
International Journal of Theoretical Physics, Vol. 24, No. I, 1985 

Quantum Theory as a Universal Physical Theory 
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The problem of setting up quantum theory as a universal physical theory is 
investigated. It is shown that the existing formalism, in either the conventional 
or the Everett interpretation, must be supplemented by an additional structure, 
the "interpretation basis." This is a preferred ordered orthonormal basis in the 
space of states. Quantum measurement theory is developed as a tool for determin- 
ing the interpretation basis. The augmented quantum theory is discussed. 

1. INTRODUCTION 

The conventional view of quantum theory is that its logical structure 
restricts in a fundamental way its domain of potential applicability. It is 
believed that a quantum theory has no predictive power unless the quantum 
system under consideration is in interaction with an external system to 
which quantum theory does not apply (variously called a "macroscopic 
observable," the "classical level," the "observer," or an "irreversible pro- 
cess"). In that case, quantum theory would be meaningless or inconsistent 
if regarded as a universal physical theory. (Whether or not a theory is 
universal is a purely logical property of the theory. This must be distin- 
guished from the empirical question whether quantum theory is universally 
true. The latter question is not addressed in this paper.) The purpose of 
this paper is to attack this view by showing how quantum theory may be 
formulated in a completely intrinsic way; that is, in such a way that every 
entity mentioned in the formulation has a realization within the quantum 
formalism. In particular the notion of "measurement," which is required 
for testing the theory, has such a realization. 

A reformulation of quantum theory allowing its interpretation as a 
universal theory is highly desirable for practical, philosophical, and heuristic 
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reasons. In quantum gravity and quantum cosmology, where the quantum 
system under consideration is necessarily the whole universe, the conven- 
tional interpretation, which applies only to subsystems, fails. Were the 
technical difficulties in these branches of physics to be overcome today, it 
would literally not be known what the expressions in the working theory 
denoted. Epistemologically, it is always desirable to increase the domain 
of applicability of a theory, in order to make it more testable. Moreover, 
their attempts to see in the very inadequacy of the conventional interpreta- 
tion of quantum theory a deep physical principle have often led physicists 
to adopt obscurantist, mystical, positivist, psychical, and other irrational 
world views. Undermining, as it thus does, the view that it is the task of 
physics to seek a systematic understanding of a real, objectively existing 
world, the widespread acceptance of the conventional interpretation cannot 
but have impeded the growth of knowledge in physics. As a small illustration, 
the conjectures made in the last section of this paper, be they true or false, 
could not be expressed in a theory that is not both realistic and universal. 

The major step toward a universal quantum theory was taken in 1957 
by Everett (1957) with his "many-universes" interpretation. This is described 
in Section 5, together with some minor improvements. Everett's interpreta- 
tion has the advantage over the conventional one (Section 4) that it is 
realistic and does not require the existence of anything like a "classical 
level." Unfortunately, and notwithstanding Everett's claim to the contrary, 
both interpretations share a defect which makes them fall short of universal 
applicability: They both require a priori metaphysical rules for the interpre- 
tation of measurements. These rules specify a preferred basis, which I call 
the interpretation basis in the space of physical states. Given a complete 
specification of a quantum cosmology, for example, but no interpretation 
basis, neither interpretation could assign a meaning to the abstract theory. 
The remedy which I propose in Section 7 is that an extra rule be appended 
to the quantum formalism, specifying how the interpretation basis depends 
(solely) at each instant on the physical state and dynamical evolution of a 
quantum system. The lacuna in the Everett interpretation would thereby be 
filled, and it would then be truly universal. The same would be true of the 
conventional interpretation if it did not, in addition, have other lacunae 
which I believe it is hopeless to try to fill. 

My approach toward a general intrinsic specification of the interpreta- 
tion basis is heuristic, based on an idea of Everett (private communication) 
that at any rate during measurements the basis is determined by the require- 
ment that in that basis the interaction indeed take the form of a measurement. 
Thus, prior to the discussion of rival interpretations and the interpretation 
basis, I develop in Sections 2 and 3 a theory of quantum measurement 
processes along the lines of DeWitt (1968, 1973), and this is used as a 
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heuristic tool throughout the rest of the paper. Section 2 contains a brief 
statement of the formalism of quantum theory. 

In Section 8 I describe a thought experiment whose main purpose is 
to show how the conventional and Everett interpretations are in principle 
experimentally distinguishable. 

In Section 9 I show how the quantum formalism, if enhanced by the 
incorporation of an interpretation basis rule, has, quite apart from its 
universality, a richer structure than before and can be applied to physical 
problems previously beyond its scope. 

2. QUANTUM THEORY 

A physical theory consists of two parts, an abstract formalism and a 
concrete interpretation. The formalism of quantum theory may be generated 
by a set of axioms such as the following (d'Espagnat, 1976): 

Axiom 1. The world is faithfully represented by a unit vector I~b) (the 
state vector, or state) in a Hilbert space ~ (the state space ), together with 
a functional S (the action functional) of Hermitian operators ~b acting on/4. 

Axiom 2. The operators ~ are indexed by a set of parameters, including 
at least one continuous parameter. 

Axiom 3. The dependence of ~i upon the parameters i is determined 
by dynamical equations obtained from the following variational principle: 

A A 

~s[~,] 
: 0  (1) 

where ~/84~j denotes functional differentiation with respect to c-number 
variations in the form of 4~ " 

A ^ 

~j -~ ~j + 8~j (2) 

The notation introduced in Axioms 1, 2, and 3 is of course suggestive 
of quantum field theory, with the parameters i standing for space-time 
coordinates x ~', tensor indices and internal symmetry indices, but it is 
applicable to any quantum theory. For all known quantum theories, the 
action S is in fact a c number, being identical with the action for some 
classical theory. But one of the objects of this paper is to show that both 
the formalism and the interpretation of quantum theory can be set up 
without reference to classical physics, so it is natural to allow for the 
generality of (1). Boundary conditions on ~ might be appended to (1) for 
convenience, or alternatively they can be generated by additional terms 
in  S. 
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I shall assume that the action functional is such that the dynamical 
equations (1) may be integrated to give a first-order system generating 
unitary time evolution: 

A 

aAi( t )  = i [H(t) ,  Ai(t)] (3) 
Ot 

A 

The "t ime" t is the continuous parameter referred to in Axiom 2. Ai( t )  is 
any operator at time t. H ( t )  is the Hamiltonian operator. 

Measurement theory is usually discussed in the Schr6dinger or the 
interaction picture, but following DeWitt, I have chosen to use the Heisen- 
berg picture because it is more natural both to relativity and to field theory. 

The axioms 1, 2, and 3 are far from complete. They give only a 
framework for the construction of quantum theories. Each choice of the 
action functional and, if you like, the state vector, gives rise to a particular 
instance of  a quantum theory. However, the formalism generated by Axioms 
l, 2, and 3 is already more than sufficient for the construction of a quantum 
theory of measurement. 

Nor are the axioms rigorous. A real axiomatization of quantum theory 
is far beyond the scope of this paper. My "axioms" would perhaps be better 
called "mnemonics."  

When the quantum system has aninfinite number of degrees of freedom 
(i.e., in field theory) the operators ~bg may have to be distributions (see 
Gel 'fand and Shilov, 1968), the Hilbert space ~ may have to be "rigged" 
(Bohm, 1980), the action may have to be renormalized, and so forth. We 
shall avoid all these issues by assuming not merely that the world has a 
finite number of degrees of freedom, but that its state space is finite 
dimensional. The reason why we can ignore, or rather take for granted, the 
changes in the formalism necessitated by the passage to an infinite number 
of degrees of freedom is that these changes are always chosen precisely so 
as to restore, not destroy, the relevant properties of a finite-dimensional 
theory. I must admit immediately that I have no proof  that any of my results 
or conclusions possess infinite-dimensional analogs, though I conjecture 
that they all do. 

It is worth pointing out that the term state in Axiom 1 is used exclusively 
to denote a "pure"  state of the whole world, and not a "mixed state" of 
some ensemble or of some part of the world. This is in line with the general 
philosophy of this paper, but not with the usage of  many authors. In referring 
to ensembles I shall follow d'Espagnat (1976) and use the word case ("pure 
case," "mixed case") instead of state. 

The interpretation of a theory provides a mapping between the formal- 
ism and objective reality. It asserts for every element of some universe of  
discourse (the "world")  that it is denoted by a particular element of the 
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formalism. For the theory to be a physical theory the universe of discourse 
must contain (though not exclusively) some elements of ordinary experience 
so that the theory may be testable. The wider and the more naive is the 
notion of "ordinary experience" used by the interpretation, the more general 
and the deeper is the theory. 

Again, for the limited purposes of quantum measurement theory a very 
incomplete set of interpretational axioms suffices. These can be chosen so 
as to be to a surprising extent independent of the controversy surrounding 
the interpretation of quantum theory: 

Axiom 4. The world may be divided into subsystems which have state 
spaces of their own. N is the direct product Y(1 | N2| " " of the state spaces 
of  the subsystems. 

Axiom 5. Hermitian operators on ~ correspond to observables. 

Axiom 6. When 10)is an eigenvector of an observable 6 with eigen- 
value A =<q,16144 then O possesses the value A. If  the observable were to 
be (perfectly) measured then the result of the measurement would invariably 
be A. 

Axiom 7. Observables not assigned values by Axiom 6 do not possess 
definite values. 

Axiom 4 has a similar function to Everett's (DeWitt and Graham, 1973) 
"postulate of  complexity," that "the world is decomposable into systems 
and apparata." This is obviously necessary for measurement theory, but 
the axiom also has a wider role, in allowing quantum theory to be applicable 
to certain parts of the world instead of just to the whole. We shall however 
see in Section 7 that this direct product construction is not the only way in 
which the world may be divided into subsystems. 

Axiom 6 is of  great practical importance in measurement theory because 
it is uncontroversial (i.e., the rival interpretations of quantum theory agree 
on it). Unfortunately, it is not self-contained since it refers to the "result" 
of a potential measurement, a concept about which, we shall see, there is 
controversy. For the quantum theory defined here to be a universal theory, 
either this concept ("the result") will have to be given meaning within the 
formalism, or Axiom 6 must be replaced by a more general axiom of which 
it is a limiting case. In the Everett interpretation (Section 6) the latter 
alternative is taken. 

An "observable" (Axiom 5) is something which could be measured by 
a measurement, if a suitable apparatus were present at the right place(s) 
and time(s). In this paper I shall not discuss the interesting question which 
thus informally defined observable corresponds to which operator. What a 
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"measurement" and an "apparatus" are will, I hope, emerge in the following 
sections. 

