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I. INTRODUCTION

A. Motivation and physical background

Initial early studies of condensed matter focused on idealized homogeneous systems, e.g.,

localized spins and electron liquid in ideal impurity-free crystals, phase transitions and or-

dered states of homogeneous matter. These by now are quite well understood.[1]
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However, all realistic systems include local random heterogeneities, motivating extensive

studies of random frozen ”quenched disorder”. Important traditional examples in solid-

state context include localization of electrons, responsible for the existence of Anderson

insulators characterized by a vanishing zero-temperature conductivity, as well as a finite

zero-temperature residual resistivity of metals, pinning of vortices in superconductors (which

would otherwise move and dissipate energy resulting in finite resistivity), and charge density

waves exhibiting impurities-induced nonlinear current-voltage characteristics[2, 3].

Quenched disorder is frozen heterogeneity that is a background random potential for the

fluctuating (thermal and/or quantum mechanical) degrees of freedom. Here, however, we

will have little to say about much more challenging problems of ”self-generated disorder”, as

in structural glasses and jammed systems, where even without background heterogeneity the

degrees of freedom get kinetically arrested, falling out of equilibrium. We also distinguish

quenched disorder from annealed ”disorder”, where the random degrees of freedom are ergodic.

The latter is nothing more than an additional thermodynamic degree of freedom, and so

is not qualitatively distinct from a disorder-free multi-component system. The additional

”annealed disorder” degrees of freedom can in principle be traced out, obtaining a disorder-

free system with modified parameters.

Impurity defects can typically easily rearrange and equilibrate (acting like annealed “dis-

order”) inside soft matter and thus quenched disorder is less common in such soft systems.

However, there are many interesting and nontrivial exceptions. These include soft matter

encapsulated inside a random solid matrix or in contact with a solid rough substrate. Inter-

esting studied examples include liquid crystals confined inside a random aerogel or aerosil

matrix[5–8] or liquid crystal cells perturbed by a random substrate.[9].

Influence of ever-present quenched disorder on phase transitions and on concomitant

ordered phases is another extremely developed subject of research.[2] Prominent examples

include magnetism and elastic soft media randomly pinned by the defected host atomic

matrix or an underlying heterogeneous substrate as realized in pinned vortex lattices, charge

density waves, magnetic domain walls, contact lines, earthquake and friction phenomena.

These will be extensively discussed by Pierre Le Doussal.

In general, this is an extremely challenging subject. It requires one to understand the

behavior of infinite number of degrees of freedom without the usual powerful crutch of trans-

lational invariance in the presence of thermal fluctuations, divergent near a continuous phase
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transition. Even at zero temperature, the problem difficult because minimizing heteroge-

neous energy functional requires balancing two frustrated tendencies, order and disorder.

Clearly, it is impossible and actually unnecessary to find solutions for a specific realization

of disorder. Instead, we often only need statistical typical properties of the system. Thus,

in many cases, it is sufficient to compute disorder averaged physical properties, such the

average free-energy and order parameter correlators.

Even the simplest limit of weak, statistically homogeneous disorder, that we will focus on

here can be quite nontrivial, though significant progress has been made. We will have little

to say about the infinitely more challenging problems of strong disorder such as spin-glasses

and (even more difficult) structural glasses, where there is no obvious state to perturb about,

and in fact understanding the statistical properties of the highly nontrivial random ground

state is the key problem itself.

B. Model

For concreteness it is important to have an explicit lattice model in mind, as for example

Ising and Heisenberg model, that describe broad range of physical systems with, respectively

discrete Z2 and continuous O(N) symmetries. Since the former is a special N = 1 case of

the latter (though for some quantities the two are qualitatively very different) we consider

the O(N) model with a Hamiltonian

H = −
∑
x,x′

Jxx′
~Sx · ~Sx′ −

∑
x

~hx · ~Sx, (1)

describing for a example a ferromagnetic, spin-aligning exchange interaction Jij > 0 between

a lattice of spins ~Si on sites i, j, and under an additional influence of a local magnetic field

~hi. For the simplest case of nearest neighbor Jij and uniform ~hi clearly the state is ferro-

magnetic with all spins aligned along ~h and with each other. A quite amazing observation

is that for sufficiently low T < Tc and high enough dimensions, despite randomizing thermal

fluctuations such state is stable even for vanishing external field. One can encode significant

additional complexity through the exchange Jij extending beyond nearest neighbors, that

can frustrate and destabilize ferromagnetic order even for translationally invariant case and

for a vanishing field.

We focus on the simplest case of nearest-neighbor ferromagnetic exchange and include
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the effects of quenched disorder by taking Jij > 0 to be randomly distributed according to

a distribution PJ [Jij]. This is the ferromagnetic “random bond“ problem, for example corre-

sponding to non-magnetic impurities and vacancies. As mentioned above, instead, positive

and negative random exchanges, with a vanishing mean is the “spin-glass” problem that is

infinitely more difficult as even the ground state is highly random and nontrivial. We will

not consider spin-glasses, focusing on the case where disorder is a weak perturbation to an

obvious ferromagnetic ground state. In addition, we can include random ~hi’s, characterized

by a distribution Ph[hij], the so-called “random field” problem, corresponding to random

magnetic impurities.

With the exceptions where (rare and highly cherished) exact solutions are available, or

numerical analysis is undertaken, to make progress it is helpful to work with a continuous

field theory that is a long-wavelength limit approximation of the underlying lattice model.

The corresponding O(N) field theory is given by

H =

∫
ddx

[
1

2
K(∇~S)2 +

1

2
(t0 + δt(x))|~S|2 +

λ

4
|~S|4 − ~h(x) · ~S

]
, (2)

where ~S is the coarse-grained local order parameter, K,λ are effective model parameters,

that for weak disorder can be taken to be constants, t0 ∼ T − Tc0 is the “bare” reduced

temperature, whose sign change drives the paramagnet-ferromagnet transition at Tc0 (within

mean-field approximation), spontaneously breaking O(N) symmetry for t0 < 0; the true

transition is shifted to t = tc by thermal fluctuations and disorder. The random bond

and random field disorder are respectively encoded into δt(x) and ~h(x), that for simplicity

we take to be characterized by zero-mean, Gaussian distribution completely specified by

variance ∆t, ∆h

δt(x)δt(x′) = ∆tδ
d(x− x′) , hi(x)hi(x′) = δij∆hδ

d(x− x′) , (3)

The problem we are then faced with is to understand the effects of random δt(x),~h(x)

in the presence of thermal fluctuations, inside the phases and near the critical point that

separates them.
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C. Physical observables

1. disorder-free criticality

We first recall that even in the absence of disorder, this and many other by now well-

understood phase transitions exhibit quite nontrivial universal phenomenology that took a

few decades to sort out in a beautiful set of theoretical developments[1] in the 1970s, led

by Ben Widom, Leo Kadanoff, Sasha Migdal, Michael Fisher, Sergey Pokrovsky, and Ken

Wilson.

These singular effects of fluctuations only become truly important near a critical point

of transition t = 0 (and below the upper-critical dimension d < duc = 4 in this case; see

below), where the stabilizing t|~S|2 is tuned to vanish and the nonlinearities (e.g., λ|~S|4)

must be taken into account nonperturbatively (a conventional perturbation theory in λ

fails), typically using numerical analysis or renormalization group (RG) transformation.

