3

≈
∫ ∫

W2D(a, ā, b, b̄)
√
|ā|dx1dx2.

Carrying out a formal expansion of the elastic energy density in powers of the
thickness, we obtain a reduced energy density,

W2D(x1, x2) = teS(x1, x2) + t3eB(x1, x2), (12)

where

eS(x1, x2) =
1

8
Aαβγδ(aαβ − āαβ)(aγδ − āγδ)

eB(x1, x2) =
1

24
Aαβγδ(bαβ − b̄αβ)(bγδ − b̄γδ),

and the reduced two dimensional elastic tensor is

Aαβγδ = Y
1+ν

[
1
2 (ḡαγ ḡβδ + ḡαδ ḡβγ) + ν

1−ν ḡ
αβ ḡγδ

]
.
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The elastic problem is defined as follows: given two reference fundamental forms
ā and b̄ find the realized fundamental form by minimizing the elastic energy
among all first and second fundamental forms that satisfy the compatibility
conditions:

∂2b11 − ∂1b12 = b11Γ1
12 + b12(Γ2

12 − Γ1
11)− b22Γ2

11

∂2b12 − ∂1b22 = b11Γ1
22 + b12(Γ2

22 − Γ1
12)− b22Γ2

12

b11b22 − b212 = K(a11a22 − a2
12),

(13)

2.5 Non Euclidean plates

We now come to examine specific examples of frustrated thin elastic sheet. The
first type will resemble flat plates in the sense that is is composed of identical
laminae across its thickness, and thus favors flat configurations . This implies
bαβ = 0. When the 2D metric of such thin bodies is non-Euclidean (and thus
necessitating curvatures), they are called non-Euclidean plates. The torn plastic
sheets are an example of an uncontrolled production of such non-Euclidean
plates. A more controlled version mad in hydrogel can be found in figure 3.

Figure 3: A hydrogel system for the controlled production of axially symmet-
ric non-Euclidean plates. A mixture of high and low concentration thermally
responsive gel is injected into a Hele-Shaw cell and is polimerized and cross
linked freezing the concentration gradients in the material. When heated low
concentrations regions shrink significantly more that high concentration region
endowing the gel with a non-Euclidean 2D metric. As there is no structure along
the thin dimension, the only shaping mechanism in this case is the metric. Image
from Klein et-al, Science 2007.

We can use the hydrogel setting to create a non-Euclidean plate with the
metric of a hemisphere. Below we describe its behavior as a function of thickness.
This description remains valid form all kinds of non-Euclidean plates. For large
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Figure 4: The elastic energy of a hemispherical non Euclidean plate as a function
of the thickess.

thickness bending energy is expensive and a planar solution is favored. As the
thickness is lowered bending becomes more favorable with respect to stretching
and at a critical thickness the thin sheet buckles out of the plane. This reduces
its stretching energy, but increases its curvature. As the thickness is further
diminished the metric of the thin sheets approaches the reference metric and
the surface accumulates more and more bending. In the vanishing thickness
limit, bending is infinitely more energetically favorable than stretching and the
obtained conformation is an isometric embedding of the reference metric.

One could easily show that for example the bending content is a monotoni-
cally decreasing function of the thickness (increasing with diminished thickness).
We start by identifying the elastic energy minimizing configuration r∗(t) for ev-
ery thickness, t:

teS(r∗(t)) + t3eB(r∗(t)) = E(r∗(t), t) = E∗(t) = min
r
E(r, t).

We now note that the minimizer r∗(t) has the least amount of energy compared
to all other possible configurations at thickness t. This for example implies that
E(r∗(t), t) ≤ E(r∗(t + ∆), t) and that E(r∗(t + ∆), t + ∆) ≤ E(r∗(t), t + ∆).
Substituting we obtain

eS(r∗(t)) + t2eB(r∗(t)) ≤eS(r∗(t+ ∆)) + t2eB(r∗(t+ ∆)),

eS(r∗(t+ ∆)) + (t+ ∆)2eB(r∗(t+ ∆)) ≤eS(r∗(t)) + (t+ ∆)2eB(r∗(t)),

which when subtracted gives

((t+ ∆)2 − t2)eB(r∗(t+ ∆)) ≤ ((t+ ∆)2 − t2)eB(r∗(t)).