3. SUBSYSTEMS OF QUANTUM SYSTEMS 

Axiom 4 establishes that quantum systems may be described in terms 
of their subsystems. This is convenient from the point of view of testing 
quantum theory experimentally, since the very concept of "measurement" 
requires that at least a "system" and an "observer" exist, and in a universal 
physical theory these must both be subsystems of the world. It is convenient 
to summarize here the formalism and terminology which I shall be using 
to describe subsystems. To this end, let us divide the world into two 
subsystems. Then the state space ~ of the world is identified with the 
n~n2-dimensiona[ direct product Y(~ | of the subsystems' state spaces. 
In order to preserve the vector space structure, this identification must take 
the form of a linear mapping 

That is, if 

L: Y(--> Y(I | ~2 (4) 

]aj) (1-< al-< nl) 

la2) ( 1 -  a2-- n2) (5) 

la) ( l < - a < - n l n 2 )  

are arbitrary orthonormal bases in Y(~, Yg2, and Yg respectively, then L is 
represented by a bivector ~f~,a~ where 

Yg~ | H2 ~ [al) I a2) ~--~ Y. &r a) 6 ~ (6) 

and is unitary in the sense 

o~ t i t  2 - -  t 1 t 2 

ot 

~ ,  c t  a l a  2 _ _  c t  
~ , ~ 2 ~ t 3  - 8 t3 

a l a 2  

(7) 

Here and throughout this paper, raising and lowering of state space indices 
denotes complex conjugation 

X~ --- (X~ * (8) 

Two such mappings L~,a2 and M~,a 2 are said to define the same product  
structure on Yg (i.e. they decompose Y( into the same two subspaces Y(1 and 
;7s whenever they are related by unitary transformations U~ ~, and V]~ 
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confined to ~1 and ~2, i.e. when 

~lb: ~ t~  (9)  
blb2 

An observable 9r on ~g is said to "be confined to system 1," or to "be a 
system 1 observable" if 

..~a ~b, b2.~t 2,  = ~b,,~b~ (10) 

for some Xbll. (10) shows that .~ then has a certain degeneracy structure 
(nl sets of n2 identical eigenvalues). Conversely, if any observable .~ has 
those degeneracies then they determine a product structure with respect to 
which X is confined to a subsystem. 

A classical system is said to be "isolated" whenever there are no external 
forces acting on it. In quantum theory there are several different notions 
of  "isolation" or " independence" of subsystems. In this paper I shall be 
using two of them, dynamical independence, which is somewhat analogous 
to "isolation" in classical physics, and kinematical independence, which has 
no classical analog. (All classical systems are kinematically independent.) 

If  the state of the world [0) is simultaneously an eigenstate of some 
nondegenerate subsystem 1 observable and some nondegenerate subsystem 
2 observable then I shall call the subsystems 1 and 2 kinematically indepen- 
dent. In that case, there exist elements 1~:1) and 1~:2) of g(l and Y(2 such that 
[~) ~ ~g can be identified with the product 

16)l =)e (11) 

Consequently the subsystems 1 and 2 have all the properties of worlds with 
states 1~) and I~::)- For example, if measurements are made on subsystem 
1 by a third kinematically independent subsystem, 3, then the probability 
distribution function for the results is the same as if subsystems 1 and 3 
constituted the whole world. By the same token, if subsystem 1 itself consists 
of two kinematically independent subsystems and one measures the other, 
then the probability of any given result is the same as if subsystem 1 were 
the whole world. Furthermore the results of separate measurements on 
subsystems 1 and 2, whether external (i.e., made by a third subsystem) or 
internal, are uncorrelated--i.e., their joint probability distribution function 
is just the product  of the distribution functions for the individual measure- 
ments. 

All these examples referring to measurements and potential measure- 
ments may be substantiated from the theory of  measurement to be developed 
in the next section. 

I have been careful in the above to avoid making a statistical (ensemble) 
interpretation of probability statements. It is perfectly legitimate to regard 
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the probabilities of the several results of a potential measurement on a 
system as objective physical properties of that system. The appropriate 
technical device is to use an interpretation of the abstract calculus of 
probabilities, namely, a "propensity" interpretation (Popper, 1967) 2 differ- 
ent from the more usual "frequency" or "ensemble" interpretations. Pro- 
pensity interpretations assign objective meanings to probabilities of events 
in single systems (which, after all, the world is) instead of in ensembles 
(which the world is not). This can be done in either the conventional or 
the Everett interpretation of quantum theory. 

Because of the above-mentioned properties of joint measurements on 
kinematically independent subsystems, the usual term for what I have called 
"kinematically independent" is "uncorrelated." However, I should like to 
warn the reader that this meaning of the term "uncorrelated" is sometimes 
quite different from its meaning in ordinary language. For example, just 
after a perfect measurement [see equation (17) below], in the case where 
the state [~} happens to be an eigenstate of the observable being measured, 
the system and the apparatus are kinematically independent, though in 
ordinary language we should probably call them perfectly correlated, cer- 
tainly not uncorrelated, since their properties are in perfect agreement. For 
this reason, I shall use the term uncorrelated only in cases when the technical 
meaning agrees with ordinary usage. The same perfect measurement 
example shows that subsystems can be strongly interacting but remain 
kinematically independent. 

Throughout  the extended general discussion of quantum measurement 
theory, to which I shall continually return in this paper, it may be helpful 
to have in mind a specific example. The best-known laboratory example of 
a quantum system with a finite-dimensional state space is a spin -1 system, 
such as a silver atom with total angular momentum �89 The archetypal 
measurement of this system is the experiment of Stern and Gerlach, an 
excellent discussion of  which is given in Feynman's Lectures on Physics 
(Feynman, 1965). In such an experiment the component n- ~ of the atom's 
spin ~ in some desired direction n is measured by the angle 0 at which the 
atom emerges from an inhomogeneous magnetic field. In reality 0 is a 
continuous observable and has an infinity of eigenvalues, but ideally only 
two of these values are ever taken by 0 afte~ a measurement. They correspond 

+~h of n �9 s. Thus the relevant eigenstates of 0 span a to the eigenvalues ~ A 
two-dimensional state space. An alternative example is the measurement 
of n �9 g by the spin of another atom. 

We now resume discussion of a general quantum system. A generic 
state [~0) of  Yg~-'~Y(I • g2 does not represent kinematically independent 

2popper's remarks on quantum theory per se are in error. 
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subsystems. Its expression in terms of any bases {lal)} and {[a2)} in ~l  and 
~2 is not a product 1~>1~2) but a linear superposition of such products 

I~b) ~ E c~]~21al)la2) (12) 
al t2  2 

for some c a~: satisfying 

E ICa,a~l 2= 1 (13) 
a l a 2  

Therefore generically, subsystems of quantum systems cannot be described 
by states restricted to the subsystems' state spaces. Joint measurements in 
general show correlations between the subsystems. Indeed they show more: 
nonseparability (d'Espagnat, 1976). That is, the probability distribution 
function for measurements on subsystem 1 depends not only on the result 
of the measurement of subsystem 2 (that would just be correlation) but also 
on what measurement is performed on subsystem 2 (something which is 
"freely specifiable" by the observer). This is true even when the subsystems 
are not interacting. This phenomenon, which underlies the famous thought 
experiment of Einstein, Podolski, and Rosen (1935) and Bell's (1964) 
theorem, is uniquely characteristic of quantum theory. I shall return to it 
in Section 7, where we shall see why it cannot be used for signaling between 
noninteracting subsystems. 

We have seen that if subsystems are kinematically independent at some 
instant then at that instant, even if they are interacting, they can be given 
autonomous descriptions, whereas otherwise they have joint properties 
which cannot be inferred from their individual properties. The dynamical 
evolution of the world may be such as to preserve this autonomy of 
subsystems, or it may not. A sufficient condition is that the Hamiltonian 
operator H [equation 3)] be a sum of operators HI +/-)2, confined to the 
subsystems. But a weaker condition, which I shall call "dynamical indepen- 
dence," is both necessary and sufficient to ensure that a given kinematically 
independent state 15) remains so: 

(H-(/41+/-t2))15) = 0 (for some fil  and/q2) (14) 

Stated in words, kinematically independent subsystems are also dynamically 
independent if the state is an eigenstate of the Hamiltonian modulo terms 
confined to the subsystems. 

I shall not require a definition of dynamical independence for general 
(kinematically dependent) subsystems, though in a sense the interpretation 
basis construction of Section 7 (53) provides one. 
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4. MEASUREMENT PROCESSES AND THE MEASUREMENT 
P R O B L E M  

A quantum measurement, just like a classical measurement, is a process 
during which the value of one ("apparatus") observable comes to depend 
systematically upon the value of another ("system") observable. Thus, in 
the simplest possible model of a quantum measurement, the world consists 
of two subsystems: The system being measured, with an nl-dimensional 
state space ~1, and the apparatus with an n2-dimensional state space ~2, 

^ 

where //2---/'/1- A system observable 051(t') is measured by an apparatus 
observable 052(t"). The subscripts 1 and 2 remind us that the observables 
are confined to their respective subsystems. The appropriate product struc- 
ture may be determined from ~l(t ')  and q~2(t"), t' and t" are particular 
values of t, the absolute time, the only parameter upon which the observables 
depend in this model. 

A ^ 

In a causal world, 052(t") can measure 051(t') only if t " >  t'. This restric- 
tion is of great practical importance, but is no t  imposed by the structure of 
quantum theory, but rather by the state of the real world. I shall return to 
this point in Sections 7 and 9. 

In the Stern-Gerlach experiment, the system is the atomic spin n .  
and the apparatus is the angle 0. Performing a real measurement in the 
laboratory involves introducing a coupling which in general causes the 
motion of system and apparatus variables to depend on each other. There 
are at least three types of quantity in which the experimentalist might in 
principle be interested: (1) The value of 051 before the measurement began. 
This is q~1(t'), as assumed in the model. (2) The value of ~1 at the end of 

A A 

the measurement, i.e., 051(t"), and (3) The value that 051 would have had at 
t" if the measurement had not been performed. Possibility (1) is the usual 
one in a physics laboratory, where we wish to ignore changes which we 
ourselves have introduced. Possibility (2) is appropriate when the actual 
condition of the system, however caused, is the subject of interest. (An 
example is a general electron.) Possibility (3) arises when the measurement 
itself induces spurious changes (such as spin precession in the Stern-Gerlach 
experiment) in a quantity which it takes time to measure. Now the results 
of type (1) and type (3) experiments are both hypothetical constructs. At 
time t", the significance of the earlier time t' and the value of the unperturbed 
system observable resides more in the intention of the observer (see Section 
12) than in the objective properties of his experiment. Thus we shall find 
that it is the analysis of measurements of type (2) which sheds the most 
light on the foundations of quantum theory. However, in order to keep the 
discussion of measurement theory p e r  se  as general as possible, the model 
measurements I discuss will all be nonperturbing, so that (1), (2), and (3) 
coincide. 
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Prior to a perfect measurement (i.e., just before the time t'), the system 
and the apparatus are kinematically independent. In this section it will 
suffice to consider only the very special cases where I~) is an eigenstate of 
~b~(t'). Let us assume also, for the sake of simplicity of notation (the 
assumption is not otherwise necessary) that ]qJ) is an eigenstate of ~2(t'). 
Thus 

where 

I~)=lal, C; a:t') (15) 

[q~l(t')--~bjJaj, t'; a2, t ' )=0  
(16) 

[~2( t ' ) -  q~a2]]a,, t'; a2, t ' )= 0 

The ~ba~ (1 -< al <- nl) are the eigenvalues of ~l(t)  and the ~a2 (1 -< a2 <- n~) 
are the eigenvalues of  ~2(t), with t either t' or t" since we shall contrive 

A A 

matters so that the eigenvalues of ~bl and ~2 will not change during the 
measurement. However, the eigenstates of q~l(t) and 4~2(t) do change with 
time, as the method of  labeling in (5) reminds us. The particular value ~i2 

A 

of a2 corresponds to the receptive value q~a, of q~z(t'). Loosely speaking, 
this is the value to which ~b2(t') must be "set" in order to switch on the 
apparatus. Axioms 4, 5, and 6,  incomplete though they are, allow us to 
interpret (15): "At the time t', (bl possesses the value 4)a, and ~b2 possesses 
its receptive value q~."  