The upshot of such analysis is that fluctuations are controlled by a single correlation length

ξ(t), that characterizes the range of spatial correlations and diverges near the critical point.

As a result all physical properties scale with ξ(t), forgetting about microscopic details, and

thereby exhibiting universality. More specifically for continuous transitions (couched in the

language of a PM-FM transition) RG analysis predicts consistent with experiments that

magnetization, magnetic susceptibility to external magnetic field, heat capacity and the

correlation length scale according to:

M(T,B = 0) ∝ |Tc − T |β, χ(T ) ∝ |T − Tc|−γ, (4)

M(T = Tc, B) ∝ B1/δ, C(T ) ∝ |T − Tc|−α, (5)

ξ(Tc, B = 0) ∝ |T − Tc|−ν , (6)

(7)

where “critical exponents” β, γ, δ, α, ν are universal, in that they depend only on the sym-

metry and dimensionality of the continuous phase transition, namely the so-called its “uni-

versality class”. These exponents satisfy a variety of exact relations:

α+ 2β + γ = 2, γ = β(δ − 1), (8)

2− α = dν, γ = (2− η)ν, (9)

(10)
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leading to only two independent exponents. In mean-field theory β = 1/2, γ = 1, δ = 3, α =

0, ν = 1/2, but more generally are irrational but universal numbers. In above we defined

the correlation length ξ that characterizes the range of spatial correlations that diverge at

the phase transition.

This phenomenology is captured by the RG theory, where one integrates out a shell of

high momenta (short-scale) modes ~S> with Λ/b < k < Λ, for simplicity rescales the length

scales and fields according to:

x = x′b, ~S<(x′b) = bζ ~S ′(x′) (11)

so as to bring the microscopic uv-cutoff lattice cutoff ab back to a. The resulting effective

Hamiltonian H ′ governing the lower momenta (long-scale) modes then takes on the same

form as H, but with rescaled parameters, that to 0th order (no diagrammatic corrections)

are

K(b) = Kbd−2+2ζ , t(b) = tbd+2ζ , λ(b) = λbd+4ζ . (12)

It is convenient to choose ζ = (2−d−η)/2 to keep K fixed i.e., K ′(b) = K or to equivalently

look at the dimensionless couplings t̂(b) ≡ t(b)/K(b) and λ̂(b) ≡ λ(b)/K2(b). To 0th order

η = 0 and we have

t̂(b) = t̂b2, λ̂(b) = λ̂b4−d, (13)

showing that the Gaussian fixed point λ = 0 is unstable for d < duc = 4 and that t > 0

(t < 0) flows to positive (negative) infinity corresponding to the disordered paramagnetic

(ordered ferromagnetic) phase.

The result of this procedure is summarized by RG flow equations for the dimensionless

couplings , t̂(b), and λ̂(b), as a function of the rescaling factor b, that for an infinitesimal

rescaling b = eδ` take a differential equations form. To first order in λ̂, near the critical point

(small t̂) these are illustrated in Fig.1, and are given by

dt̂

d`
= 2t̂+ c0λ̂− c1t̂λ̂,

dλ̂

d`
= (4− d)λ̂− c2λ̂2 (14)

where ci are universal constants that are functions of d,N . These determine the phenomenol-

ogy at long scales, `→∞ and its relation to the microscopic model as one coarse-grains by

scale b = e`. Namely, we observe that for a positive λ(b), the so-called Gaussian fixed point
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(characterized by harmonic Hamiltonian, i.e., λ = 0) is unstable and on a critical manifold

t = −1
2
c0λ the model flows to the infrared attractive Wilson-Fisher fixed point at a finite

λ∗ = (4−d)/c2, which controls the critical behavior sufficiently close to the transition.[1] On

the left (right) sides of the critical separatrix, the flow are to the large negative (positive)

reduced temperature t, respectively, corresponding to the ordered FM and disordered PM

phases, encoding the universal dependence on reduced temperature t.

FIG. 1: Renormalization-group flow in the O(N) field theory, illustrating the nontrivial infrared

attractive Wilson-Fisher critical point, λ∗ controlling the nature of the PM-FM phase transition

sufficiently close to Tc. The thick line is the critical surface separating the PM and FM phases.

We recall that thermodynamics that reflects above critical behavior is fully described by

the free energy F [~h] = −T lnZ[~h] (with kB = 1), derived from the partition function

Z[~h] = Tr
[
e−H/T

]
=

∫
[d~S]e−H[~S,~h]/T . (15)

When computed in the presence of a local external field, ~h(x) (and other fields coupling to

physical observables of interest), F [~h] also gives connected correlation functions, through

differentiation of the free energy with respect to external field. For example, simple analysis
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shows

Cij(x− x′) = 〈Si(x)Sj(x
′)〉 − 〈Si(x)〉〈Sj(x

′)〉, (16)

= Z−1

∫
[d~S]Si(x)Sj(x

′)e−H[~S,~h]/T − Z−2

∫
[d~S]Si(x)e−H[~S,~h]/T

∫
[d~S]Sj(x

′)e−H[~S,~h]/T ,

=
∂2F [~h(x)]

∂hi(x)∂hj(x′)
. (17)

At the critical point and vanishing ~h, the latter provides the definition of the η exponent

according to Cij(x) ∼ 1/xd−2+η.

Problem 1:

Explicitly demonstrate the last relation between C(x) and ~h derivatives of F .

Problem 2:

Demonstrate the Gaussian integral identities. Namely, that for a Gaussian random vari-

able x obeying Gaussian statistics, with variance A−1
ij , we have

〈xixj〉0 ≡ G0
ij =

1

Z0

∫ ∞

−∞
[dx]xixje

− 1
2
xT ·A·x = A−1

ij , (18a)

〈ehT ·x〉0 = e
1
2
〈(hT ·x)2〉0 = e

1
2
hT ·G·h, (18b)

with second identity the relative of the Wick’s theorem, which is extremely important for

computation of various correlators, e.g., those associated with x-ray and neutron scattering

structure function. Also show that the first Gaussian propagator is reproduced by differenti-

ating twice respect to ~h the second identity for the generating function.

Problem 3:

Using above generating function or equivalently the Wick’s theorem that arises from it

(namely 〈xi1xi2 . . . xi2n〉0 =
∑

all permutations P 〈xiP1
xiP2
〉0 . . . 〈xiP (2n−1)

xiP2n
〉0), compute the

Gaussian average 〈x2n〉0.

In the harmonic theory, λ = 0, the correlator (for a vanishing 〈~S〉 is equivalent to the

propagator) G, is straightforwardly computed using equipartition or Gaussian integration

(the work-horse of statistical physics; see the appendix), giving in momentum and coordinate

spaces

〈Si
kS

j
k′〉0 =

T

Kk2 + t0
δij(2π)dδd(k + k′), (19a)

〈Si(x)Sj(x
′)〉0 = δij

∫
ddk

(2π)d

T

Kk2 + t0
eik·(x−x′) ∼ δij

T

|x− x′|d−2
, (19b)

giving η = 0.
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2. disordered observables

For disordered systems, it is very difficult and not very useful to compute physical observ-

ables (the free energy and correlation functions) for a specific realization of random disorder,

as this requires an analysis of an arbitrary non-translationally invariant field theory. Instead,

we are interested in statistical properties, such as the mean, typical, or perhaps the full dis-

tribution function of physical observables, as these are the quantities typically measured in

a macroscopically large sample.