Thus for positive ∆ we obtain e∗B(t+ ∆) ≤ e∗B(t).
We note again that for frustrated systems the zero energy level sets of the two

energy terms eS and eB have no overlap. One particular outcome of this is the
loss of equipartition. In general when an energy is composed of two quadratures
we expect some notion of equipartition; that energy variation in the first term
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is balanced (at equilibrium) by the energy variation of the second term. While
the latter statement naturally hold in our system:

0 =
δE(r, t)

δr

∣∣∣∣
r∗(t)

= t
δeS(r)

δr

∣∣∣∣
r∗(t)

+ t3
δeB(r)

δr

∣∣∣∣
r∗(t)

⇒ tė∗S = −t3ė∗B ,

where the last equality follows from multiplying by ṙ∗(t). However, when e∗S = 0
(in the vanishing thickness limit) we have e∗B = e0

B > 0. This implies that the
two terms may obey different scaling laws (and thus not balance each other
out).

If, for example, e∗S(t) ∝ tα then eB − e0
B ∝ −tα−2. This means that for

α > 2 the dominant behavior for small thickness satisfies te∗S ∝ tα+1 whereas
t3e∗B ∝ e0

Bt
3. For surfaces embeddable with finite bending energy one can show

that α = 5/2 and is due to a boundary layer contribution, where in a region
whose width scale as

√
t/κ‖ the sheet behaves as if it is thick.

2.6 Shaping by curvature prescription

The complementary problem to the shaping by metric prescription of non-
Euclidean plates is shaping by curvature prescription. In the former, b̄αβ = 0
is trivial but the metric is associated with a non-vanishing Gaussian curvature
K̄ 6= 0. In the latter, which will be discussed here, the metric is trivial ā = I,
but the reference curvatures will be non-trivial.

For the rubber bilayer described in Figure 1 we obtain

ā =

(
1 0
0 1

)
, and b̄ =

(
κ 0
0 −κ

)
.

In the thin limit our surface must be Riemannianly flat (and thus cannot curve
in two dimensions simultaneously). It therefor assumes one of two cylindrical
conformations in which one of the reference principal curvatures is obeyed, while
the other is compromised. In the thick limit the curvature is obeyed and the
metric is compromized.
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Figure 5: A thin elastic sheet shaped by curvature prescription prepared as de-
scribed in Figure 1. Both the thin and thick limit are accessible. The transition
between the two limits, unlike the non-Euclidean plates case, does not occur
through a buckling transition but is continuous. Note the boundary layer visi-
ble at the free edge of the isometric configurations. Image adapted from Armon
et-al, Science 2011.
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3 Handedness quantification

The quantification of handedness is elusive. While it is a very intuitive notion,
and one can easily classify a screw to be right handed or left handed, the general
quantification of handedness has been a long standing challenge. We will try
to elucidate these difficulties, and show how examining single particles in well
defined orientations, a task made possible only by very recent technological
advancements, has guided the path to a consistent quantification scheme.

3.1 A brief historical review

In 1811 the french scientist Francois Arago, only 25 years old at the time, is the
first to discover the optical activity of quartz crystals. The term optical activity,
synonymous with circular dichroism, describes the turning of the direction of
polarization of linearly polarized light about its direction of propagation. This
phenomenon may be understood as arising from a difference in the indices of
refraction for right handed circularly polarized light and left handed circularly
polarized light (as identified by Fresnel in 1824). It is thus a very close relative of
linear birefringence where the different linear polarizations are associated with
different indices of refraction. In most cases however, the linear birefringence
component is going to be considerably larger than the circular birefringence.
For this reason circular birefringence was first observed in settings where struc-
tural symmetry or isotropic arrangement of the constituents eliminate the linear
birefringence component.