During the measurement (i.e., at times between t' and t") the dynamical 
evolution of  ~2 is such that it comes to possess a value which depends on 
that of 4~1(t'). Specifically, if 

]~0) = ]al, t"; Az(al), t") (17) 

where A2(al) is an assignment of a distinct value of a2 to each value of al, 
then a perfect measurement has taken place. This follows from the (Axiom 
6) interpretation of  (4.7): "At the time t", 4~ still possesses the value ~ba,, 
but ~b2 possesses the value ~a2(,,)." Moreover, the possession of this value 
by ~b2(t') indicates uniquely which value 01 possesses. The function A2 
may be thought of  as a "calibration" of the apparatus. 

The measurement described by equations (4.1) and (4.7) is "perfect" 
il~ two senses. Firstly, it is accurate, in the sense that each initial value of  
the system observable determines a different final value of  the apparatus 
observable. Secondly, as promised above, it is nonperturbing, i.e., the system 
observable is unaffected by the measurement interaction. These properties 
illustrate two interesting implications of  quantum measurement theory: 
Firstly that quantum theory gives rise to no absolute restriction upon the 
accuracy with which a single observable can be measured (Bohr and Rosen- 
feld, 1933; DeWitt, 1933, 1968; DeWitt and Graham, 1933). Secondly that 
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a quantum system can act without itself being acted upon. Since these 
implications are slightly counterintuitive, and as a preparation for the 
following section, I shall now show that an interaction (i.e., an action) 
exists which would generate the dynamical evolution constituting the perfect 
measurement (3.1), (3.3). 

In view of (2.3), observables at different times are related by a unitary 
transformation 

O( t") = e-iYc O( t ') e 'y~ (18) 

Therefore the eigenstates of q~t and ~2 at different times are related by 

lal, t"; a2, t")= e-iXlal  , t'; a2, t') (19) 

Regarded as conditions on the matrix elements of e ~ ,  (15), (17), and (19) 
amount to 

(bl, t'; b2, t'le~2lal, t'; a2, t ' )= ~ b'sb2 (20) v al ~ A2( al) 

Let A2(a~, a2) be any function which for fixed a~ is a permutation of the 
integers 1 to n2, such that A2(a~, a2)= A2(al) .  Then it is easy to show that 

o b l  c, b 2 / (bl ,  t '; b2, t ' [ e i X l a l ,  t ' ;  a2, t') = O a O A z t a l ,  a2) (21) 

is a solution of (20), and is unitary. The unitary transformation e ~ may of 
course be generated by the Hamiltonian 

/q = ( t " -  t ' ) - lX (22) 

acting at times between t' and t". The stationarity of the following^quantum 
action functional with respect to c-number variations 64~(t) of cb~(t) 

2 r t" ([O,~'X 2 1 ^ . . } 
^ ^ 1 y. I { 1  "~q + S[(a ' ( t ) ]=2,=, . I , ,  L\ -~- /  ~ [H, {~b,, [H, q~,]}], dt (23) 

together with the initial condition 

d ~ = i[H, 4,,(t')] (24) 
dt ,=c 

reproduces the desiredmotion (18) of all observables, where {.,~,/~} denotes 
the anticommutator A B  + BA.  Notice in passing that any dynamical motion 
for an arbitrary quantum system can be generated by a stationary quantum 
action principle of the form (23), (24). Thus, although it may be convenient, 
it is never in principle necessary for an associated classical theory to appear 
in the construction of a quantum theory. 

It follows from equations (21) to (24) that the requirement that the 
measurement interaction be perfectly accurate and nonperturbing is not 
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inconsistent with quantum theory. This is not to say that couplings such as 
(23) are necessarily available in the laboratory! Nevertheless, (23) is as far 
as any complete discussion of quantum measurement theory need go until 
the nature of the quantum action functional of the real world is understood 
at a less phenomenological level than it is at present. 

The model described in this section is idealized in another sense also. 
A real laboratory apparatus does not consist of just one observable like 
~dt"), but rather a long chain of them, each measuring the previous one 
and each more "macroscopic" than the previous one, ending with the brain 
of the observer. This chain of measurements is sometimes called a "com- 
plete" measurement and its links "elementary" measurements. 

4.1. The Measurement Problem 

In the preceding discussion of a restricted class of measurement proces- 
ses, where the state I qJ) of the world is an eigenstate of the observable ~bt (t') 
being measured, we found that the requirement that the measurement be 
accurate and nonperturbing essentially determines the dynamical evolution 
law [equations (18) and (20)]. But this law determines equally well what 

A t 
happens in a more general case when IqJ) is not an eigenstate of d~](t ). Let 
us suppose that the model apparatus described above has been prepared 
and switched on properly, i.e., that the system and apparatus are uncorre- 
lated at time t' and that the apparatus is receptive, but that IqJ) now has no 
special property with respect to 4~](t')- The most general state with these 
properties is 

with 

I~//) = 2 ca'lab t'; 42, t ')  (25) 
a l  

a~ = 1 (26) C Ca] 
al  

In the Stern-Gerlach experiment, [t p) might be an eigenstate of some spin 
component which does not commute with the one being measured. In view 
of (13), we have 

14,) = 2 c~,laL, t"; A2(al), t") (27) 
a l  

In general, this is not an eigenstate of the apparatus observable ~2(t"). 
Indeed it is not in general an eigenstate of  any system or apparatus observ- 
able at the time t". Here is the origin of the "problem of measurement" in 
quantum theory. In the case where all but one of  the coefficients c a, vanished, 
we could use the "uncontroversial" interpretation Axiom 6 to say what the 
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A 

result of measuring ~b~(t') was. It was (~A2(al), But now the state (27) contains 
each of the n~ possible outcomes of the measurement on an equal footing. 
Moreover, because of the vector space structure of Y( and the linearity of 
the dynamical evolution laws, no construct either in, or consistent with, the 
formalism of  quantum theory is capable of distinguishing between these 
outcomes. On the one hand, this is to be expected. The apparatus was, after 
all, designed to measure the value of th~(t'), which, if the state is (25), 
simply does not possess a definite value (Axiom 7). On the other hand, the 
most elementary intuition tells us that if we nevertheless set the apparatus 
in motion, we shall always observe it to record a definite value. And it is 
axiomatic (and experimentally corroborated in, say, the Sterfi-Gerlach 
experiment) that this will be one of the eigenvalues. Which one ? 

5. THE COPENHAGEN "INTERPRETATION" 

The greatest sophism in the history of science (H.D. Zeh, 1980) 

One widespread solution to this problem involves a fundamental change 
in the quantum formalism presented in Section 2. The idea is that the state 
10), which according to the formalism of Section 2 never changes, is in fact 
subject to an intermittent, discontinuous motion. At certain instants ti, at 
which measurements are said to have been "completed," 10) changes into 
a randomly chosen simultaneous eigenstate of the observable being 
measured and the observable doing the measuring. The probability of the 
eigenstate lal, t~; a2, t~) being chosen is 

I(O~-,la,, t~; a2, t~)l 2 (28) 

where we have denoted by 10i) the state of the world between the ith and 
( i+  1)th completion of a measurement. The point of all this is that the 
"uncontroversial" Axiom 6 can then again be used to interpret the state of 
affairs just after any of the instants t~: "The completed measurement always 
has one actual result, namely the eigenvalue corresponding to the randomly 
chosen eigenstate." 

The version of quantum theory with this stochastic law of motion for 
10) we call the (objective) "collapse interpretation" ("C.I.",  for short), 
though, as we shall see, the word "interpretation" is very much a misnomer. 
The C.I. postulates a different formalism from Section 2. The interpretation 
in Section 2 is neither changed nor augmented by the C.I. 

No complete formulation of the C.I. has yet been achieved. This is 
mainly because of the notorious difficulty in finding a criterion for specifying 
the preferred instants t~; for specifying, in other words, when a measurement 
is "completed."  In order to demonstrate this difficulty, let us make the 
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hypothesis that the instant t" at which our model measurement ends is in 
fact one of the ti. Then (27) holds just before t", but at the next instant 

Iq,(t > t"))= Idl, t"; A2(til) , t") (29) 

for some particular ti 1 chosen randomly with probability 

P(t~l) = I(~'(t < t")]t~l, t"; A2(al) , t")[ 2 (30) 

Now this is to some extent in accord with experiment, for the interpretation 
the apparatus records the value ~ba, for ~bl(t'), and this is indeed what is 
observed, with relative frequency P(t~l). By "observed," though, we can 
only mean "measured." That is, if the system and apparatus observables 
at t" are themselves measured by a third subsystem, the "observer," at time 
t '"> t", say, then they are observed to have definite values such as ~b~ and 
~bA2~a~), respectively. Thus, the empirical observation has, after all, no bearing 
on whether or not t" was one of the ti: (29) might still be wrong, and [~b) 
might have kept its original form up to the time t'", and only then become 

]~b(t > t'")) = lal, t"; A2(t~l) , t"; A3(8~, A2(t~)), t") (31) 

The Aa(aL, A2(a~))'th eigenvalue o f  t~a(t';') is the one which corresponds to 
the observer's having observed ~bl(t') to possess the value ~bal and ~b2(t") 
the value tbg:<~l). I have written (31) in a mixed basis of eigenstates of 
observables at different times [viz. ~l(t" or t'), 4~2(t"), ~3(t")] in order not 
to have to make the assumption that the second measurement ("observa- 
tion") is nonperturbing. 

So, the measurement may or may not be complete at t", but by t" it 
must be. Or must it? Our only reason for believing that ~l(t"), tj~2(t") and 
t~3(t'") possess values after t" is the evidence of observers like 63(t") who 
say they get definite results with the right probabilities (5.3). But our 
acquisition of such evidence at time t ' '  > t" is itself a measurement, essen- 
tially of (~3(tt"), and so by a repetition of the above argument we have no 
reason to believe that any discontinuous change was suffered by I~b) until 
the time t"'. Furthermore, our very memory of our own scrutiny of the 
evidence at t .... is yet another measurement of our own brain state (or 
notebook), performed at some still later time. Thus, in our model, suitably 
extended to include all measurements and reports of measurements of 4)1(t') 
up to the present instant, discontinuous changes in I~b) can be postulated 
for any time, or sequence of times starting with t', at which an elementary 
measurement ended. Yet, if this were the whole story, the C.I. would be 
quite viable even without specifying the ti, because it would not make any 
physical difference which elementary measurements were designated "com- 
plete" and which were not, so long as at least one was complete between 
t' and now. However, by using a more complicated apparatus, it is possible 
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to detect experimentally whether a given measurement in the past was 
complete or not (i.e., whether I~') changed or not). Experiments of this 
general type are called interference experiments, and I shall now describe 
one appropriate to our model. 