In cases of physical observables that are narrowly distributed (referred to as self-

averaging) experimentally measured spatially averaged quantities can be replaced by the

average over disorder realizations, δt(x),~h(x) (not unlike statistical ensemble average re-

places time average in conventional statistical mechanics). The free energy F is often one of

such self-averaging observable and we are faced with computing

F = −T lnZ = −T lnTr [e−H/T ], (20)

where in the double average 〈. . .〉 the angular brackets indicate thermodynamic average for

a particular realization of disorder and overline the disorder-average. This is quite a chal-

lenging quantity to compute as it is not formulated in terms of a standard high-dimensional

trace over statistical degrees of freedom. This is what distinguishes quenched (difficult) and

annealed (a multi-component homogeneous system) disordered problems. In principle the

problem can be handled by averaging over disorder order by order perturbatively in disor-

der, simplified by noting that lnZ eliminates all disconnected graphical (Feynman diagram)

contributions before disorder-averaging.

Similarly, in disordered systems we compute (quenched) disorder-averaged correlation

functions, such as

Cij(x− x′) = 〈Si(x)Sj(x′)〉 =

[
Z−1

∫
[d~S]Si(x)Sj(x′)e

−H
δt(x),~h(x)

[~S]/T

]
, (21a)

= 〈(Si(x)− 〈Si(x)〉) (Sj(x′)− 〈Sj(x′)〉)〉+ 〈Si(x)〉〈Sj(x′)〉, (21b)

≡ CT
ij(x− x′) + C∆

ij (x− x′), (21c)

where by the last two lines we defined two qualitatively distinct contributions to the disorder-

and thermally-averaged two-point correlator. The first contribution, CT is the disorder-

averaged connected correlator of fluctuations of ~S around the thermally-averaged magneti-
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zation 〈~S〉, which in the simplest situation (as we will see below) quantifies thermal fluctu-

ations about a random background. In contrast, the C∆ piece quantifies zero-temperature

correlations of the disorder-induced ground-state background 〈~S(x)〉 itself.

The key difficulty in computing above disorder-averaged correlators is associated with the

1/Zδt(x),~h(x) normalization factor, that (like the disorder-averaged lnZδt(x),~h(x) in the free en-

ergy above) does not have the conventional annealed field theory form. These quantities can

nevertheless be computed by disorder averaging term by term in a perturbative expansion.

D. Replica trick

1. free energy

However, a more efficient but formal approach of handling the logarithm in the free

energy and 1/Z in the correlation functions is available through the ingenious “replica trick”

introduced by Edwards and Anderson[11, 12]. It relies on a simple mathematical identity

lnZ = lim
n→0

Zn − 1

n
, (22)

which when applied to the free energy reduces to computing a disorder-averaged nth power

(rather than of a logarithm) of the partition function over a random field g(x) (referring to

δt(x),~h(x) collectively)

Zn =
n∏

a=1

Tr [e−H[Sa,g(x)]/T ] =
n∏
a

[∫
dSa

]
e−

Pn
a H[Sa,g(x)]/T , (23a)

≡
∫

[dg(x)]P [g(x)]

[∫
[dSa]e

−
Pn

a H[Sa,g(x)]/T

]
. (23b)

The key point of this last form is that after averaging over disorder g(x) (that can be done

exactly if g(x) enters linearly and its distribution is Gaussian, but by universality the result

typically holds more generally) the problem reduces to that of a homogeneous disorder-free

problem, at the expense of introducing n species of replicated (annealed) fields Sa. However,

this not much of a complication as it can be easily handled by standard methods.

We now carry out this procedure for the random bond, random field theory introduced

above. For simplicity we take bond and field disorder to be independent Gaussian fields

defined by Eq.(3). Applying the disorder average in (23b), above and utilizing Gaussian
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integration in (73), we find

Zn =

∫
[d~Sa]e

−Hr[~Sa]/T , (24a)

where the replicated Hamiltonian is given by

Hr[~Sa] =

∫
ddx

[
n∑
a

(
1

2
K(∇~Sa)

2 +
1

2
t0|~Sa|2 +

λ

4
|~Sa|4

)
− 1

T

n∑
a,b

(
1

2
∆h

~Sa · ~Sb +
1

8
∆t|~Sa|2|~Sb|2

)]
.

(25)

To analyze the effects of disorder, we thus need to study critical fluctuations of ~Sa governed

by the above effective Hamiltonian functional. The added complexity beyond the disorder-

free problem is the need to handle the random-bond nonlinearity ∆t (off-diagonal in the

replica index a, b) in addition to the conventional interaction λ (diagonal in a) and do this

using a replicated matrix propagator Gab arising from off-diagonal quadratic random-field

∆h term, taking the n → 0 limit at the end of calculation. This can be handled using

a standard renormalization-group analysis[1] generalized to above functional. Due to its

somewhat technical nature, we will not pursue this full analysis here. Instead, we will build

up further technical tools and discuss the associated physics using more direct physical

approach.

2. correlation functions

Replica trick can also be used to convert the disorder-averaged correlation functions (with

their challenging normalization factor 1/Z) into replicated, effectively annealed correlator.

To this end we note that 1/Z factor below can be eliminated by multiplying numerator and

denominator by 1/Zn−1 and taking n→ 0 limit,

C(x− x′) = 〈S(x)S(x′)〉 =
n→0

[
Z−n

n∏
a=1

∫
[dSa]S1(x)S1(x′)e

−
Pn

a=1 H
δt(x),~h(x)

[Sa]/T

]
, (26a)

=

∫
[dSa]Sb(x)Sb(x

′)e−Hr[Sa]/T ≡ 〈Sb(x)Sb(x
′)〉 = Cr

bb(x− x′), (26b)

where the normalization denominator has been eliminated. In contrast,

C∆(x− x′) = 〈S(x)〉〈S(x′)〉, (27a)

=

∫
[dSc]Sa(x)Sb(x

′)e−Hr[Sa]/T ≡ 〈Sa(x)Sb(x
′)〉 = Cr

ab(x− x′). (27b)
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These show that the replica-diagonal component of the replicated correlator gives the full

correlation function and the off-diagonal component then gives the thermally disconnected

correlator averaged over disorder.

We use above results to examine the form of the correlators in the random-field model.

Focussing on the quadratic part of the replicated Hamiltonian, Hr and decoupling it into

Fourier modes, we find

Hr0[~Sa] =
1

2

∫
ddk

(2π)d

n∑
a,b

[
(Kk2 + t0)δab −

∆h

T
Jab

]
~Sa(−k) · ~Sb(k), (28)

where Jab = 1 is a matrix of 1s. With this, we find the harmonic propagator, G0
αβ(q), defined

through

〈Si
a(k)Sj

b (k
′)〉0 = G0

ab(k)δd(k + k′) (29)

to be

G0
ab(k) = δij

[
T

Kk2 + t
δab +

∆h

(Kk2 + t)2
Jab

]
. (30)

Above we utilized an identity for inverting matrices of the type

Γab = Aδab −BJab , (31)

namely:

Γ−1
ab =

1

A
δab +

B

A(A+Bn)
Jab ,

=
n→0

1

A
δab +

B

A2
Jab . (32)

Problem 4:

Prove above matrix inverse identity.