One puzzle that arose from the intensive study of the optical activity in
organic solutions was the that of the optical properties of tartaric acid. Tar-
taric acid is one of the three main acids in red wine, and sometimes appears
on the bottom of the cork in the form of small crystals. When tartaric acid is
extracted from wine lees it is optically active, strongly rotating light counter-
clockwise when approaching an observer. However, when synthesized artificially
in a lab the resulting tartaric acid is not optically active, despite having the ex-
act same composition. This puzzle was resolved in 1847 by Louis Pasteur who
discovered that, unlike the common thought at the time, the structure of tar-
taric acid crystals produced by wine lees is different from the structure of those
produced in the lab. In particular when artificially synthesized tartaric acid is
crystallized two types of crystals form. One of these structures is identical to
the one obtained when crystalizing tartaric acid produced by wine lees. The
other structure is its mirror image. The two differ by the location of one of the
small facets, a difference overlooked until Pasteur’s study. Pasteur separated
the two types of crystals and redissolved them separately. The obtained solu-
tions showed strong (and opposite) optical activity. Pastuer not only deduces
that the optical activity and crystal geometry are a common manifestation of an
underlying handed molecular structure but arrived at far reaching conclusions
about the role of handedness in biology and life:
”I am inclined to think that life, as manifested to us, must be a function of
the dissymmetry of the universe and of the consequences it produces...Life is
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dominated by dissymmetrical actions. I can even foresee that all living species
are primordially, in their structure, in their external forms, functions of cosmic
dissymmetry. ”

It is this context, of handedness manifesting in the optical activity of isotropic
solutions and owing to a yet unrevealed underlying structure that we should in-
terpret the definition of handedness. This definition was given by Lord Kelvin
in his Baltimore lectures in 1893:
”I call any geometrical figure, or a group of points, chiral, and say that it has
chirality if its image in a plane mirror, ideally realized, cannot be brought to
coincide with itself.”

3.2 Difficulties in quantitative chirality

There are several challenges one faces in coming to construct a quantitative
measure of handedness following Lord Kelvin’s definition of Chirality. First,
object that one would like to assign handedness to, are found to be achiral. For
example there are four crystal groups that are achiral (i.e. they are superposable
on their mirror image) but can support optical activity. Moreover even very
intuitively handed response properties such as the counterclockwise rotation
of a four cup anemometer (a device for measuring wind velocity) cannot be
attributed to an underlying handed structure of the anemometer as it possesses
a plane of mirror symmetry.

A more abstract, but perhaps more devastating difficulty comes from the
notion of chiral connectedness. In 1997 it was shown by Weinberg and Mislow
that in D dimensions if a body has D+ 2 degrees of freedom or more one could
continuously distort the conformation of the body into its own mirror image
without ever passing through a mirror symmetric configuration. A quantitative
measure following Lord Kelvin’s definition of chirality is expected to read zero
only if an object is mirror symmetric, and change sign under reflections. The
notion of chiral connectedness precludes the existence of a such a continuous
measure.

3.3 Handedness in mirro symmetric objects

The rubber sheet bi-layer discussed earlier this week provides a particularly
useful example of a mirror symmetric structure giving rise to handedness. Its
internal structure is homogeneous in the plane and symmetric under reflections.
However, when long and narrow strips are cut from the bilayer they curve to
form helicoidal strips of both right and left handedness depending on the relative
orientation of the strips and the directions in which the layers were stretched.
Strips whose long direction is oriented along the x−axis form right handed he-
licoids whereas strips whose long direction is oriented along the y−axis form
left handed helicoids. The symmetric square cutout (c.II), as expected, gives
rise to no distinct handedness. However, it is capable of manifesting extrinsic
handedness when considered in specific directions, right along the ±x directions
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Figure 6: Orientation dependent manifestation of handedness in a reflection
symmetric continua. Two identical rubber sheets are uniaxially stretched and
glued together to form a rubber bilayer. Narrow strips cut from the bilayer
curve out of plane to accommodate the difference in rest length between the
layers and form helical structures. The square boundaries in b.II give rise to a
cutout c.II which is symmetric under reflections. This is a manifestation of the
symmetry of the bilayer’s intrinsic structure. If, however, the cutout boundaries
do not respect the bi-layer’s symmetry, e.g. b.III and b.IV, strips with a well
defined handedness result, as seen in c.III, and c.IV. The handedness observed
depends solely on the orientation of the strip’s long axis; strips aligned with
one diagonal generate right handed helicoids, whereas strips oriented in the
perpendicular direction generate left handed helicoids. Slicing a narrow piece
from a left handed strip such that its aspect ratio is inverted yields a narrower
strip of opposite handedness as seen in c.V which was cut from c.VI.
The square cutout c.II holds the capacity to generate both right and left handed
strips. We thus consider it as possessing both right and left handedness in equal
amounts rather than having no handedness. It is right handed along the x
direction, and left handed along the y direction. This directional dependence
of the handedness is also observed in the relative positioning of cut-outs c.II,
c.III and c.IV where the symmetric cutout c.II can be seamlessly continued
in to manifestly Right or Left handed helical structures. Such an oriented
dependent handedness cannot be captured by any pseudo-scalar measure and
calls for quantification by a pseudo-tensor.