Let the state at time t' be (25) and let the elementary measurement of 
A A A 

q~l(t') by ~b2(/" ) be performed as described in Section 4. Let ~:l(t) be a 
system observable such that 

(~ , ( t ' ) -  ~:)l@) = 0 (32) 

The desired interference experiment is represented by any interaction which, 
taking place between the times t" and t'", gives rise to a unitary transforma- 
tion which is the inverse of the perfect measurement (21). In the Stern- 
Gerlach experiment, a system of magnetic lenses might cause the two 
trajectories precisely to join up again (having described the same path 
length). I f  the measurement at t" was not complete, this transformation will 
restore to all the observables in the theory, in particular ~ and ~2, the 
values they had at t'. Thus at time t" the state would still be 

I~)=X ca,la~, t"; 42, t") (33) 

and 

(~( t " )  - ~:)l~b) = 0 (34) 

On the other hand, if the measurement was complete at t", and if the state 
had consequently changed to (29), then with respect to the t" basis it could 
be expressed as 

]~b(t > t"))= I~,, t";  ti2, t") (35) 
A 

A measurement of ~:~(t") could now distinguish between the alternatives 
(33) and (35). If the state is (33) then ~:i(t") possesses the value s and 
therefore a measurement would yield this result with certainty. If the state 
is (34) then values other than s will be observed with nonzero probability. 
If  the identical experiment is repeated many times, and if a value other 
than s is ever observed, then the measurement was complete at time t". 

Notice that if there was no change of state at t", then the initial 
measurement, its undoing, and the measurement of s are together 

A t 

entirely equivalentto a measurement of ~:(t ). But if there was such a change, 
then the value of ~(t') is no longer observable at any time after t". This loss 
of information [or creation of new information, if you will (Wheeler, 1977)] 
is a characteristic feature of the C.I. which was not present in our original 
(Section 2) version of the quantum formalism. 

The necessity of repeating identical measurements in order to test 
probabilistic predictions is generic in quantum theory. For such experiments 
it is often convenient to use the ensemble approximation: A long finite 
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sequence of measurements on identical systems is approximated by an 
infinite set of measurements on an ensemble. The properties of a quantum 
ensemble are described by its density operator t3 (Davies, 1976; d'Espagnat, 
1976). At the moment of completion of a measurement, the density operator 
for the ensemble which approximates sequences of our model measurement 
changes discontinuously from 

~ =  Y~ C~,Cb, la~, t"; A2(a~), t")(bl, t"; A2(bl), t"[ (36) 
albl 

corresponding to the state (27), to 

t3(t> t")=Y, [Co,]Zla,, t"; A2(al) , t")(al, t"; A2(al) , t" I (37) 
a l  

which is a mixed case corresponding to no pure state. 
All interference experiments which have so far been performed have 

given the result that their intermediate elementary measurement [analogous 
to that of 4~,(t') by 4~2(t")] was not complete. On the other hand, since it 
is the purpose of the C.I. to give a realization of the apparent single 
valuedness of our (the observers') experience, every chaifi of elementary 
measurements leading to an observation by "us" must have at least one 
complete member. 

Many criteria for "completeness" of a measurement have been pro- 
posed informally, e.g., that completeness requires an "irreversible act of 
amplification" (George et al., 1972; Misra et al., 1979), or registration in 
the mind of a conscious observer (von Neumann, 1930, 1932/1969, 1946, 
1955, 1964; Wigner, 1961 / 1962), or even in the minds of a whole community 
of people (London and Bauer, 1939). However, no definite criterion has 
ever emerged from these proposals. At the risk of adding to the confusion, 
I should like to propose yet another version of the C.I., which avoids this 
problem: "At every elementary measurement there is a small probability 
that the state will change discontinuously according to (27) and (29)." This 
probability may, for example, be a universal constant, chosen to be so small 
that interference is in practice always observed on a microscopic scale, but 
large enough so that it is overwhelmingly likely that a long chain of 
elementary measurements will be complete. Like all versions of the C.I., 
this one is distinctly ad hoe, but it does have the advantage of being definite. 
By the same token, it is potentially testable and may, one day, be refuted 
experimentally (see Section 8). 

The severity of the "completeness-of-measurements" problem, and the 
obfuscatory effects of extraphysical attempts to solve it, have overshadowed 
another important deficiency of the C.I.: Neither the product structure 
dividing the world into system+observer nor the observables qSl(t") and 
~2(t") to whose eigenvectors the state makes its discontinuous changes are 
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specified by the C.I. Because of the grossness of the physical constitution 
of all known "observers," this lack of specification does not at present limit 
the usefulness of the C.I. in the laboratory: Knowledge external to quantum 
theory tells us that the subsystem in the white coat is the observer, the 
subsystem on the bench is the system under observation, and the observable 
being measured is the one upon which the motion of the needle on the 
calibrated scale depends. Thus the C.I. version of quantum theory is not a 
universal theory until these "rules of thumb," no less indispensable to the 
C.I. than the criterion for completeness-of-a measurement, are generalized 
and given expression within the quantum formalism. We shall see in the 
next section that the Everett interpretation, though completely free of the 
intractable completeness-of-measurement problem, does share with the C.I. 
the deficiency just described. In Section 7 the missing structures will be 
supplied for both the C.I. and Everett formalisms. 

6. THE EVERETF ("RELATIVE STATE") INTERPRETATION 

No escape seems possible from this relative state formulation if one wants to 
have a complete mathematical  model for the quan tum mechanics that is internal 
to an isolated system. Apart from Everett's concept of  relative states, no self- 
consistent system of  ideas is at hand to explain what one shall mean  by quantizing 
a closed system like the un i ve r s e . . .  (J. A. Wheeler, 1957) 

It is possible to leave the formalism of Section 2 alone and solve the 
problem of measurement solely by means of an interpretation. Such an 
interpretation was first attempted by Everett (1957). 

The problem of measurement, we recall, arose from the fact that the 
unmodified formalism of quantum theory is in general incapable of distin- 
guishing an actual result of a measurement from all the possible results. In 
our model, for example, all the possible values Az(aO, representing all the 
possible results (~A2(al) of the measurement, appear in the representation 
(27) of a generic state. Everett's solution begins with the simple but startling 
inference from (27) and Axiom 7 that the quantum formalism is in consistent 
with there being in general an "actual" result of a measurement in the usual 
sense (i.e., a single value ~bA2(a,~). Instead, he proposes that the system and 
apparatus observables are in general multivalued, possessing all the eigen- 
values whose eigenstates appear in the representation (27). Furthermore, 
although nothing in the quantum formalism gives preference to any of these 
values over the others, the structure of (27) does pair off values of th~(t") 

A 

and ~b2(t") with each other. Thus the value tha, appears with ~ba2(o~. Each 
such pair of single values (or in the more general case of N subsystems, 
each N-tuplet of single values) would be as much as could be simultaneously 
specified about the whole universe, if the subsystems were kinematically 
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independent. Everett's interpretation of (27) is "There are nl universes. In 
the alth universe q~l(t") possesses the value ~ba, and q~z(t") possesses the 
value ~A2(al)." Thus the observables are multivalued. But inA a given universe, 
not only does 4~(t") possess a single definite value, but 02(t") has correctly 
measured this value ("correctly," only because our model measurement 
was perfect). The number of universes is not reduced by further measure- 

A 

ments, nor can an observer detect via repeated measurements of tb~(t") and 
A 

~b2(t"), the presence of other universes [see equation (31)]. The qualification 
"of  ~b(t") and t~2(t")" is significant and necessary, as we shall see in the 
following sections. 

The rudimentary interpretational axiom (6) can now be omitted. Then 
neither the term measurement, nor of course the distinction between 
"elementary" and "complete" measurements appears in either the formalism 
or the interpretation of quantum theory. Unlike the C.I., the Everett interpre- 
tation can therefore be applied at all instants, not just after measurements. 
It gives a picture of a world (i.e., everything that exists) consisting of many 
coexisting universes (i.e., maximal sets observables with values) evolving 
approximately independently on large scales, but in intimate interaction, 
through interference effects, on small scales. 

After a general measurement, a copy of the apparatus is present in 
each universe. Each copy has recorded a different result, and further 
measurements invariably agree with this result. Thus, since each copy began 
with the same (receptive) value, the deterministic evolution of the world 
gives rise to an irreducible unpredictability in measurements. 

Yet, as I have discussed above, the outcome of measurements is not 
utterly unpredictable, but is random with a predictable probability distribu- 
tion P(a) [see (28)]. Everett, and later DeWitt and Graham (1973) claimed 
to have shown that (28) is a consequence of the Everett interpretation as 
outlined above, and does not have to be postulated separately. This claim 
is based on their discussion of sequences of measurements on identical 
systems, in particular on the following argument, adapted here to our perfect 
measurement model: Let N uncorrelated, identical system-apparatus pairs 
undergo the perfect measurement interaction (7). When the state I~O) is 
decomposed in the appropriate postmeasurement basis [analogously to 
(27)], it will represent n~ universes (i.e., nl outcomes for each of N 
independent measurements). In each universe a particular distribution of 
outcomes happens, and this distribution can be subjected to a statistical 
test (e.g., the "X 2'' test) to determine whether it deviates significantly from 
the distribution P(al).  In some ("maverick") universes it will, and in some 
it will not. Such a statistical test is also a measurement. The relevant 
observable is a projection operator ~ whose eigenvalue is zero for eigen- 
states failing the test and one for eigenstates passing the test. Thus the state 
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~]~0) represents some number (less than nt N) of  universes in all of  which 
the distribution of measurements does not differ significantly from ~(ti l) .  
DeWitt and Graham then show that for any fixed statistical test 3 ~ 

lim E Io)-1 ')3 = 0 (38) 
N ~ c ~  

Thus, in the vector representing the result of an infinity of measurements, 
the length of the component representing "maverick" worlds is zero. There- 
fore the maverick universes are of measure zero (in the Hilbert space norm 
sense) in the set of all universes (where an infinity of  measurements has 
been performed). Unfortunately this argument does not establish DeWitt 
and Graham's claim, for there is nothing in the formalism telling us that a 
set of worlds of measure zero must "occur with zero probability." Indeed, 
if we had been willing to identify the Hilbert space norm measure with a 
physical probability, then DeWitt and Graham's elaborate argument about 
sequences of measurements would be redundant,  since the norm of the 
component Callal, t", A2(a l )  , t") in (27) is in any case Ico, I 2. 

In order to solve this problem, I propose a slight change in the Everett 
interpretation: 

Axiom 8. The world consists of a continuously infinite-measured set 
of universes. 

By a "measured set" I mean a set together with a measure on that set. 
The interpretation of the state (27) will be that the set of universes consists 
of nl disjoint subsets, where the a~th subset is of measure [Ca, I 2. Each of 
these subsets, which I shall call a branch, consists of a continuous infinity 
of identical universes. During the model measurement, the world has initially 
only one branch, and is partitioned into nl branches. The branches play 
the same role as individual universes do in Everett's original version, but 
the probabilistic interpretation is now truly "built in." It is also sometimes 
claimed by proponents of the Everett interpretation that the quantum 
formalism (Axioms 1-7) admits only one interpretation [cf. DeWitt's "meta- 
theorem," (DeWitt, 1970, 1968, 1973)]. The modification I have just intro- 
duced, small though it is, is a counterexample to that claim. 