II. EFFECTS OF DISORDER NEAR PHASE TRANSITION

With this background in place we now turn to examine some key questions. One is the

effects of disorder near a nontrivial critical point. Does the disorder smear (eliminate) the

phase transition? Alternatively, does it modify its qualitative character, or does it leave it

qualitatively unaffected at long scales, perhaps only shifting its critical temperature? Below,

we will address these questions for the O(N) model.
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A. Random bond disorder

We first focus on the random bond disorder, setting ∆h = 0. This is a stable choice in the

sense that ∆h = 0 is preserved by fluctuations, fundamentally protected by the underlying

O(N) rotational invariance for ~h(x) = 0. As we discussed above, for the ferromagnetic-only

random (positive) bonds, this may correspond to non-magnetic vacancies and interstitials.

Given this physical picture of frustration-free random bond disorder it is quite clear that the

ordered FM phase and the associated PM-FM phase transition are expected to be stable to

such weak heterogeneity.

1. global RG flow

On the technical level, one can see this by noting that in the replicated theory, near the

Gaussian fixed point, indeed ∆t scales in the same way as the λ, both, coefficients of quartic

operators, becoming relevant for d < dc = 4. To assess the full role of bond disorder requires

full a RG treatment, treating λ and ∆t on equal footing. The upshot of such analysis[13] is

that the Wilson-Fisher critical point for N < 4 is unstable to weak bond-disorder ∆t and

flows to a new infrared stable fixed point with nonzero values, ∆∗
t and λ∗ (see Fig.(2)). For

N > 4, WF critical point is stable to weak ∆t. Thus for N < 4, ∆t thereby qualitatively

changes the universality class of the PM-FM transition to its “random-bond” counterpart,

characterized by a new set of critical exponents and crossover functions.

2. Harris criterion

More generally and physically, the stability of the disorder-free critical point under weak

random-bond disorder can be analyzed following a powerful argument by Harris[15]. Namely,

to assess the importance of bond randomness δJ near the critical point, we look at root-mean-

squared fluctuations in its average over the correlation volume, ξ(t)d, that for uncorrelated

random bonds Jij decays as the square-root of this volume (central limit theorem),

Jrms ∼
1

ξ(t)d/2
∼ |T − Tc|νd/2, (33)

where we used the nontrivial disorder-free correlation length exponent ν (e.g., associated with

the Wilson-Fisher critical point). Since J controls Tc, these rms fluctuations translate into
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FIG. 2: Renormalization-group flow in the random-bond O(N) field theory, illustrating for

N < Nc = 4 the instability of the disorder-free Wilson-Fisher critical point to the random-bond

counterpart, that controls the nature of the PM-FM phase transition in the presence of random

distribution of ferromagnetic exchange bonds, sufficiently close to Tc.

smearing of Tc and therefore of the “distance” |t| to Tc. The transition will be qualitatively

affected by disorder (whether smeared or modified cannot be assessed from this weak-disorder

stability analysis), if as the mean Tc is approached, the condition

T rms
c � |T − Tmean

c | ←→ |T/T c − 1|νd/2 � |T/T c − 1|, (34a)

|t|νd/2−1 � 1, in the limit of t→ 0, (34b)

is satisfied. This gives the famous Harris criterion

α = 2− νd > 0, (35)

that in physical terms states, that weak random-bond disorder will qualitatively modify a

disorder-free critical point if the latter is characterized by a positive heat capacity exponent.
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An explicit analysis in the complementary field-theoretic description gives

trms

|t|
=

1

|t|

√√√√[
1

ξd

∫
ξ

ddxδt(x)

]2

, (36a)

=
1

|t|ξd

√∫
ξ

ddx

∫
ξ

ddx′δt(x)δt(x′) =
∆

1/2
t

|t|ξd

√∫
ξ

ddx

∫
ξ

ddx′δd(x− x′), (36b)

=
∆

1/2
t

ξd/2
∼ |t|dν/2−1 ∼ |t|−α, (36c)

an identical result.

B. Random-field disorder

We now turn to the more general problem of the random-field disorder (corresponding to

magnetic impurities or an diluted anti-ferromagnet with a uniform external field) , noting

that it locally breaks the O(N) and upon coarse-graining also generates the random-bond

disorder and thus the full problem need be treated. In contrast to the pure bond disorder,

random field competes with the ferromagnetic bonds and thus the question of even the

existence of a distinct FM phase and therefore of the PM-FM transition is unclear.

The full problem near the phase transition can be systematically handled using an RG

analysis, keeping track of t(b), λ(b), ∆h(b) and ∆t(b). The dominant behavior can be under-

stood through the replicated Hamiltonian, Hr. We first note that random field appears as a

“mass”-like coupling ∆h/T that compared to the exchange K (i.e., keeping K fixed) grows

quadratically under rescaling
∆h(b)

T (b)
= b2

∆h

T
,

as does the reduced temperature t(b). This can equivalently be interpreted as the flow of

the effective temperature

T (b) = Tb−θ → 0, θ = 2 +O(ε),

while keeping ∆h fixed, encoding the dominance of the random-field energies over thermal

fluctuations. Since the absolute temperature scales nontrivially, the free energy density now

scales as f ∼ ξ−d+θ, leading to a violation of hyperscaling, with the new relation given by

2− α = (d− θ)ν.
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To see these predictions in a field-theoretic RG analysis, we note that in the presence

of random fields ∆h, the dominant perturbative correction to λ comes from a one-loop

diagram, where two λ vertices are connected by CT and C∆h components of the random-

field propagator. This gives

δλ ∼
(

∆hλ

T

)
λ, (37)

leading to a dimensionless coupling w ≡ ∆hλ
T

, that (because of the multiplicative factor of

∆h with eigenvalue of 2) becomes relevant for d < duc = 6. Working near d . 6 the full

RG analysis leads to the flows illustrated in Fig.3. These show the instability of the Wilson-

FIG. 3: Renormalization-group flow in the random-field O(N) field theory, illustrating the insta-

bility of the disorder-free Wilson-Fisher critical point to the random-field zero-temperature critical

point, with the transition driven by the random-field strength ∆h at T = 0.

Fisher critical point toward a zero-temperature critical point at ∆∗
h, which determines the

new set of critical exponents that characterize the singularities near the transition driven by

the strength of the random-field disorder.[13]

The formal field-theoretic analysis also shows that the upward shift of the upper-critical

dimension to drf
uc = 6 (i.e., (drf

uc−2)−4 = 0) for the random-field problem, is more generally

accompanied by an upward shift of the effective dimension relative to the disorder-free WF

critical point. This formal prediction is known as “dimensional reduction”, and if naively
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extended to lower dimensions would predict a lower-critical dimension (below which the

phase and the associated transition are destroyed) to be d
rfO(N)
lc = 4 (i.e., (drf

lc − 2) = 2)

for the continuous symmetry problems (N > 1) and drfIM
lc = 3 (i.e., (drf

lc − 2) = 1). Thus

the prediction of dimensional reduction is that random field Ising model does not exhibit a

transition in three dimensions, a result that was rigorously proved to be incorrect (namely

RFIM does exhibit a transition in 3d)[18]. We will resolve this contradiction in the next

section.

