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INTRODUCTION: ANDERSON LOCALIZATION

The physics of Anderson localization is highly dependent on the dimension of the system. While the 1d situation is
fairly well understood—localization is the generic behavior, the localization length is comparable to the mean free path,
and the fluctuation properties in the localized regime are essentially well understood—the physics of higher dimensions
is much richer still. Dimension 3 is especially interesting, as one expects a so-called mobility edge, separating in the
continuum case localized states at low energy/strong disorder from extended states at high energy/weak disorder.

It is however rather difficult to find a clean experimental system to observe this metal-insulator Anderson transition
unambiguously. Cold atomic matter waves are very attractive because they can be directly observed, and because
most experimental imperfections as well as atom-atom interactions can be precisely controlled, if not reduced to a
minimum.

To start with a specific, state-of-the-experimental-art example, imagine a one-dimensional non relativistic particle
evolving in a potential V (z) as depicted in Fig. 1. The evolution of the wavefunction ψ(z, t) is given by Schrödinger’s
equation:

i~∂tψ(z, t) = Hψ(z, t) (1)

with the single-particle Hamiltonian

H =
p2

2m
+ V (z). (2)

Let us assume that the particle is initially prepared in a Gaussian wave-packet. In the absence of any potential, the
Gaussian wave-packet will show ballistic motion, where the center of mass moves at constant velocity while the width
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FIG. 1. Direct experimental observation of one-dimensional Anderson localization of an atomic matter wave in a disorder
potential. The disorder potential (represented in blue in the lower part of the figure) is created by a speckle pattern. (a) An
initially localized wave packet (prepared in a harmonic trap at the center) evolves freely, diffuses and eventually freezes at long
times in a characteristic exponential shape (b). The pink tube represents the transverse-confinement laser beam that ensures
an effectively one-dimensional dynamics. Reprinted from [1] (courtesy of Ph. Bouyer).

increases linearly with time at long times. In the presence of a certain realization V (z) of the disorder, the wave
function will take a certain form ψ(z, t). For different realizations, different wave functions will be obtained. But
we are not interested in the fine details of each wave function. Rather, we wish to understand the generic, if not
universal, properties of the final stationary density distribution |ψ(z)|2 obtained at long times.

Let us forget for a moment interference effects and try to guess what happens to a classical particle. If its kinetic
energy is much larger than the typical strength of the disorder V0, the particle will fly above the potential landscape,
and the motion is likely to be ballistic on the average. If on the other hand V0 is larger than the kinetic energy, the
particle will be trapped inside a potential well and transport over long distance is suppressed, i.e. localization takes
place.

Quantum mechanics modifies this simple picture fundamentally: waves can both tunnel through potential hills
higher than the kinetic energy and be reflected even by small potential fluctuations. So the initial wavepacket will
split on each potential fluctuation into a transmitted part and a reflected part, no matter how large the kinetic energy
with respect to the potential strength may in detail be. After many scattering instances, this looks like a random
walk and one näıvely expects that, on average, the motion at long times will be diffusive, with a diffusion constant
depending on some microscopic properties of particle and potential.

This simple model system has been recently realized experimentally [1] using a quasi-one-dimensional atomic matter
wave, interacting with an effective optical potential created by a speckle pattern, see Fig. 1. The experimental result
is the following: at short times, the wavepacket spreads as expected, but at long times, its average dynamics freeze,
and the wavepacket takes a characteristic exponential shape:

|ψ(z)|2 ∝ exp

(
− |z|
ξloc

)
(3)

where ξloc is called the localization length [18]. Moreover, if a different realization of the disorder is used (i.e. a
microscopically different, but statistically equivalent speckle pattern), an almost identical shape is obtained, meaning
that the phenomenon is robust versus a change of the microscopic details.

This surprising phenomenon is known as Anderson localization, sometimes also called strong localization. Although
it was predicted on theoretical grounds in the late 50’s—most famously by P.W. Anderson himself [2]—it has only
been observed directly rather recently. Cold atoms, where an in situ direct observation of the wavefunction is possible,
are from that point of view highly valuable.