Just as in the C.I., the system-apparatus product structure and the bases 
[al, t), ]az, t) of eigenstates of (a~(t") and ~b2(t" ) are  not specified, yet play 
a central role in the Everett interpretation of  the quantum theory of our 
model system. 

Both interpretations may conveniently be formulated so as to refer to 
these structures only via the preferred ordered orthonormal basis {[a, t)} 
which they generate in the overall state space ;g. I shall call {l a, t)} the 
interpretation basis at time t. The actual ordering of  the interpretation basis 
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states is a matter of convention, which could for example be chosen so that 
a = 1 corresponds via (6) to a l =  a : =  1, a =2  to a l =  1, a 2 = 2 , . . ,  a = n2+ 1 
to al =2,  a2 = 1, and so on. 

In terms of the interpretation basis the central assertion of the C.I. 
may be stated thus: "At every instant ti at which a measurement is completed 
the state [q0 changes to an element la, ti) of the interpretation basis with 
probability I(~O[a, t,)12. ' '  And the Everett interpretation says the following: 

Axiom 9. At each instant t, in a proportion 012 of all universes 
the value of any observable t9 diagonal in the interpretation basis is 

A 

(a, tlOla, t). 

The state [a, t) is known as the relative state of the a th  branch at 
time t. 

Axioms 8 and 9, which express the Everett interpretation may be 
rephrased as follows: "The set of all universes is an ensemble with density 
operator 

• ( t )  =Y~ I(q,I ~, t)121 ~, t)(a, t I " (39) 

At instants of completion of perfect measurements, this expression is iden- 
tical with that of  the auxiliary density operator (32) which describes the 
ensemble version of the C.I. Thus, at such instants, Everett's many universes 
provide a realization of the C.I. ensemble, which we shall see in Section 7 
accounts for the close similarity between the two interpretations in practice. 

In view of  this similarity, the reader should be warned that the role of 
the density operator fi~(t) is utterly different in the two "interpretations." 
In the C.I., /~(t") summarizes the probabilistic predictions of quantum 
theory about any measurements which might be made, at times greater than 
(', on the world, i.e., subsystems 1 and 2 combined, by a third, kinematically 
independent, subsystem. The associated ensemble is a fictitious one whose 
properties are used to model the probabilistic properties of such measure- 
ments. Only the ensemble averages (CO(t)}} of  observables, calculated from 

( ( O ( t ) ) ) = T r ~ ( t " ) 6 ( t )  (t>-t ") (40) 

have significance in the model, being equal to the statistical expectation 
value of the result of a measurement of O(t). Though it is possible to regard 
the quantum statistical ensemble, just like the Everett ensemble, as an 
infinite set of  quantum systems in definite states, none of these states will 
in general be a n  eigenstate of O(t). Thus the result of an individual 
measurement of O(t) is in general realized by no property of the ensemble. 

By contrast, in the Everett interpretation, t;~ (t") summarizes the results 
of the measurement which ended at time t". This was, by hypothesis, a 
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measurement of a subsystem 1 observable by a subsystem 2 observable. The 
results are realized as properties of the Everett ensemble: The value 
measured in each branch is the eigenvalue corresponding to the relative 
state of that branch, and the probability of that value equals the measure 
of the branch. Observables diagonal in the interpretation basis are assigned 
(multiple) values, but general observables are not. The statistical properties 
of further measurements by a third subsystem cannot in general be inferred 
from ~,(t") in the Everett interpretation. This function is performed, as 
ever, by the true density operator of the world 

~ = I~0)(~b I (41) 

via 

((O(t))) = Tr t30(t) (42) 

A many-universes realization of the results of this further measurement is 
described neither by t3 nor by t3~ (t") but by an Everett density operator for 
all three subsystems, whose form will depend on the actual measurement 
mode by the third subsystem. 

Notice also that the properties of a quantum statistical ensemble depend 
upon its members being strictly independent (dynamically and kinemati- 
cally) of each other whereas those of the Everett ensemble depend on 
interference between its members. 

(40) and (42) show explicitly that the difference between the C.I. and 
the Everett interpretation is empirical as well as metaphysical. They make 
different predictions in general. In the next section we shall see why this 
difference is so difficult to detect in the laboratory, but in Section 8 I shall 
describe an experiment which would nevertheless detect it. 

In this section and the previous one we have seen that there is a lacuna 
in existing formulations of both the C.I. and the Everett interpretation: In 
neither is the interpretation basis specified. If quantum theory is to be a 
universal physical theory then not only must a general specification be 
found for the interpretation basis for a general quantum system, but this 
specification must be expressible wholly within the quantum formalism. In 
the next section I give such a specification. 

7. THE INTERPRETATION BASIS 

In this section I address the problem of finding the interpretation basis 
for a general quantum system. My approach is heuristic, using the theory 
of measurement developed in the preceding sections as a tool. Later I shall 
indicate how other approaches would give the same answer. We shall find 
that at the instant of completion of a measurement, the interpretation basis 
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is determined by the requirement that a measurement has indeed taken 
place. For the C.I., this restricted result solves the interpretation basis 
problem, though of course the other problems of the C.I. outlined in Section 
5 remain. I do not attempt to solve these, and I doubt that a solution is 
possible. The Everett interpretation, on the other hand, suffers from no 
deficiency other than the lack of an interpretation basis. Since in the Everett 
interpretation "measurements" are not fundamentally distinguished from 
any other interactions, we can avoid having to append such a distinction 
to it if the interpretation basis construction we arrive at for measurements 
is applicable generally. When we have constructed it, we shall see that it is. 

Consider the instant t" of completion of the model measurement of 
Section 4 [equations (15), (17) or (25), (27)]. Our problem is to determine, 
from the kinematics and dynamics of the world at time t", together with 
the fact that the measurement is completed at that instant, the interpretation 
basis 

{leg t"}} ={lal, t"; a3, t"}} (43) 

As the notation of (43) suggests, it is convenient to separate the problem 
into two parts: (1) The determination of the product structure delineating 
the subsystems 1 and 2: As discussed in Section 3, a product structure L is 
represented by an equivalence class of objects Ls~s2 under unitary transfor- 
mations on the indices sl and s2 [see (9)] satisfying the unitarity conditions 
(7). (2) The determination within ~1 and ~2 of the observables ~ l ( t ' )=  
~b~(t") and ~2(t") involved in the measurement. More specifically we are 
really only interested in their eigenstates {Isl, t")} and {Is2, t"}}. From these 
structures, the interpretation basis can be constructed: 

~ [ S l ,  t"; s2, t")~ls~, t")ls2, t")C ~1X~2 (44) 

or in another notation 

Yg~ Ice, t " )~  Y ~L'S=ls,, t")ls2, t")~ Yg, x~'2 (45) 
S152 

In setting up the model measurement, our first guiding principle was 
that if the measured observable 4h(t') possessed a definite value [equation 
(15)] then so should the "apparatus" observable ~bz(t"). Since the measure- 
ment is nonperturbing this implies that the subsystems 1 and 2 would in 
that case be kinematically independent at time t". Moreover since, by 
hypothesis, the dependence of ~b2 on 4h ceases after t", we may infer that 
they would remain kinematically independent thenceforward. Physically 
this means that the moment of completion of the model measurement is 
determined by the condition that the evolution of 4~2 no longer depend on 
~ ,  though they may still be evolving under the trivial action of their 
"self-interaction" Hamiltonians HI and H2. Thus, so far we have gained 
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the information that in each of the states lal, t"; A2(a~), t"), the subsystems 
are dynamically independent. That is, (see Section 3), for some HI and/-/2, 
the states [al, t";A2(al),  t") are all eigenstates o f / 4 - / 4 ~ - H 2 .  In a m o r e  
realistic model, where, say, imperfections allowed all the interpretation 
basis states to appear as final states, instead of just the nl accurate ones, 
we could repeat the above argument for every case where [~0) was an 
interpretation basis state la~, t"; a2, t"). Thus there must exist a choice of  I211 
and I?I2 such that H - HI - H2 is diagonal in the interpretation basis. We shall 
see in a moment that this requirement essentially fixes the product structure 
!., but before I make this explicit, let us suppose I_ given, and use an 
argument based on external measurements to determine the preferred bases 
{Ist, t")} and {Is2, t")}. This time we consider two subsystems in a general state 

]qJ) = Y~ C~,~la~, t; a2t ) (46) 
a l a 2  

not necessarily the result of a measurement. Suppose that two more 
apparatuses (for which we shall fortunately not require models) measure 
observables ~l(t") and ~2(t"), which are confined to subsystems 1 and 2. 
Now ~l(t") and ~2(t") are simultaneous (in a relativistic theory they need 
only have spacelike separation). We therefore require that the probability 
distribution function for the result of measuring ~(t")  not depend on which 
observable ~2(t") is chosen for the second measurement. If it did, this effect 
could be used to send superluminal signals, or in general, signals not carried 
by dynamical evolution. In terms of the Copenhagen interpretation we are 
requiring that it not be possible to signal by completing a measurement and 
triggering the discontinuous change in the global state vector. If subsystem 
1 is measured jus t before the instant t when a measurement of subsystem 
2 is completed, the probabilities of the several results are described by its 
density operator 

t~l(t) = Tr t3 (47) 
2,t 

where 

(alt; a2, tlTr/~[bl, t; b2t)= ~ ~lc2(t)(~lt31/3)~b~c2(t)~,~ (48) 
2,t ct,/3 

c2 

But if subsystem 1 were measured just after the instant t, then the state 
would already have undergone its random change with a statistical distri- 
bution given by t;,(t), and therefore the results of the measurement on 
subsystem 1 will be described by the density operator 

Tr fig(t) (49) 
2,k 
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instead of (47). To exclude superluminal signaling it is necessary and 
sufficient that (49) and (47) be equal. That is, 

fi,(t)-= E Ic~l~La~, t; a2, t)(a,, t; a2t I (50) 
ala2b2 

Hence f ,  (t) is diagonal in the interpretation basis. And thus the interpretation 
basis at time t is the basis of  eigenstates of ill(t) and (by the same argument) 
of f2(t) = Trl,, ~. 

Our earlier requirement that/-t  - H~ - /12 be diagonal in the interpreta- 
tion basis may therefore be written 

[121-121,-1712, f , ( t )  x f 2 ( t ) ] = 0  for some H,, I - t  2 (51) 

The "self-interaction" Hamiltonians /-), and /42 may be eliminated from 
this equation by substituting for the partial traces 

T r  [ / - t ,  /~1 X P2 ]  = [n2, P2]  
1,t 

(52) 
Tr [H,  f ,  x fie] = [/4,, P,] 
2,t 

Hence 

[/4, fi, x fi2]- fix xTr [H, fil x fi2]- tr [/'1, fi, x fi2] x f2 = 0 (53) 
l , t  2,t 

(53) must of course be regarded as an equation for the product structure 
k implicit in fix, fi2, Trw and Tr2,t. In this paper I shall not pursue the 
problem of the existence or uniqueness of solutions of (53) beyond the 
following crude but encc .1 raging argument: First let us calculate the number 
of independent compon~ ~ of L Since 3~,a2 is unitary it has 2 2 n i n2 indepen- 
dent (real) components~ ~,,~ere n, and n 2 are the dimensions of ~ and N2. 
But L has fewer components because unitary transformations within ~ 
and N2 do not affect it. The set of such transformations is parametrized by 

2 2 n i + n2-  1 components. The " -  1" is there because the trivial unitary trans- 
formation Z e ~ , ~  e~pS~" with p real has representations both in ~gj and 
N2. Hencel -has  a 2 2 2 n 1 n 2 - -  n 1 - -  n 2 + 1 independent components. Now (53) has, 
primafacie, n~n~ complex components, but it is anti-Hermitian and traceless 
under both Trl.t and Tr2,,. This leaves n~n~- n~-  n~+ 1 independent real 
equations in (53), the same as the number of independent components in 
the product structure. 