III. EFFECTS OF DISORDER INSIDE ORDERED PHASE

Although we have examined the effects of disorder on the phase transition, a prerequisite

to that question is the analysis of the stability of the ordered phase itself (“Know where you

are going before knowing how you get there.”). This is what we turn to below.

A. Stability for disorder-free thermal fluctuations

Before looking at stability in a disordered system, it is instructive to recall such question

for a disorder-free system. To this end, this can be addressed by an estimate of the size of

low-energy fluctuations about the ordered state. These are dominated by Goldstone modes

governed by the Hamiltonian

HGM =

∫
ddx

1

2
K(∇~S)2. (38)

A simple analysis of the mean-squared fluctuations δ~S(x) reduces to a Gaussian integral

with HGM , that for the case of N > 1 is dominated by the Goldstone modes and gives

〈δS2〉 =

∫
ddk

(2π)d

T

Kk2
∼ T

K
L2−d, for d < 2 (39)

which thus diverges for d ≤ 2, thereby destabilizing the ordered phase in these lower dimen-

sions.

Problem:

Show that broken FM phase of the O(N) model exhibits a gapped (with gap 2|t|) longitudi-

nal mode corresponding to fluctuations along the spontaneous magnetization ~S0 and gapless

transverse (to ~S0) Goldstone modes, that dominate the spin-wave fluctuations that destroy

the ordered phase. Show that the latter is characterized by HGM in (38).
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The above result can also be understood more physically by considering the energetics of

the low-energy Goldstone mode fluctuations about the ordered state. Consider a spin-wave

with a smooth 2π variation of δ~S over a length L. It is clear from HGM above that the

corresponding excitation energy is given by

Eex ∼ KLd−2.

Clearly the ordered phase can only be stable if this excitation energy is much larger than kBT ,

which is length independent. Thus, consistent with (39), we arrive at the seminal result of the

Hohenberg-Mermin-Wagner theorem[24–26], that a phase that breaks continuous symmetry,

at finite T can only be stable for d > 2.

Naively one may assume that this result, (39) also extends to the Ising N = 1 case.

However, in this case, it is a discrete Z2 Ising symmetry that is broken, and there are no

Goldstone massless modes in the ordered FM state. Some reflection shows that the low

energy excitation is a domain wall of “area” Ld−1 and width ξ =
√
K/(2|t|), separating

regions of positive and negative magnetizations. The corresponding energy is clearly

Edw =
1

2

∫
ddxK(∇~Sdw)2 ≈ K

ξ
S2

0L
d−1 ∼ |t|S2

0ξL
d−1 ≈

√
K|t|S2

0L
d−1. (40)

Such domain-wall energy dominates over a constant kBT only for d > 1, showing that Ising

model’s lower-critical dimension is dIsing
lc = 1.

B. Stability to random-bond disorder

For weak random-bond disorder the FM phase is stable as argued earlier and so the

d
rbO(N)
lc = 2 and drbIM

lc = 1 is the same as that of the thermal state, limited by percolation

transition when the lattice breaks up into disconnected pieces that clearly cannot order

ferromagnetically.

C. Stability to random-field disorder

To assess the stability of the ordered state to weak random field (analogous to thermal

fluctuations above) we examine rms fluctuations δ~Srms around the uniform FM state. These

are dominated by Goldstone modes ~S⊥ governed by

HGM−RF =

∫
ddx

[
1

2
K(∇δ~S⊥)2 − ~h(x) · ~S⊥

]
(41)
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As we have seen above, the positive thermal exponent θ > 0 corresponds to subdominant

role of thermal fluctuations relative to the random pinning potential. Thus, (although the

result can be computed using a field theoretic analysis with HGM−RF ), at long scales we can

focus on the T = 0 ground state and simply minimize the above random-field Hamiltonian,

obtaining

~S⊥(x) =

∫
ddx′G(x− x′)~h⊥(x′), (42)

that decouples in Fourier space, giving (as expected) a much stronger than thermal fluctu-

ations

S2
rms = 〈~S⊥(x)2〉 =

∫
ddk

(2π)d

∆h

K2k4
, (43a)

∼ ∆h

K2
L4−d, for d < 4, (43b)

∼ ∆h

K2
a4−d, for d > 4, (43c)

Since for d ≤ 4 these random-field driven fluctuations in the ground state grow without

bound (logarithmically in d = 4), we conclude that d
rfO(N)
lc = 4 is the lower-critical dimen-

sion, below which the FM ordered state is unstable even at zero temperature. Setting these

distortion to be of the order of the disorder-free magnetization, S0, we extract the size ξIML

of the ordered domains,

ξ
rfO(N)
IML ∼

(
K2S2

0

∆h

)1/(4−d)

, for d < 4, (44a)

∼ aeK2S2
0/∆h , for d = 4, (44b)

the so-called Imry-Ma-Larkin correlation length[16, 17] beyond which long-range order is

lost.

Alternatively, we can extract ξ
rfO(N)
IML for a Goldstone modes system by examining the

competition between the ordering elastic energy

EelO(N) =
1

2
K

∫
ddx(∇~S⊥)2 ∼ KS2

0L
d−2,

and of the random-field energy

ErfO(N) = −
∫
ddx~h(x) · ~S⊥ ∼ −∆

1/2
h S0L

d/2.
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In estimating ErfO(N) we used the central limit theorem to conclude that random-field ~h(x),

averaged over a volume Ld scales like ±
√
Ld. For d < 4, it is clear that the elastic energy

dominates at short scales L < ξIML and random field at long scales L > ξ
rfO(N)
IML , with ξ

rfO(N)
IML

given by (44).

For an Ising system that breaks a discrete symmetry above analysis needs to be modified

in its estimate of the excitation energy, that is the same as for our earlier estimate of stability

to thermal fluctuations, (40). Using this excitation energy of the Ising domain-wall and the

estimate of the random-field energy, we find

ERFIM ≈
√
K|t|S2

0L
d−1 −∆

1/2
h S0L

d/2. (45)

where for d < 2 the random-field energy always dominates at sufficiently long scales

L > ξRFIM
IML =

(
K|t|
∆h

S2
0

)1/(2−d)

.

Thus, the lower-critical dimension for the random-field Ising model is dRFIM
lc = 2, and

as alluded to above, this Imry-Ma analysis[16] demonstrates a breakdown of the formal

dimensional reduction, that would incorrectly suggest it to be 3, rigorously proved to be

incorrect by John Imbrie[18]. Namely, for T = 0, d > 2 and weak disorder, Imbrie proved

that there is broken symmetry with nonzero magnetization in the random-field Ising model.

IV. PHYSICAL REALIZATIONS

In addition to the ferromagnet used as a paradigm system above, there is a large variety of

physical systems to which above analysis applies. The most interesting of these are systems

that break continuous symmetry and therefore are characterized by Goldstone modes that

respond strongly and richly to random fields, as illustrated in Figs.4, 5.

