

Experimental perspective on supercooled liquids and glasses (molecular and atomic systems)

- Dynamics
- Thermodynamics
- Structure
- Heterogeneous dynamics in SCL
- Glass properties
- Transformation kinetics (glass -> SCL)
- Glasses near the bottom of the potential energy landscape (vapor-deposited glasses)

Dynamics in SCLs continued: Nonexponential correlation functions

Schmidtke, ... J. Chem. Phys 139, 084504 (2013)

Richert in: Structural Glasses and Supercooled Liquids: Theory, Experiment, and Applications, First Edition. Edited by Peter G. Wolynes and Vassiliy Lubchenko. 2012 John Wiley & Sons, Inc.

Dynamics in SCLs are heterogeneous in space and time – single molecule optical experiments

Figure 3

Linear-dichroism trajectory of a (*a*) fast, (*b*) slow, and (*c*) heterogeneous rubrene probe in glycerol at 204 K ($1.07T_{g}$). Figure adapted with permission from Reference 70. Copyright American Institute of Physics.

Kaufman, Annu. Rev. Phys. Chem. (2013)

Dynamics in SCLs are spatially heterogeneous

- Single molecule experiments
- 200 τ_{α} for one molecule to sample representative environments
- Multidimensional NMR
- $\xi_{het} = 1.5 4 \text{ nm near } T_g$
- Connection to weaker T dependence of D

Glasses age: Cooling a liquid to just below T_g forms a barely stable glass whose properties change with time

J.Q. Wang et al. / Acta Materialia 104 (2016); Au₄₉Cu_{26.9}Ag_{5.5}Pd_{2.3}Si_{16.3}

Structural relaxation time of a glass changes during aging

Lunkenheimer et al. PRL 95, 055702 (2005); glycerol

Glass relaxation line extrapolates back to ~ 10⁻¹² s

Homework: Do cathedral glasses flow appreciably in ~ 500 years?

Assume: $T_g = 800 \text{ K}$ $T_{aging} = 300 \text{ K}$

One approach: Calculate structural relaxation time in the glass immediately upon cooling to T_{aging}. Perhaps we can isothermally age to reach equilibrium at T_{K} ? Progress towards equilibrium slows logarithmically...

Struik, *Physical aging in amorphous* polymers and other materials (1978)

 $\tau_{equilibration} \sim \tau_{\alpha,equilibrium}$

Response of glass to perturbations is usually highly non-linear: "asymmetry of approach" experiment

Lopez and Simon, Macromolecules 2016, 49, 2365–2374; polystyrene

Kudlik et al., Europhys. Lett., 40 (6), pp. 649-654 (1997)

Beta relaxation time extrapolates back to ~ 10^{-16} s ²⁴

Low temperature properties of glasses: Interpretation as quantum tunneling two-level systems

Anderson, Halperin, and Varma, Philo. Mag. (1972)

Data from: Lasjaunias et al., SolidState Commun. (1975)

Zeller and Pohl, Phys. Rev. B (1971)