Equations (50) and (53) formally define the interpretation basis, given 
10) and/4,  at any instant. Thus they manifestly provide the structure missing 
from existing interpretations of quantum theory, and they construct it almost 
entirely within the quantum formalism. But we have not quite finished yet. 
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There were still two pieces of a pr ior i  metaphysics (i.e., information not 
contained in 1~) and H)  which we supplied while constructing (50) and 
(53) for our model system. One was that the world was divided into precisely 
two subsystems, and the other was the dimensionalities, nl and n2, of the 
subsystems' state spaces (though the value of their product, n~n2 = n is an 
objective property of the world). Amusingly, this ambiguity depends, in the 
case where n is finite, on the prime factorization of n. If n is prime there 
can be no subsystem of the world and the above construction of the 
interpretation basis will not work. It would do no harm to prohibit such 
quantum theories since measurement, and hence experimental testing of 
the theory, cannot take place in the worlds they describe. If  n is a product  
of  two primes, then (50) and (53) give a unique interpretation basis without 
any need for the a pr ior i  metaphysics. However, the observed richness of  
the world presumably indicates that if n is finite, then it is highly composite. 

When the number of subsystems is greater than 2, the interpretation 
basis is no longer the direct product of bases confined to the subsystems' 
state spaces. This is illustrated by the following Stern-Gerlach example: A 
spin-�89 silver atom in a generic state passes through an ideal Stern-Gerlach 
apparatus where its spin component n .  8 is perfectly measured by its 
emergence angle 02 (eigenvalues +02, say). A second apparatus, placed so 
that both (+02) trajectories enter it, is so constructed that it has different 
effects on atoms on the two trajectories, but so that both effects are perfect 
measurements. For atoms on the +02 trajectory, the emergence angle 03 
(eigenvalues +03) measures 1.8, and for atoms on the -02 trajectory 03 
measures m �9 8, where 1, m and n are not coplanar. Then the interpretation 
basis after the measurements must contain the states 

II. s = +�89 
II" s - -  - � 8 9  

(54) 
Ira" s = +�89 

Im' sl = - �89 02)1-  03) 

which, since the eigenstates of ! .  8 do not coincide with those of m- 8, 
cannot be part of a product basis. 

However, the interpretation basis can be constructed, when the state 
is a linear superposition of (54), as follows. Consider the world as being 
split into t w o  subsystems first, one with a four-dimensional state space, 
which will turn out to be ~ x ~2, and one with a two-dimensional state 
space ~3. For any given such product structure (to be determined later), 
we can calculate/~3, and precisely analogous requirements to those for the 
2-subsystem case show that the interpretation basis states be eigenstates of  
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P3: This gives the Id=03) part of (54). The reason why we start by splitting 
off subsystem 3 rather than 2 or 1 is not yet evident. Notice that it makes 
a considerable difference: Starting with subsystem 1 would give the "wrong" 
answer [i.e., not (54)]. I shall return to this problem below. 

More complicated branching schemes are possible for three than for 
two subsystems. In particular there is now more than one branch present 
for each eigenvalue 03. The structure of these branches is again determined 
by the 2-subsystem arguments, now required to hold for each relative state 
[+ 03) of subsystem 3. The interpretation bases for the two "auxiliary worlds" 
with states 

and Hamiltonians 

16, +o3) = (+ 031~0) (55) 

A~o3 = <=L 031AI + 03> (56) 

are determined from (50) and (53). The interpretation basis is now deter- 
mined, except for the product structure which we left undetermined at the 

A A A 

beginning. That, as always, is fixed by the requirement that^ H -  1-13-2 Hi,2 
be diagonal in the interpretation basis for some H3 and H~,2, when HI,Z is 
confined to the combined 1, 2 subsystem, though this requirement is no 
longer expressible in the simple form (53). 

The construction of the interpretation basis in this 3-subsystems case 
admits, I suggest, only one generalization to the case where the dimensional- 
ity of Y( has arbitrarily (but finitely) many factors. This is summed up by 
the following recursive a lgor i thm: 

7.1. Construction of the Interpretation Basis for a General Quantum 
System with a Finite-Dimensional State Space 

Given Y(, I~O) and/- t ( t ) :  

Step 1. Let n be the dimensionality of ~. The case where n is prime is 
not permitted. If  n is a product of two primes then equations (50) 
and (53) determine the interpretation basis. Otherwise, 

Step 2. Let n = n l n2 where n l is prime and li 2 is composite. (Which prime 
factor is taken as nl is discussed below.) Take an arbitrary product 
structure I.(t), dividing the world at each instant t into an n~- 
and an n2-dimensional subsystem. For each eigenstate I a, t; I.) 
of Tr2,,tq,>(q,I, apply Step 1 to subsystem 2, considered as an 
"auxiliary~ world" with state (a~,t;L[~O) and Hamiltonian 
(al, t; LlH(t)[ab t; L). Let the interpretation basis thus obtained 
for subsystem 2 be {I a, t, al, I.)} ( 1 --- a -< n2). The full interpretation 
basis is {lal, t; L)l~; t, al, L)}. 
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Step 3. I.(t) itself is now determined by requiring that /4( t )  - /41(t)  - H2(t) 
be diagonalin the interpretation basis for some choice of operators 
/4~(t) and H2(t) confined to subsystems 1 and 2, respectively. [] 

In this general case, as in the case of two subsystems, the term "interpre- 
tation basis" is used to denote an ordered basis. The ordering is chosen so 
as to represent, according to some convention which we need not specify, 
the preferred product structures at each level. The information thus represen- 
ted I shall call the "branching structure." 

At two poin, ts in the above algorithm degeneracies (in Tr2,t]~O) (~] and 
H ( t ) -  H i ( t ) -  H2(t)) seem to spoil the uniqueness of the specification of 
the interpretation basis. Since there is strong reason to suppose (see Section 
9) that the real world is strongly degenerate in these quantities, this non- 
uniqueness cannot be argued away as a problem of "measure zero." It is 
nevertheless trivial for another reason: Such degeneracies occur precisely 
when there is nothing in the world to distinguish between the different 
interpretations arising from the equivalence class of interpretation bases 
generated by the algorithm. The interpretations differ in form only. For 
example, consider two spin -1 subsystems in the state 

This is equal to 

I~> = ~(IT>I~> + [&>lq'>) (57) 

where with the obvious notation [1') denotes the spin "up"  eigenstate of the 
"vertical" spin operator and so forth. The identity in form between (57) 
and (58) is reflected in a degeneracy in the density operators TrllqJ) (~p[ and 
Tr2l qJ) (~0l and hence in an ambiguity in the interpretation basis. Alternative 
interpretations of a world in the state [~0) are apparently possible: [from 
(57)] "In  the first branch, system 1 has spin up and system 2 has spin 
d o w n . . ,  etc." or [from (58)] "In the first branch system 1 has spin North 
and system 2 has spin Sou th . . .  etc." The possibility of more than one 
interpretation is not consistent with the principle of realism which we have 
been implementing everywhere. But of course the terms "up,"  "down," 
"North,"  and "South" have no invariant physical meaning in the simple 
world of (57). They would acquire meaning only if the degeneracy were 
broken by the dynamical evolution. 

The other ambiguity in the algorithm is more real. Locally, the order 
in which the subsystems are split off during the construction of the interpreta- 
tion basis is determined by continuity: The interpretation basis and the 

I~> = ~ (I-~>l ~->+1 ~->1-~>) (58) 
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associated branching structure must be continuous in time. But for a general 
quantum system this still allows many distinct choices, one for each choice 
of the branching structure in the remote past. It is always assumed in physics 
that sufficiently far in the past, the preferred subsystems of the world were 
kinematically independent. I have assumed it, for example, in all the model 
measurements described in this paper. The justification of this assumption 
comes from considerations, such as causality and the second law of ther- 
modynamics, which have not yet been incorporated into quantum theory 
at a fundamental level (but see Section 9). But if the assumption is true, 
then there is only one possible branching structure in the remote past, and 
the interpretation basis is thereby uniquely determined at all times. 

7.2. Other Properties of the Interpretation Basis 

The physical considerations from which we have just constructed the 
interpretation basis are not the only ones from which it may be determined. 

One illuminating approach is to regard the C.I. as a "classical limit" 
of the Everett interpretation. This limit is not that of the usual correspon- 
dence principle (though there may be some connection: see Section 9), but 
is the limit where one is unable to measure the kinematical dependence 
between subsystems--specifically between a system and its observer: After 
a (complete) measurement, the probability distribution function for further 
measurements on the same subsystem (subsystem 1, in the model), calculated 
from Tr2 t3 in the Everett interpretation, must be identical with that calcu- 
lated from the auxiliary density operator Tr2 r which represents the mixed 
case predicted by the C.I. Equation (50) follows. 

Unfortunately, I have not been able to extend this "correspondence 
principle" to derive equation (53) for the product structure. 

Another way of looking at the conditions (50) and (53) is that they are 
the requirements that the Everett branches cannot communicate with each 
other. Equation (50) says that after a measurement, further measurements 
on the same subsystem cannot reveal information about all the branches, 
as contained in the full density operator t3. (53) says that the time evolution 
of each branch is instantaneously independent of every other branch. 

From equations (47) and (50) we may deduce an algebraic property 
of the interpretation basis (d'Espagnat, private communication). Take nl = 
n2 for simplicity. We have 

blC 2 2 b I 
Calc2C = ~ ,  ]C . . . .  [ 6 a t  ( 5 9 )  

c 2 c2 

and from the analogous expression to (50) for Tr~t~, 

C 1 b 2 - -  2 b 2 Y~ cc,~=a - E  Icc~o21 ao= (60) 
c I Cl 
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Multiplying (60) by co,~, summing over  b2, and using (59) we obtain 

c:,a2[Z = o (61) 
b 2  b l  

whence we deduce that in the interpretation basis, c<,,,, 2 has qua matrix no 
more than one nonzero element per row or column. Therefore it is possible 
to relabel the interpretation basis states lai, t) and ]a2, t) so that Ca,a2 takes 
precisely the form of the state (27) following a perfect measurement. This 
is known as the Schmidt normal form (Schmidt, 1907) of the vector I~b) 
with respect to the given product structure. 

The condition (50) on the interpretation basis was first obtained by 
Zeh (1973; see also Schr6dinger, 1935) using physical arguments different 
from those of  this paper. 