A ubiquitous subclass of these is the elastic periodic media that spontaneously break con-

tinuous translational symmetry and are pinned by random pinning impurities that explicitly

break translational symmetry and (as we will show), couple to the underlying phonon fields

like a random field. Some examples of these pinned periodic elastic media include charge

density waves (CDW) common in anisotropic conductors, Wigner crystals of strongly in-

teracting 2d electrons, Abrikosov vortex lattices in type II superconductors, smectic and

nematic liquid crystals[4] confined to a fractal aerogel matrix, ordinary crystals pinned by a

random substrate as in friction and tectonic plates motion.[2, 3, 8]
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FIG. 4: Examples of physical realizations random-field elastic media

FIG. 5: Examples of physical realizations random-field elastic media, such as a charge-density wave

(left) and nematic and smectic liquid crystals confined inside aerogel.
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Another interesting class is that of elastic media of co-dimension 1 (that allows it to

buckle into the third dimension) with internal disorder as in membranes with random protein

inclusions, randomly polymerized elastic membrane e.g., cytoskeleton, and graphene and

other crystalline monolayers.[10]

A distinct fascinating class of random-field problems is an ordered states where pinning

disorder appears only on the surface, like a pristine smectic liquid crystal pinned by a random

substrate.[9]

A. Pinned scalar periodic elastic media: CDW

Probably the most studied and simplest example of a pinned elastic medium is a charge-

density wave in a “dirty” quasi-1d metal. A CDW order parameter is the complex amplitude

ψ of the periodic charge density ρ(x)

ρ(x) = Re[ρ0 + eiq0zψ(x)] = ρ0 + |ψ| cos[q0z + φ(x)], (46)

that is the amplitude of the lowest Fourier component of the density, and ρ0 is the uniform

background electron density. The phase φ(x) is the phonon Goldstone mode of the CDW

associated with the spontaneous breaking of the uniaxial translational symmetry. The cor-

responding Goldstone mode Hamiltonian encodes the stiffness of inhomogeneous distortions

of the CDW via the xy-model (N = 2)

Hxy =
1

2
K

∫
ddx(∇φ)2. (47)

The ever-present random pinning potential U(x) (corresponding to e.g., crystal defects

and impurities) couple to the CDW density and therefore to the order parameter ψ according

to

Hpin[ψ] =

∫
ddx

1

2

[
δt(x)|ψ|2 + U(x)ρ

]
, (48a)

≈
∫
ddx

[
U(x)eiq0zψ + U(x)e−iq0zψ∗

]
≈

∫
ddx [V (x)ψ + V ∗(x)ψ∗] , (48b)

≈ 2

∫
ddxU(x)|ψ| cos [q0z + φ(x)] , (48c)

where we have dropped the subdominant random-bond disorder in favor of the complex

random potential V (x) = U(x)eiq0z, which acts on the CDW order parameter ψ like a
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random field ~h(x) = (Vreal(x), Vimaginary(x)) acts on a spin. We take this xy random field to

be zero-mean, Gaussian characterized by the correlator

V (x)V ∗(x′) = ∆hδ
d(x− x′) . (49)

As you will see in great detail from Pierre Le Doussal’s lectures, (first demonstrated by

Daniel Fisher[14]), it turns out that generically it is insufficient to only keep track of a

single lowest harmonic q0. At long scales all harmonics become equally important in their

contribution to pinning φ. Thus, one is forced to treat a more general form of random-field

disorder, namely a general random periodic function of φ, V (φ,x), characterized by

V (φ,x)V ∗(φ′,x′) = ∆(φ− φ′)δd(x− x′) . (50)

and with the overall random-field xy-model Hamiltonian for the CDW given by

Hrfxy =

∫
ddx

[
1

2
K(∇φ)2 + V (φ,x)

]
. (51)

We leave the detailed technical analysis of this model to lectures by Pierre Le Doussal,

limiting ourselves here to a linearized analysis due to Larkin[17], valid only on short-scale

below the Imry-Ma-Larkin length scale ξIML.[16, 17] To this end, we note that at short

scales, φ is small, justifying a linear in φ random force approximation,

V (φ,x) ≈ const.+ F (x)φ,

whose effects on φ can be straightforwardly calculated as in the previous section for a FM.

The corresponding φrms is given by

φ2
rms = 〈φ(x)2〉 =

∫
ddk

(2π)d

∆F

K2k4
, (52a)

∼ ∆F

K2
L4−d, for d < 4, (52b)

∼ ∆F

K2
a4−d, for d > 4. (52c)

Consistent with the analysis of a FM, we thus find drfxy
lc = 4 and the Larkin length ξIML =

(2πK2/∆F )1/(4−d). On length beyond ξIML, multiple minima of V (φ,x) become important

and a fully nonlinear treatment is required.[14] (In 2d, it is sufficient to retain only the lowest

random-field harmonic, q0, leading to the finite temperature Cardy-Ostlund glass[19, 20]).

The upshot of this analysis is that within a fully elastic treatment (i.e., neglecting topological
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vortex defects valid for d ≥ 3[23]) the random-field xy model (CDW phase fronts) remain

topologically ordered, displaying logarithmic roughness of φ, with

〈(φ(x)− φ(x′))2〉 = Ad ln |x− x′|, (53)

with a universal amplitude Ad found by Giamarchi and LeDoussal [21]. This low-temperature

phase is thus appropriately referred to as an xy-glass, topologically ordered and elastically

disordered, qualitatively distinct from the fully topologically disordered state, and thus sep-

arated from it by a sharp phase transition.

Even though we discussed above model within the context of a CDW, it is clear that it is

equally appropriate to any physical system characterized by a scalar and compact (periodic)

Goldstone mode with O(2) ∼ U(1) symmetry, such as for example an xy ferromagnet.

B. Pinned vector periodic elastic media: vortex lattice, Wigner crystal

Only a slight generalization of the random-field xy-model (as applied to CDW) applies

to an even broader class of systems, characterized by a vector Goldstone mode. Obvious

examples are generalized crystals (e.g., vortex lattice in type-II superconductor or a Wigner

crystal), that spontaneously break translational symmetry along more than one axis and

thus exhibit a vector phonon, u.

Typically such periodic states occur inside a crystal (e.g., a superconductor), that in any

physical system admits a finite density of impurities and lattice defects (often these are

introduced intentionally to enhance pinning), that act like a random potential that couples

to the periodic component of the density as discussed in the scalar case of CDW above.

A resulting Hamiltonian for a d-dimensional (2d as the physical case) Wigner crystal is

then given by a sum of elastic (taken to be isotropic below) and random pinning energies

Hcrystal =

∫
ddx

[
µu2

αβ +
1

2
λu2

αα + V (u,x)

]
, (54)

where uαβ ≈ 1
2
(∂αuβ +∂βuα) is the linearized strain tensor, sufficient for our treatment here.