and left along the ±y directions, in agreement with the handedness of the elon-
gated strips. In this way handedness emerges from a combination of the intrinsic
structure of the bilayer and a choice of direction.

Neither (pseudo-)scalars nor (pseudo-)vectors are capable of capturing the
orientational behavior described above. The simplest object that captures such
an orientational variation is a (rank 2) pseudo-tensor such as the one shown in
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Eq. 14:

X = c

1 0 0
0 −1 0
0 0 0

 . (14)

This pseudotensor is symmetric under reflection, associates the x direction with
a right (+) handed rotation about the x axis as observed in the χxx component,
and associates the y direction with a left handed rotation (-) about the y axis
as observed by the χyy component.

3.4 Tensorial handedness measures

We now seek to identify an orientation dependent handedness property, that in
particular will be non-vanishing even for mirror symmetric cases. This requires
us to broaden the notion of chirality. In order to determine the handedness of
the each of the helicoidal strips in Figure 6 we followed the surface’s face with
the right hand. If advancing along the helicoid’s length required the hand to
roll outward, the helicoid was said to be right-handed. This related the rota-
tion of the surface of the ribbon to its main axis direction. Optical activity,
screw handedness as well as the chemists’ R/S handedness descriptors for or-
ganic compounds all share this interpretation as relating directions to rotations.
As directions are naturally vectors and rotations in R3 can be represented as
pseudovectors relating the one to the other requires a pseudotensor. Construct-
ing this pseudotensor requires us to identify the directions and the rotations the
measure should relate.

In the case of embedded surfaces we consider a handedness measure that
arises from a local handedness density χe. This handedness density pseudo-
tensor is defined such that for every two unit vectors n̂ and m̂ we take the
contraction m̂χen̂ to quantify the rotation of the surface’s normal about the
vector m̂ when it is displaced along the surface in the direction projected from
n̂. It will be positive if the rotation about m̂ is right handed and negative when
the associated rotation is left handed.

To formulate the above idea we start by considering a surface r parameterized
by the coordinates xα, where α = 1, 2. These coordinates induce the metric
aαβ = ∂αr · ∂βr, and the second fundamental form bαβ = ∂α∂βr · N̂, where N̂
is the surface’s normal. Given a direction in space n̂ with cartesian component
ni we project it to the surface’s tangent space by

n̂‖ = (∂βr · n̂)aαβ∂αr.

Differentiating a function f defined on the surface along the projection of n̂
reduces to

(n̂‖ · ∇)f = (∂βr · n̂)aαβ∂αf.

For an oriented derivative of a vector field (n̂∇)V we may isolate the component
which is due to a pure rotation about a vector m̂ by the scalar product m̂ ·

(
V̂×

(n̂∇)V
)
. Whenever this product is positive the change in the field V along n̂
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is associated with a right handed rotation about m̂. The rotation of the normal
of a surface about a vector m̂ when displaced along the direction induced by
the vector n̂ is then given by

m̂ ·
(
N̂× ((∂βr · n̂)aαβ∂αN̂)

)
= m̂χen̂, (15)

where the chirality density, χe, defined by equation (15) can be rewritten in
component form as

χeij = ∂αrja
αβεilkN

l∂βN
k, (16)

where rj and Nk denote the cartesian components of r and N̂ and ε is the
antisymmetric Levi-Civita tensor. We may eliminate the normal vector from
the formulation with the aid of the components of the second fundamental form
bαβ and the two dimensional Levi Civita tensor εδγ :

χeij = ∂αrj∂δria
αβbγβε

δγ/
√
|a|. (17)

It is easy to show that the handedness density above transforms as a pseudo-
tensor and is independent of the surface’s parametrization and of the sign of the
normal vector.