There is therefore a sense in which every interaction is a perfect 
measurement of  something, though this fact must be considered with caution 
for several reasons. Firstly, the measured observable is the perturbed one 

A 

~bl(t") (in the notation of Section 3), from whose measurement in general 
A 

nothing can be inferred about observables ~bl(t') at an earlier time. Secondly, 
if the "system" and "apparatus"  were not kinematically independent at an 
earlier time t', before the interaction, then the interaction cannot be inter- 
preted as having effected a measurement in the usual sense: The "measure- 
ment arrow of  t ime" is missing (see Section 9). Thirdly, the accuracy or 
otherwise of  a measurement depends, as I have mentioned before, not only 
upon the constitution of the apparatus, but also upon the intention of the 

^ 

observer: An apparatus which measures ~blAperfectly may be considered 
inaccurate by an observer who built it as a ~:l meter. 

The subjective overtones of the term "intention," and the result (61) 
make a short discussion of imperfect measurements advisable here. If  imper- 
fection is in the eye of  the observer, it follows that a model of  an imperfect 
measurement must include a model of this "eye,"  incorporating the obser- 
ver's intention in an objective way (cf. DeWitt, 1968, 1973). The simplest 
model has three subsystems. Subsystems 1 and 2 are the same as in the 
model of Sections 3 and 4, though we need not now specify what interactions 
they have undergone. We now know that in any case I 0) will take the perfect 
measurement form (27) in the interpretation basis. This time, however, 
subsystem 3 will act as a second apparatus, measuring the accuracy with 

A 

which a given subsystem21 observable, say ~l(t'), was measured by a given 
subsystem 2 observable ~2(t")- To avoid complicating matters let us assume 
that this second measurement is perfect. There are many possible measures 
of  accuracy. In a simple case, subsystem-3 would have an nl n2-dimensional 
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state space and might measure the 1, 2 observable 

= ~ lal ,  t'; a2, t")(al, t'; a2, t"] 
a2=A2(al)  

- Y, lal,  t'; a2, t")(al, t'; a2, t"l (62)  
a2~ A2( al ) 

The value (A) = + 1 indicates "accurate," anything less than l, "inaccurate," 
andA-l, "perfectly inaccurate," where l al, t') and !a2, t") are the eigenstates 
of ~:l(t') and r respectively. During the course of the second measure- 
ment, the interpretation^ basis^ would be forced to change continuouslyfrom 
eigenstates of ~bl(t") and ~bE(t") (say) to eigenstates of r and r 
Thus the intention of the observer is reflected in objective properties of 
subsystem 3 and its interactions with subsystems 1 and 2, and can be 
interpreted via the interpretation basis in the usual way. 

7.3. Def ic iencies  in Above  Approach 

The methods of this paper, leading up to the algorithm presented earlier 
in this section, solve the problem of the interpretation basis for quantum 
theories with finite-dimensional state spaces. If the same thing could be 
done for field theories then, at least for those who find Everett's interpreta- 
tion acceptable, the "problem of measurement" and the problem of the 
interpretation of quantum theory in general, would be solved. Quantum 
theory could be regarded without reservation as a universal physical theory. 

However, it seems difficult to extend the methods to field theories, 
since they appear to depend heavily on properties, such as unique prime 
factorizability, which are characteristic of the integers. 

In order to obtain a unique interpretation, I was forced to assume 
something about the state I@) of the world: That in the remote past, the 
interpretation subsystems were kinematically independent. This assumption 
appeals to thermodynamical principles outside quantum theory. Opti- 
mistically, (see Section 9), this might suggest that the principles of thermo- 
dynamics are derivable from a fuller quantum theory--but by the same 
token one would infer that existing quantum theory is not a complete 
theory of nature. 

Finally, the quantum theory presented in this paper is necessarily 
nonrelativistic. DeWitt's change from the Schr6dinger to the Heisenberg 
picture, followed here, eliminated from the Everett interpretation some of 
its dependence on the absolute time t and is a necessary first step toward 
the interpretation of relativistic theories. But until the remaining steps are 
taken we shall not know whether the machinery set up here is sufficient. 
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8. A T H O U G H T  EXPERIMENT 

I have pointed out several times in the preceding sections that the C.I. 
and the Everett "interpretations" are really different formalisms for quantum 
theory-- in  effect, different physical theories. It is usually claimed that 
although their assertions as to the nature of objective facts are radically 
different, the two "interpretations" agree about all subjective experiences 
of observers, and cannot therefore be distinguished experimentally. That 
this claim is false is shown by equations (40) and (42) which summarize 
the different predictions of the two "interpretations" concerning further 
measurements on subsystems one of which has completed a measurement 
on the other. 

Now the origin of the difference between the two predictions lies in 
the claim of the C.I. that quantum systems undergo an anomalous time 
evolution, namely, a change in their Heisenberg states, at some late stage 
in every complete chain of  measurements. Determining experimentally, by 
means of interference experiments, that such a change has not yet occurred 
at an intermediate point in measurement chain does not, as we have seen, 
refute the C.I. It merely demonstrates that any change must occur at a later 
time. For this reason, any experiment to distinguish between the "interpreta- 
tions" necessarily involves measurements by the observer on himself (or 
equivalently, by one observer on another). And therefore the construction 
of a thought experiment (i.e., an experiment whose execution is at present 
impractical, but in principle permitted by physical laws) for this purpose 
necessarily involves the description of a model observer. Fortunately, we 
shall find that very few details of the internal constitution of  the observer 

�9 need to be specified in the model, the main requirement on it being that it 
be a subsystem of the world and obey quantum theory (in one version or 
the other, to be determined). This requirement is certainly satisfied if 
quantum theory is a universal theory. Thus, the idealizations I shall need 
to make in the following description of the thought experiment come mainly 
at the level of the elementary measurements at the beginning of the measure- 
ment chains; I shall assume that they are perfect measurements (perfectly 
accurate, nonperturbing, and dynamically and kinematically independent 
of the outside world, as in Section 3). The discussion would be greatly 
complicated, but its conclusion unaltered, by the relaxation of these idealiz- 
ations. The only other important assumption is the usual one in measurement 
theory, that the dynamics of the apparatuses, including in this case those 
which measure the observer, are freely specifiable. This assumption is not 
very realistic, which is why this is a thought experiment. But it is a legitimate 
thought experiment, since there is no known or conjectured physical 
principle, within quantum theory or outside it, which would prohibit the 
couplings it calls for. 
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Since it will be testing statistical predictions, as usual in quantum 
theory, we must think of the thought experiment as being performed 
sufficiently many times for the results to be statistically significant. 

Four subsystems are involved in this experiment. The first one is a 
spin?  atom (so n I = 2).  This passes through a Stern-Gerlach apparatus in 
such a way that the two exit trajectories, corresponding to spins North and 
South, pass over subsystems 2 and 3. These are also spin-�89 atoms which 
represent part of the sensitive "sense organ" of the observer (so n2 = 113 = 2) ,  
Their receptive states are "spin down" ([$2) and 143)), and the coupling is 
such that if the subsystem 1 atom describes the North trajectory, passing 
over atom-2, then atom-2's spin flips with certainty to "spin up," while 
atom-3's spin remains unchanged. Similarly, atom-3 flips if atom-1 describes 
the South trajectory. After passing through the "sense organ," each trajectory 
enters a storage ring designed to keep any atom entering it in orbit for ever. 
Subsystem 4 is the observer, or the observer's brain, so perhaps n 4 is (101~ 1~ 

or more-- i t  will not matter. 
In this description I am ignoring three classes of subsystems that would 

be present in reality: (1) The "rest of the world," which I am assuming 
remains kinematically and dynamically independent of the subsystems of 
interest, but which would in reality introduce perturbations which would 
have to be taken into account. (2) Items of apparatus such as the Stern- 
Gerlach magnets and the storage rings, and whatever agency causes the 
Hamiltonian of  the system to change in the complicated (but fixed) way to 
be described below. These are of course quantum systems but I am assuming 
that they are set up so that their effect on subsystems 1 to 4 is describable 
by an effective Hamiltonian H( t )  restricted to subsystems 1 to 4. (3) 
Subsystems, such as the position of atom 1, which have been assumed to 
be in such perfect correlation with one of  the subsystems 1 to 4 (in this 
case, with the spin of atom 1) that their separate description would be 
superfluous. 

Initially, at time t', all four subsystems are kinematically independent. 
The sense organ is receptive. Atom-1 is in a state 

, 1 
I'll, t ) = ~-~ (IN1, t ' )+ IS1, t')) (63) 

which is not an eigenstate of the observable which is about to be measured. 
The observer is also in some definite state, say, ]04, t'), whose exact proper- 
ties we shall not require. Nor will it be necessary that this state be exactly 
the same on each run of  the experiment, only that it have whatever property 
the C.I. may designate as necessary for subsystem 4 to be capable of  
completing a measurement. Thus 

I~,) = It , ,  t')l,l,2, t')l,l,3, t')104, r )  (64) 
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From what we have said, this may be written in terms of interpretation 
basis states at a time t", after the atom has passed through the sense organ, 
a s  

where 

1 
IqJ) =~-~ IN,, t")l~2, t")l$3, t")104, t") 

1 
+ ~  IS,, t")l~2, t")lTz, t")]104, t") 

(65) 

104, t") = 104, t') (66) 

Next, between times t" and t", the measurement is completed. Subsystem-4 
has no direct access to the atom-l,  which is by now in the storage rings, 
but the information as to whether atom-l 's  spin is N or S is recorded in 
the sense organ. For simplicity, (my conclusions do not depend on this 
assumption) I shall assume that the measurement chain has the property 
that every interaction between subsystems 2 and 3 and subsystem 4 is a 
nonperturbing measurement. After the completion of the measurement, the 
observer records (in his memory, or in his notebook if necessary)--not  the 
value " N "  or " S "  of the spin, but only whether or not he knows this value. 
He may write "I, Professor X, F.R.S., hereby certify that at time t" I have 
determined whether the value of the North component of the sPin of atom-1 
is +lh or -�89 At this moment I am contemplating in my own mind one, 
and only one of those two values. In order to facilitate the second part of 
this experiment, I shall not reveal which one." This constitutes a record of 
the completion of the measurement, a record which, we shall see, need not 
be destroyed by a subsequent interference experiment. 