This can be generalized in an obvious way to a d+1 dimensional (3d in the physical case)

vortex lattice, with a d-dimensional in-plane phonon field transverse to the vortex lines, and

Hamiltonian given by

Hvortex lattice =

∫
ddxdz

[
1

2
ε(∂zu)

2 + µu2
αβ +

1

2
λu2

αα + V (u,x)

]
. (55)
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The treatment of these systems is quite similar to that of their scalar “cousin” xy-model

for the CDW discussed above. The distinction is in the nature of the topological defects,

dislocations and disclinations here[1] and a simple generalization to d phonon components.

C. “Dirty” smectic liquid crystals

1. Smectic liquid crystals confined in aerogel

Another rich and qualitatively distinct randomly pinned elastic medium is liquid crystals

confined to a random porous matrix as e.g., smectic in aerogel.[5–7] The key new qualitative

feature of the smectic is its“soft”elasticity controlled by the Laplacian curvature energy.[1, 4]

As discussed in my Critical Phases lecture notes, this seriously enriches the phenomenol-

ogy because even in the absence of quenched disorder, the treatment of smectics requires

inclusion of the fully nonlinear strain tensor. Furthermore, in addition to the random posi-

tional pinning, there is a strong effect arising to orientational pinning of the layer normals,

entering through the coupling of the aerogel strands to nematogens

Hdn =
1

2

∫
ddx

(
g(x) · n̂

)2 ≈
∫
ddxh(x) · δn̂, (56)

where we have defined a quenched random tilt field

h(x) ≡ gz(x)g(x) . (57)

hi(x)hj(x′) = ∆hδ
d(x− x′) δij , (58)

which is short–ranged and characterized by the tilt field-disorder variance ∆h.

Combining this pinning aerogel energy with the smectic elastic energy[1, 4], we obtain

H[u] =

∫
ddx

[
B

2
(∂zu−

1

2
(∇u)2)2 +

K

2
(∇2

⊥u)
2 + h(x) ·∇⊥u

− |ψ0|U(x) cos[q0
(
z + u(x)

)
]

]
, (59)

The analysis of above model is quite involved as it requires nonlinearities associated with

elasticity, random-field disorder and topological defects. The upshot of this analysis is that

the smectic state is replaced by a new, partially ordered “smectic glass” phase, that exhibits

anomalous, length scale dependent, glassy elasticity and is elastically disordered, distinct

from its fully positionally disordered nematic state (that itself is converted into “nematic

glass”).[6, 7]
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2. Smectic liquid crystals with a “dirty” substrate

Another very interesting realization of a “dirty” liquid crystal and in particular a smec-

tic phase liquid crystal with a random substrate as in a liquid crystal cell. The governing

Hamiltonian is quite close to that of the bulk smectic in aerogel, (59), but with the main

difference that the pinning disorder is confined only to the d − 1 dimensional (2d) sub-

strate. The analysis and resulting phenomenology is very rich as discussed by Zhang and

Radzihovsky[9].

D. Disordered polymerized membranes

Polymerized membranes with random local inclusions and defects contitute another qual-

itatively distinct class of random elastic objects (taken to be D-dimensional). The new fea-

ture is the co-dimension of dc that allows the membrane to embed nontrivially inside the

d = D + dc (3d physically) dimensional space.

We first recall that in the absence of disorder, an elastic membrane is described by a

combination of in-plane elastic energy with Lamé parameters µ, λ and phonons u, and a

bending energy with curvature modulus κ and “height” function, ~f , (nott characterized by

an elastic Hamiltonian:

Hflat[~h,u] =

∫
dDx

[
κ

2
(∇2 ~f)2 + µu2

αβ +
λ

2
u2

αα

]
, (60)

where the strain tensor is

uαβ =
1

2
(∂α~r · ∂β~r − δαβ) ≈ 1

2
(∂αuβ + ∂βuα + ∂α

~f · ∂β
~f), (61)

where we defined the strain tensor in terms of deviation of the embedding-induced metric

gαβ from the flat metric, δαβ and in the second form neglected in-plane elastic nonlinearities

that are subdominant at long scales.

In this form the effects of in-plane disorder is straightforwardly incorporated by replacing

the flat background metric δαβ by a nontrivial quenched random reference metric, g0
αβ(x).

This acts like an external local stress, σ0
αβ(x) and couples to the fully nonlinear strain tensor

in the usual way, Hstress ≈ −
∫
dDxσ0

αβ(x)uαβ. [29] Because such disorder is even in the

height ~f undulations, it does not break ~f → −~f symmetry. It is thus quite analogous to the

random-bond disorder.
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In addition, inclusions that distinguish top and bottom of the membrane and therefore

break ~f → −~f symmetry can also be naturally included by adding the random local mean

curvature ~c(x). Because it couples linearly to ~f such disorder is the analog of the random-

field disorder. The full generic disordered membrane Hamiltonian given by

Hflat[~f,u] =

∫
dDx

[
κ

2
(∇2 ~f − ~c(x))2 + µu2

αβ +
λ

2
u2

αα − 2µσ0
αβ(x)uαβ − λσ0

αα(x)uββ

]
.

(62)

FIG. 6: An illustration of a bilayer membrane with protein and other inclusions that lead to

two qualitatively distinct types of disorder. In (a) symmetric (even in ~f), random-bond, and (b)

asymmetric (odd in ~f) random-field inclusions correspond to the stress and random mean curvature

disorders, respectively.

The properties of such membranes have been extensively studies and predict that interplay

of quenched internal disorder, thermal fluctuations and geometry lead to rich phenomenology.

It consists of disorder-driven glassy wrinkling, power-law roughness, phase transitions and

anomalous (length scale-dependent) elasticity.[10, 30–32]
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V. SUMMARY AND CONCLUSIONS

These lectures are a gentle introduction to quench-disordered systems, aimed at under-

standing effects of random heterogeneity near critical point and inside ordered phases. To

this end we discussed lattice formulation of disorder in simplest random bond and random

field cases and their long-scale field-theoretic description.

After a review of some technology, such as functional integrals and the replica trick, we

discuss the effects of disorder near continuous phase transitions and inside ordered phases.

For the former we derive a Harris criterion for the importance of random bond disorder near

a critical point. For the latter we outline the results of RG analysis that leads to a zero-

temperature disorder-driven PM-FM phase transition, replacing the disorder-free critical

point.

We then turn to phase stability for states that break discrete (Ising) and continuous

(O(N)) symmetries. We analyze the stability using field theoretic and more careful physical

arguments a la Imry-Ma-Larkin,[16, 17], later demonstrating the breakdown of dimensional

reduction in the random-field Ising model.

We finish with a cursory presentation of a variety physical applications of these ideas

to pinned periodic media such charge-density wave, vortex lattices, as well as smectics in

aerogel, polymerized membranes with quenched internal disorder, and liquid crystals with a

dirty substrate.
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VII. APPENDIX

Let us start out slowly with standard scalar Gaussian integrals

Z0(a) =

∫ ∞

−∞
dxe−

1
2
ax2

=

√
2π

a
, (63)

Z1(a) =

∫ ∞

−∞
dxx2e−

1
2
ax2

= −2
∂

∂a
Z0(a) =

1

a

√
2π

a
=

1

a
Z0, (64)

Zn(a) =

∫ ∞

−∞
dxx2ne−

1
2
ax2

=
(2n− 1)!!

an
Z0, (65)

that can be deduced from dimensional analysis, relation to the first basic integral Z0(a)

(that can in turn be computed by a standard trick of squaring it and integrating in polar

coordinates) or another generating function and Γ-functions

Z(a, h) =

∫ ∞

−∞
dxe−

1
2
ax2+hx =

∫ ∞

−∞
dxe−

1
2
a(x−h/a)2e

1
2
h2/a = Z0(a)e

1
2
h2/a, (66)

=
∑
n=0

h2n

(2n)!
Zn(a). (67)

Quite clearly, odd powers of x vanish by symmetry.