While Anderson localization is the generic scenario in 1d — and also in 2d for time-reversal invariant systems –
the physics is richer in 3d and higher dimensions. There is a so-called mobility edge, that is an energy below which
all states are localized and above which all states are delocalized and where the temporal dynamics at long time is
diffusive.

The scaling theory of localization [3](a one-parameter scaling law) correctly predicts the existence of a metal/insu-
lator (or diffusive/localized) transition in 3d. A scaling theory can hope to capture those features that are important
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on macroscopic scales, but will be insensitive to microscopic details. This means that its predictions are only semi-
quantitative, in the sense that it cannot furnish the precise location of a critical point in parameter space nor provide
any system-specific data. In return, if one feeds it with the microscopic data (such as the transport mean-free path),
it can give general, and surprisingly accurate, predictions of universal character. The position of the critical point
is given by the so-called Ioffe-Regel which relates the wavevector k of the particles and the mean-free path l in the
presence of the disorder:

kl ≈ 1 (4)

The precise value of the critical kl depends on microscopic details and is therefore non universal.
The behavior of the β-function around the critical point yields precious information about the large-scale physics,

and permits especially to calculate critical exponents that are the hallmark of universality. In their 1979 paper,
Abrahams et al.[3] showed that the localization length diverges close to the transition for W > Wc as

ξloc ∼ (W −Wc)−ν , (5)

where W is a control parameter (for example the energy) and Wc its value at the critical point (that is the mobility
edge if W is the energy).

The critical exponent ν = 1/s is determined by the slope of the β-function at the transition, s = [dβ/d ln g]gc . This
critical exponent is universal that is independent of the microscopic details and depends only on the dimension and
the symmetry properties of the system.

While Anderson localization in 1d does not require a strong disorder (the mean-free path is 100 times the atomic de
Broglie wavelength in the experiment discussed above), the situation is completely different in 3d, as one needs both
small k (low energy, large de Broglie wavelength) and short mean free path l. Indeed, the latter cannot be shorter
than the correlation length of the disordered potential, i.e. of the order of 1µm for optical speckle. Although two
experimental observations of Anderson localization with 3d atomic matter waves have been reported [4, 5], none of
these observations is really convincing. Because of strong disorder, the state of the system is not well controlled:
states below and above the mobility edge are simultaneously populated, the position of the mobility edge itself is not
precisely known, making the characterization of the Anderson transition and the measurement of the critical exponent
a very difficult task, not yet achieved.

This limitation on the mean free path can be overcome using a different approach, where disorder is not provided
by an external potential in configuration space, but by classically chaotic dynamics in momentum space. The disorder
is there provided by the free temporal dynamics of the system and can be easily modified. This idea has been realized
experimentally with the atomic kicked rotor, and Anderson localization in 1d has been observed as early as 1994 [6],
14 years prior to the widely noticed Anderson localization in configuration space [1]! A key advantage of the kicked
rotor is that is does not require ultra-cold atoms from a Bose-Einstein condensate: a standard magneto-optical trap
suffices to prepare the initial state.

In these lectures, I will discuss in details the properties of the kicked rotor. In particular, conveniently tailoring
the temporal excitation of the kicked rotor has permitted the clean observation of the metal-insulator Anderson
transition in 3d, the first experimental measurement of the critical exponent with non-interacting matter waves [7],
the experimental demonstration of its universality [8], as well as a detailed study of the critical regime [9].

In Lecture I, I introduce the periodically kicked rotor, which displays a phenomenon known as dynamical localization,
and show that it is nothing but 1d Anderson localization in momentum space.

Experiments on the periodically kicked rotor are discussed in Lecture II, with emphasis on all experimental imper-
fections which could spoil Anderson localization and how to overcome them, a key point towards the observation of
the Anderson transition in 3d.