Now the honest recording of such a statement involves measurements 
made by subsystems of subsystem 4 on each other, reducing ultimately to 
measurements on subsystems 2 and 3. The relevant observable is the projec- 
tion operator 

/3(t) = 1~'2, t)153, t)(~'2, tl(+3, t I + 1+2, t)H'3, t)(~,2, tl(%, t[ (67) 

which has the eigenvalue 0 when the sense organ is still receptive (i.e., when 
the spin of atom-1 is not yet known), and +1 when the sense organ has 
recorded one of the two values (which is then known). Strictly speaking, 
the interpretations "spin known" and "spin unknown" do not belong to 
P(t'") but to the analog of  P(t ' )  which acts on an image of subsystems 2 
and 3 some way up the measurement chain. But, insofar as the observer is 
supposed to have an accurate knowledge of (i.e., to make accurate measure- 
ments of) observables inside himself, we introduce no error with this loose 
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nomenclature. When measurements of/3(t) are made by subsystem-4 simul- 
taneously with measurements of the N - S  spin itself [here again, we really 
mean an image of that spin (see below)], the interpretation product structure 
is not the obvious one for subsystems 2 and 3. Instead, it is the product 
structure generated by/3(t) and, say 

t~(t) =�89 0153, t7(I'2, t[($3, t1-�89 t)l%, 0+($2, tl(T3, tl 

+lh[~,2, t)]~3, t)(i'2, t1-�89 t)lT3, t)(1'2, t[('~3, t[ (68) 

after time t", (~(t) "holds an image" of the N / S  spin of atom-1. We may 
separate the Hamiltonian /-)(t) which generates the dynamical evolution 
between times t" and t'" into three parts: Hp(t), representing nonperturbing 
measurements of subsystem P by subsystem 4, Hq(t), representingnon- 
perturbing measurements of subsystem Q by subsystem-4, and H4(t), 
representing the self-interactions of subsystem 4. (For simplicity, assume 
that subsystems 1, 2, and 3 (---1, P, and Q) have no self-interactions.) 
Now at time t'", after the completion of the measurement, the two interpre- 
tations differ about the state of the world. According to Everett, 

1 t'")l 1~) = ~ l N l ,  + lp, t")[ + �89 t")["knows N",  t'") 

1 t")[ t'") + ~  ]S1, t")l + le, -�89 t")]"knows S", (69) 

whereas according to the C.I. it has changed, with equal probability, to either 

[~(t")) = ]N~, t")] + le, t")] +�89 t")l"knows N",  t") 

or (70) 

I ~,(t'")): IS,, t")l + 1e, t")1-�89 t")l"knows S", t") 

An interference experiment is now performed as follows. Between the times 
t" and t"', where t " -  t"= t '"-  t", the Hamiltonian is set to 

I~l(t)=-l~lt)(2t3-t)-I214(2t3-t)+ff le(t)  ( t " < t < t " ' )  (71) 

I2Iv(t) may be any desired operator confined to the subsystems P and 4, 
but for simplicity we assume again that it does not perturb P. (71) undoes 
part of the dynamical evolution that happened during the completion of 
the measurement: All the system-4 observables which had, by the time t", 
come to depend on r but not on /3(t"), such as records of the N - S  
spin, are at t "  restored to their t" values. All other system-4 observables, 
in particular those recording measurements of/3(t"), are not restored. But 
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in particular, the record that the N - S  value of  the spin was known to the 
observer at time t" is preserved. 

At this point, t"', according to the Everett interpretation, all copies of 
the observer are once again identical though they had been different in two 
branches at time t" (69): 

1 t"')l t"')[ t"') I&) = ~ l N 1 ,  + l e ,  +�89 

1 t"')l ..... \l 1~ t"')l} +~lsl, + 1 ~ ,  ~ , t - ~ ' o o ,  

x I"knew N or S", t") (72) 

According to the C.I., only one of these terms is present. Next the Hamil- 
tonian for subsystems 1, 2, and 3 is set to the negative of what it was between 
times t' and t". Subsystem 4 is isolated from the others, though its self- 
interaction, or indeed, interaction with the "outside world," is freely specifi- 
able. The fields in the storage rings and in the Stern-Gerlach apparatus are 
also reversed, so that the atom eventually emerges from the entrance to the 
apparatus, having tripped the relevant "sense organ" atom back into its 
receptive state on the way. 

According to Everett, it will now be in its original state H'~, t '") = H'~, t'), 
whereas the C.I. would have it in either a N~ or S~ state, as measured. Now, 
finally, the empirical difference between the "interpretations" has become 
accessible. All we need is a further Stern-Gerlach apparatus to measure 
the "up"  component of the spin of atom-1. According to the C.I., the values 
+�89 will be observed at random with equal probability. According to Everett, 
the value +�89 will be observed with certainty. 

8.1. Further Comments on the Thought Experiment 

The actual performance of this experiment, involving as it does fairly 
detailed adjustments inside an observer's brain and sense organs, is far 
beyond present-day technology, but perhaps not quite as far as it might 
seem at first sight. Sooner or later (Turing, 1950) there will be machines 
capable of independent thought comparable in every way to that of human 
beings. One of them could no doubt be persuaded to take part in this 
experiment. Presumably its internal workings will be electronic, rather than 
biological, and its "self-interaction" Hamiltonian (H4) will be known to 
the designers. Extra apparatuses would have to be installed to give it the 
requisite sense organ, and to allow the total Hamiltonian to be temporarily 
altered when necessary. Sufficient coherence for the interference effects to 
be preserved will be possible if, for example, the information in the sense 
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organ, the memory, and all other affected parts of the observer is stored in 
sufficiently microscopic finite-state components, thermally isolated from the 
outside world. Another possibility might be to replace all the components 
by logically equivalent systems of currents in superconductors. 

As I have already remarked, the observer need not be prepared in a 
predetermined state (this might be thought to prejudice his status as an 
autonomous thinking being, in versions of the C.I. where such considerations 
count), though his sense organ must be. His only preparation need be a 
familiarity with the purpose of the experiment. Observe also that although 
part of his memory, including memories of some of his own thoughts, is 
necessarily erased during the experiment, the important memories and 
thought processes (those originating with his measurement of/3) are, by 
construction, untouched. 

Everett (1957) once compared critics of his interpretation who said 
that they "did not feel themselves split" with opponents of Copernicus who 
did not feel the Earth move since, he said, the laws of quantum theory 
predict that we do not "feel other branches" just as classical dynamics 
predicts that we do not feel the Earth move. Yet if our senses were fine 
enough, we could see stellar parallaxes and feel Coriolis forces and thus 
"feel" the motion of the Earth. Similarly, this experiment allows the observer 
to "feel" himself split into two branches: The interference phenomenon 
seen by our observer at the end of the experiment requires the presence of 
both spin values, though he accurately remembers having known at a 
previous time that only one of them was present. He must infer that there 
was more than one copy of himself (and the atom) in existence at that time, 
and that these copies merged to form his present self. 

9. THERMODYNAMICS OF SINGLE SYSTEMS 

Subsystems of quantum systems are described by density operators 
rather than states. The theory of such subsystems, ("open systems") where 
one strictly ignores the rest of the world, is formally identical with the 
theory of ensembles of closed quantum systems, i.e., quantum statistical 
mechanics. This formal identity is very useful to anyone studying the 
foundations of thermodynamics from the quantum point of view (Davies, 
1976; d'Espagnat, 1976). The usual starting point is the proposition that 
since quantum theory makes only statistical predictions, it is in fact a 
statistical theory (i.e., a theory of ensembles). This non sequitur is unfortu- 
nate from the point of view of physics because no ensembles are known in 
nature. The "ordinary" quantum formalism (as in Section 2) is thus viewed 
as an approximation scheme, applicable only when the ensemble is a pure 
or nearly pure case. 
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In line with the general philosophy of this paper, I take the opposite 
point of view: Quantum theory is an objective theory of single closed systems 
in pure states. Some large quantum systems in some states behave approxi- 
mately like ensembles; moreover, subsystems of quantum systems behave 
in some ways like ensembles. Thus the ensemble approximation is often a 
good one for the behavior of  certain real physical systems. But it is never 
exact. Why is this approximation so often so good? What is the origin of 
the second law of thermodynamics? I conjecture that the answers to these 
questions lie entirely in the quantum theory of single closed systems. 
Unfortunately these answers will not be accessible until the results of Section 
7 have been extended to field theories and to relativity: Only then could 
they be applied to a quantum cosmological model bearing the remotest 
resemblance to reality. However, certain features of the finite-dimensional 
state space theory developed in this paper already suggest how quantum 
theory could provide foundations for thermodynamics. 

We saw in Section 6 that the "many universes" of a single quantum 
world may for some purposes be regarded as a quantum statistical ensemble 
whose density operator is not that of a pure case. With the help of the 
interpretation basis it is possible to define an entropy for single closed 
quantum systems without recourse to ensembles or coarse graining: 

S(t) = - T r  ~ ( t )  In/3~(t) (73) 

= - E  I<q,l~, 012 In I(Ola, t)l 2 (74) 

S(t)  is nonnegative definite; moreover the assumption that the interpretation 
subsystems were all kinematically independent in the remote past, which 
we needed in Section 7 to make the interpretation basis well defined, is the 
same as the assumption that S(t) was zero then. S(t) is not necessarily an 
increasing function of time: there can be no such function in a time reversal 
invariant theory such as quantum theory. It tends to increase whenever 
hitherto kinematically independent subsystems begin to interact. In general 
its motion depends on the dynamical evolution of the world and would 
have different properties in different cosmological models. However, in 
every case there will be an open time interval T immediately following the 
big bang during which S(t)  increases. I conjecture that generically in realistic 
closed quantum cosmological models T exceeds the expected lifetime of 
the universe. A demonstration of this conjecture (which, I repeat, must 
await a generalization of  the ideas of this paper to quantum field theory) 
would constitute a derivation of the second law of thermodynamics as a 
theorem of quantum theory (including the interpretation basis). The arrow 
of time is built into quantum theory via the interpretation basis, specifically 
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via the branching structure. The branches proliferate toward the future and 
never toward the past because of the initial condition of kinematical 
independence. 

In fact, the very "passing" of time has a realization in quantum theory 
only via the interpretation basis: In virtue of  the deterministic dynamical 
evolution, any description of a quantum system at one instant is isomorphic 
to the description at any other instant. Thus it might seem that "nothing 
ever happens." We conventionally choose to describe the state at any time 
t in terms of  eigenstates of  "familiar" observables at the same time t, and 
thus obtain the appearance of time passing. But since any observable at 
one time is expressible in terms of observables at any other time, it would 
again seem that this appearance is illusory. Of course we now know that 
the proper  choice of basis for the description of  the system is not always 
a matter of  arbitrary choice or convention. Here, we must use the interpreta- 
tion basis. ("Familiar" in the above must be replaced by "diagonal in the 
interpretation basis.") The motion of the interpretation basis is the only 
thing in quantum theory that gives reality to the passing of time. 

S(t) is not an observable: After all, (73) and (74) are c-number 
equations. Nor should we expect the true physical entropy of the world to 
be an observable; for it measures no property of a single universe or branch, 
but rather the degree of branching of the state of the world as a whole. It 
is the evolution of the world as a whole which possesses a consistent forward 
arrow of time, even though a few ("maverick") branches will always behave 
differently from the majority. In the ensemble approximation this is mirrored 
by the fact that individual members of the ensemble always evolve reversibly 
whereas the ensemble as a whole may evolve irreversibly. The relationships 
between S(t) and observable quantities such as coarse-grained entropies 
depend on the state and action functional of the world. For any particular 
quantum cosmological model these relationships could be elaborated, an~  
the physical significance of the motion of  S(t) inferred. 

Why are the interpretation basis states in the real world usually very 
close to the eigenstates of "classical" observables? ''3 This is closely related 
to the correspondence principle which I touched on in Section 7. This 
problem well deserves further study (perhaps along the lines of Daner et 
al., 1962), but it is tempting to speculate as follows: Whatever the nature 
of the state and action functional of the real world had been, there would 
have been an interpretation basis. This would have singled out a preferred 
class of observables with respect to which classical laws of physics (i.e., 
laws assigning single objective values to each of these observables at every 
instant) would be approximately true in most universes. 

aI am grateful to Prof. A. Shimony for raising this question. 
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