A useful generalization of above Gaussian integral calculus is to integrals over complex

numbers. Namely, from above we have

I0(a) =

∫ ∞

−∞

dxdy

π
e−a(x2+y2) =

1

a
=

∫
dzdz

2πi
e−azz, (68)

where in above we treat z, z as independent complex fields and the normalization is deter-

mined by the Jacobian of the transformation from x, y pair. This integral will be invaluable

for path integral quantization and analysis of bosonic systems described by complex fields,

ψ, ψ.

1. d-dimensions

This calculus can be straightforwardly generalized to multi-variable Gaussian integrals

characterized by an N ×N matrix (A)ij,

Z0(A) =

∫ ∞

−∞
[dx]e−

1
2
xT ·A·x =

N∏
i=1

√
2π

ai

=

√
(2π)N

detA
, (69)

Zij
1 (A) =

∫ ∞

−∞
[dx]xixje

− 1
2
xT ·A·x = Z0A

−1
ij , (70)

Z(A,h) =

∫ ∞

−∞
[dx]e−

1
2
xT ·A·x+hT ·x = Z0(A)e

1
2
hT ·A−1·h, (71)
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computed by diagonalizing the symmetric matrix A and thereby decoupling the N -

dimensional integral into a product of N independent scalar Gaussian integrals (65), each

characterized by eigenvalue ai.

As a corollary of these Gaussian integral identities we have two more very important

results, namely, that for a Gaussian random variable x obeying Gaussian statistics, with

variance A−1
ij , we have

〈xixj〉 ≡ Gij =
1

Z0

∫ ∞

−∞
[dx]xixje

− 1
2
xT ·A·x = A−1

ij , (72)

〈ehT ·x〉 = e
1
2
〈(hT ·x)2〉 = e

1
2
hT ·G·h, (73)

with second identity the relative of the Wick’s theorem, which will be extremely important

for computation of x-ray and neutron scattering structure function.

[1] P. Chaikin and T.C. Lubensky, Principles of Condensed Matter Physics, Cambridge University

Press, Cambridge 1995.

[2] D.S. Fisher, G.M. Grinstein, and A. Khurana, Physics Today, December, 1988, p. 56.

[3] K. Binder, A.P. Young, Rev. Mod. Phys. 58, 801 (1986).

[4] P. de Gennes and J. Prost, The Physics of Liquid Crystals (Clarendon Press, Oxford, 1993).

[5] Liquid Crystals in Complex Geometries, G.P. Crawford, S. Zumer, Eds. (Taylor and Francis,

London 1996).

[6] T Bellini, L Radzihovsky, J Toner, NA Clark, Universality and scaling in the disordering of a

smectic liquid crystal, Science 294 (5544), 1074-1079 (2001).

[7] L Radzihovsky, J Toner, Smectic liquid crystals in random environments, Phys. Rev. B 60,

206 (1999); Phys. Rev. Lett. 79, 4214 (1997); Phys. Rev. Lett. 78, 4414 (1997).

[8] M. Chan, N. Mulders, and J. Reppy, Physics Today, 30, August (1996).

[9] Leo Radzihovsky, Quan Zhang, “Liquid crystal cells with ’dirty’ substrates”, Phys. Rev. Lett.

103, 167802 (2009); Phys. Rev. E 81, 051701 (2010); Europhysics Letters 98, 56007 (2012);

Phys. Rev. E 87, 022509 (2013).

[10] D. R. Nelson, T. Piran, and S. Weinberg, eds., Statistical Mechanics of Membranes and

Surfaces (World Scientific, Singapore, 2004), 2nd ed. See, contribution by Leo Radzihovsky,

“Anisotropic and Heterogeneous Polymerized Membranes”.

[11] S. F. Edwards and P. W. Anderson, J. Phys.(Paris) F 5, 965 (1975).

31



[12] G. Parisi and N. Sourlas, Phys. Rev. Lett. 43, 744 (1979).

[13] G. Grinstein, Phys. Rev. Lett. 37, 944 (1976).

[14] D.S. Fisher, Phys. Rev. B 31, 7233 (1985).

[15] A. B. Harris, J. Phys. C 7, 1671 (1974); J. T. Chayes, L. Chayes, D. S. Fisher, T. Spencer,

Phys. Rev. Lett. 57, 2999 (1986).

[16] Y.Imry and S.-k. Ma, Phys. Rev. Lett. 35, 1399 (1975).

[17] A. I. Larkin and Yu. N. Ovchinnikov, J. Low Temp. Phys. 34, 409 (1979).

[18] J.Z. Imbrie, Phys. Rev. Lett. 53, 1747 (1984).

[19] J. L. Cardy and S. Ostlund, Phys. Rev. B 25, 6899 (1982).

[20] M. P. A. Fisher, Phys. Rev. Lett. 62, 1415 (1989).

[21] T. Giamarchi and Le Doussal, Phys. Rev. Lett. 72, 1530 (1994).

[22] M.J.P. Gingras and D.A. Huse, Phys. Rev. B 53, 15183 (1996).

[23] D. S. Fisher, Phys. Rev. Lett. 78, 1964 (1997).

[24] R. E. Peierls, Helv. Phys. Acta Suppl. 7, 81 (1934).

[25] P.C. Hohenberg, Phys. Rev. 158, 383 (1967).

[26] N.D. Mermin, H. Wagner, Phys. Rev. Lett. 17, 1133 (1966).

[27] T. C. Lubensky, R. Mukhopadhyay, L. Radzihovsky, X. Xing, Phys. Rev. E 66, 011702 (2002).

[28] O. Stenull and T.C. Lubensky, Europhys. Lett. 61, 779 (2003); cond-mat/030768.

[29] Landau and Lifshitz, Theory of Elasticity, Pergamon Press, (1975).

[30] L. Radzihovsky and D. R. Nelson, Phys. Rev. A 44, 3525(1991); Europhys. Lett. 16, 71 (1991);

D. R. Nelson and L. Radzihovsky, Phys. Rev. A 46, 7474 (1992).

[31] L. Radzihovsky and P. Le Doussal, Journal de Physique I 2 599 (1991); P. Le Doussal and L.

Radzihovsky, “Flat Glassy Phases and Wrinkling of Polymerized Membranes with Long Range

Disorder”, Physical Review B, R 48, 3548 (1993).

[32] M. Mutz, D. Bensimon, and M. J. Breinne, Phys. Rev. Lett. 67, 923 (1991); D. Morse, T.

C. Lubensky and G. S. Grest, Phys. Rev. A 45 R2151 (1992); D. Morse and T.C. Lubensky,

Phys. Rev. A 46, 1751 (1992).

32