In Lecture III, I discuss the quasi-periodically kicked rotor, which displays an equivalent of the 3d metal/insulator
Anderson transition, but in a 1d momentum space. I describe how to analyze experimental results in order to show
that it is a true quantum phase transition and not a cross-over, how to measure the critical exponent, how to test its
universality and how to characterize the critical regime.

Note: with the lecture notes, I provide a set of computer scripts written in the Python language,
available at http://boulderschool.yale.edu/news/delandes-python-code-download. They can be used
to perform numerical experiments on the kicked rotor (both the classical and the quantum kicked rotors).
The reader is encouraged to play with them, modify them to produce new results. The goal is to get
some insight in the fundamental physical processes at work. Seeing is believing! Of course, it
cannot provide us with explanations (from this point of view, numerical experiments are like real
experiments), it can just be used as a testing ground for new ideas.

http://boulderschool.yale.edu/news/delandes-python-code-download
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FIG. 2. Poincaré surfaces of section for the standard for K = 0.5, 0.97 and 5 (from left to right), showing the progressive onset
of chaos (from Scholarpedia).

The scripts can be ran on any computer where Python is installed. It requires the standard scientific
packages numpy and scipy. These are usually installed on Linux computers, or installation is more
or less straightforward (depending on the Linux distribution used). Python can be installed on practically
any computer, see http://www.python.org/download/. For M$-Windoze users, Enthought Canopy (https:
//www.enthought.com/products/canopy/) has a free version including numpy and scipy.

The scripts just produce numerical data, but no way of visualizing them. Please use your favorite
plotting software.

The time needed to run these scripts has been kept to a minimum, of the order of 10 seconds on
a ordinary laptop. Of course, it may take longer if you modify the parameters...

I. LECTURE I: THE PERIODICALLY KICKED ROTOR

A. The model

We consider a one-dimensional rotor whose position can be described by the angle x (defined modulo 2π) and the
associated momentum p, and kick it periodically with a position-dependent amplitude. In properly scaled units, the
Hamiltonian function can be written as

H =
p2

2
+ k cosx

+∞∑
n=−∞

δ(t− nT ) (6)

where T and k are period and strength of the kicks, respectively.

B. Classical dynamics

Because of the time-dependence, energy is not conserved, but thanks to the time-periodicity, we can analyze the
motion stroboscopically and build a Poincaré map picturing the evolution once every period. This map relates the
phase space coordinates just before kick n+ 1 to the coordinates just before kick n:{

In+1 = In +K sinxn
xn+1 = xn + In+1

(7)

where K = kT and In = Tpn. This is nothing but the celebrated standard map (also known as the Chirikov map)
that has been widely studied [10, 11]: it is almost fully chaotic and ergodic around K = 8 and above, see fig. 2.

Note: The scripts standard map single trajectory.py and standard map several trajectories.py compute the
iterates of a single and several initial points, respectively. The first script shows whether an initial condition is regular
(all iterates lie on a line) or chaotic (it fills densely part of the plane). The second script generates a Poincaré surface
of section.

http://www.python.org/download/
https://www.enthought.com/products/canopy/
https://www.enthought.com/products/canopy/
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FIG. 3. Evolution of 〈p2〉 as a function of time, showing a diffusive behaviour, for sufficiently large values of K. 〈p2〉 is averaged
over a family of initial conditions.