This handedness density may be integrated to give a tensorial handedness
measure of the surface as a whole: X eij =

∫∫
χeij dA.

We note that this measure is traceless. This can be proved directly

χeii = aαδa
αβbγβε

δγ/
√
|a| = bγδε

δγ/
√
|a| = 0,

where the right equality follows from contracting a symmetric and antisym-
metric tensor. This is in fact a hallmark of the local mirror symmetry of two
dimensional surfaces. Every handedness density of the form χij = ∂αrj∂βriχ̃

αβ ,
where χ̃αβ is a function of the local surface properties defined only through the
first and second fundamental forms, a and b, must have a vanishing trace.

We would like to contrast this traceless measure with another measure that
is not traceless. We do so by considering the handedness of an embedded curves
following the same guiding principles described above. In this case the con-
traction m̂χn̂ gives the rotation of the curve’s normal vector, N, about the
direction m̂ when displaced along the curve in the direction and magnitude
projected from n̂.

We define t,N and b to be a curve’s tangent vector, normal vector and
Binormal vector respectively. These unit vectors satisfy the Serret-Frenet for-
mulas:

∂s

 t
N
b

 =

 0 κ 0
−κ 0 τ
0 −τ 0

 t
N
b

 ,

where s is the arc-length parametrization of the curve and κ and τ are the curves
curvature and torsion. Differentiating along the curve in direction projected
from n̂ gives a weighted arc-length derivative t · n̂ ∂s. The handedness density
tensor may be simplified by the Serret-Frenet equations to read

χij = tiεjlkN
l∂sN

k = titjτ + tibjκ. (18)
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The trace of the handedness density gives the local torsion, χii = τ . For locally
planar curves where τ = 0 this gives a traceless tensor, as expected from the
local mirror symmetry of such curves. In the general case, however, the measure
is not traceless. For example when considering a helix oriented along the z axis
of pitch p,

r =

[
R cos

(
s√

R2+p2

)
, R sin

(
s√

R2+p2

)
, p s√

R2+p2

]
,

then for an integer number of windings, M , the integrated handedness tensor is
uniaxial and oriented along the axis of the helix:

X =

0 0 0
0 0 0

0 0 2πM p√
R2+p2

 =

0 0 0
0 0 0
0 0 ∆Z√

R2+p2

 ,

where ∆Z is the height of the helix.
Last we want want to construct a measure for a 3D unit vector field u such

as used to describe the director field of a nematic or cholesteric mesophase of
a liquid crystal. In this case we take the contraction m̂χen̂ to measure the
rotation of the unit vector field u about the vector m̂ when displaced along the
direction n̂. In components this takes the form

niχijm
j = ni∂iu

kεjklu
lmj .

The trace of the handedness tensor defined above gives

χii = ∂iu
kεiklu

l = (∇× u) · u,

which coincides with the expression for helicity, c.f. magnetic helicity (A ·B =
A · (∇×A)), and hydrodynamic helicity (u · ω = u · (∇×u)). Note that as the
handedness density is quadratic in the unit vector field u it remains unchanged
under the transformation u→ −u allowing us to interpret u as a director field.
For example a simple cholesteric order in which the director field is given by

u = (cos(pz), sin(pz), 0),

displays a uniaxial handedness density oriented along the z direction

χ =

0 0 0
0 0 0
0 0 −p

 .

In general, when this handedness measure is applied to director fields it yields
not only the degree of handedness (such as the cholesteric pitch above), but also
associates the handed phenomena with a direction.
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3.5 A concluding remark about handedness and frustra-
tion

It is important to understand that we do not claim the existence of a single
measure for handedness; we expect a plethora of handedness measures each ap-
plicable in it own setting measuring a specific handedness manifestation at a
given scale. Nonetheless, we expect all such measures to be orientation depen-
dent.

For the case of embedded surfaces we showed that the leading order handed-
ness tensors will be traceless. However, this is not the case for rod-like objects
(considered as 1D curves). If a natural system self assembles handed rod-like
particles into surfaces we expect this assembly process to generate frustration.
The purely right handed rods will inevitably give rise to both right and left
handedness in the assembled surface.
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