C. Chaotic diffusion

At each kick, the momentum changes by a quantity k sinxn which can be either positive or negative. When the
stochasticity parameter K is very large, each kick is so strong that the positions of the consecutive kicks can be
taken statistically uncorrelated. The momentum p then receives kicks with a pseudo-random amplitude, resulting in a
random walk in momentum space. Not surprisingly, this induces a global diffusive-like behaviour, see fig. 3, although
the motion is perfectly deterministic. By averaging and assuming consecutive kicks to be uncorrelated, we obtain:

〈p2
n+1〉 ' 〈p2

n〉+ k2〈sin2 xn〉 ' 〈p2
n〉+

k2

2
(8)

It follows that the motion in momentum space is indeed diffusive, 〈p2〉 = 2Dt increases linearly with time. The
diffusion constant depends on k and is approximately given by:

D =
k2

4T
. (9)

The numerical results are in good overall agreement with this prediction, see fig. 4. There are however oscillations
due to residual correlations between consecutive kicks. They can be computed leading to the improved expression:

D =
k2

4T
(1− 2J2(K) + 2J2

2 (K)) (10)

with J2 the ordinary Bessel function. This expression is in excellent agreement with the numerical results, see
fig. 4. Note however the extra sharp peaks immediately above integer multiples of 2π. These are due to the so-called
“accelerator modes”. ForK = 2π, it is easy to check that there is a trajectory such that xn = π/2+n(n+1)π, pn = 2nπ
where the momentum increases ballistically. For K slightly larger than 2mπ, there are trajectories trapped in an
accelerating island. Although they occupy only a small fraction of phase space, they give diverging contributions to
the diffusion constant. This can be considered as a pathology of the model without any serious consequence.

Note that the kicked rotor is a perfectly deterministic system, without any randomness. It is the chaotic nature
of the classical motion, and thus its extreme sensitivity to perturbations, which renders the deterministic classical
motion diffusive on average.

Note: the script standard map final momentum distribution.py generates the distribution of final momentum
starting from a ensemble of trajectories initially located near p = 0. standard map p2 vs time.py shows the linear
increase of 〈p2〉 with time. standard map diffusion constant versus K.py computes the diffusion constant (with
error bars) as a function of K. Warning: this script is the only one requiring a rather long execution time (around 15
minutes).
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FIG. 4. Diffusion constant for the kicked rotor (standard map) as function of the stochasticity parameter K. It is growing like
K2/4 with oscillations. Note the peaks near integer multiple of 2π related to the so-called “accelerator” modes.

D. Quantum dynamics

The quantum Hamiltonian is obtained from the classical one, eq. (6), through the canonical replacement of p by
−i~∂x.

The evolution operator over one period is the product of the free evolution operator and the instantaneous kick
operator:

U = U(T, 0) = exp

(
− i
~
p2T

2

)
exp

(
− i
~
k cosx

)
(11)

The long-time dynamics is generated by successive iterations of U. Thus, one can use the eigenstates of U as a basis
set. U being unitary, its eigenvalues are complex numbers with unit modulus:

U |φj〉 = exp

(
− iEjT

~

)
|φj〉 (12)

with 0 < Ej ≤ 2π~/T are defined modulo 2π~/T . They are not exactly the energy levels of the system—the |φj〉 are
not stationary states of the time evolution, but are only periodic—and are called quasi-energy levels, the |φj〉 being
the Floquet eigenstates. This Floquet description is the time-analog of the Bloch theorem, that applies to spatially
periodic potentials. The Floquet theorem implies that any solution of the time-dependent Schroedinger equation can
be written as a linear combination of exp(−iEjt/~) |φj(t)〉.

Because of the spatial periodicity, the natural basis states are the eigenstates |m〉 of the p operator labelled with
the integer quantum number m:

〈θ|m〉 =
exp(imθ)√

2π
(13)

They are eigenstates of p2 with the eigenvalue m2~2.
The Floquet eigenstates can be obtained by numerical diagonalization of U, whose matrix elements in the momentum

eigenbasis, are quite simple:

〈m′|U |m〉 = (−i)m−m
′
Jm−m′(K/~) exp

(
−im

′2~
2

)
(14)

Figure 5 shows typical eigenstates of U obtained numerically. The remarkable properties is that they are all localized
in momentum space, with an average exponential decay (with large fluctuations) away from the center of localization.
It should also be noted that the localization length does not depend on the position of the center of localization.
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FIG. 5. Three typical Floquet eigenstates displaying exponential localization in momentum space.

Note: the script kr Floquet eigenstates.py diagonalizes the (truncated) evolution operator in momentum basis,
producing the spectrum (mainly on the unit circle) and the localized Floquet eigenstates.

E. Dynamical Localization

The quantum dynamics of the kicked rotor can be quite simply studied numerically by repeated application of the
one-period evolution operator U to the initial state, alternating free propagation phases with instantaneous scattering
events in momentum space induced by the kicks. The free evolution between kicks, exp

(
−ip2T/2~

)
, is diagonal in

momentum representation, such that each momentum eigenstate, characterized by its momentum m~ with integer m,
picks up a different phase shift. The kick operator exp (−ik cos θ/~), in contrast, is diagonal in position representation
and couples different momenta.

For sufficiently large K = kT , the classical dynamics is diffusive in momentum space, but it should come as no
surprise to the reader familiar with 1d Anderson localization, that the quantum dynamics may be localized at long
times, see figure 6. It is characterized by the saturation of 〈p2〉 at long time — in strong contrast with the classical
unlimited growth — and by the exponential shape of the density in momentum space, see figure 7, very much like the
usual Anderson localization in configuration space. This localization was baptized “dynamical localization” when it
was observed in numerical simulations [12]. Only later, people realized that it is nothing but the Anderson scenario
of 1d localization, as explained below.

Note: The script kr periodic.py computes the temporal evolution over many kicks, starting from either a single
state or averaging over several states. It outputs both 〈p2(t)〉 and the probability density in momentum space 〈|ψ(p)|2〉
at the final time.

F. Link with Anderson localizations

So far, we have only made plausible that dynamical localization with the quantum kicked rotor is similar to Anderson
localization in a spatially disordered medium. We now demonstrate the connection between the two phenomena,
following [13]. Consider the evolution operator, eq. (11), and the associated eigenstate |φ〉 with quasi-energy E. The
part of the evolution operator associated with the kick can be written as:

exp

(
− i
~
k cosx

)
=

1 + iW (x)

1− iW (x)
(15)
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FIG. 6. The expectation value 〈p2(t)〉 for the quantum periodically kicked rotor, displaying a diffusive behavior at short time
(following the classical dynamics) and saturation at long time. For a single ”realization“ (a given initial state), there are large
fluctuations at long time, which are smoothed out when averaging over possible initial states. Parameters are K = 11.6, ~ = 1.0

FIG. 7. The average probability density in momentum space |ψ(p)|2 for the quantum kicked rotor after it reaches dynamical
localization (after 400 kicks). It displays an average exponential localization with large fluctuations. Parameters are K =
11.6, ~ = 1.0

where W (x) is a periodic Hermitean operator which can be Fourier-expanded:

W (x) =

∞∑
r=−∞

Wr exp (irx). (16)

Similarly, the kinetic part can be written as:

exp

[
− i
~

(
p2

2
− E

)
T

]
=

1 + iV

1− iV
(17)

The operator V is diagonal is the eigenbasis of p, labeled by the integer m (see above). If one performs the following
expansion in this basis set,

1

1− iW (x)
|φ〉 =

∑
m

χm |m〉, (18)

it is straightforward to show that the eigenvalue-equation (12) can be rewritten as

εmχm +
∑
r 6=0

Wrχm−r = −W0χm (19)
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FIG. 8. Temporal evolution of 〈p2〉 (left) and average probability density in momentum space |ψ(p)|2 (right) for the deterministic
quantum kicked rotor and the random kicked rotor. They behave similarly, proving that it is the free propagation of the rotor
between kicks which is the source of (pseudo-)randomness and disorder. Parameters are K = 11.6, ~ = 1.0

where

εm = tan
[(
E − 1

2m
2~2
)
T/2~

]
. (20)

Equation (19) is the time-independent Schrödinger equation for a one-dimensional Anderson model with site index
m, on-site energy εm, coupling Wr to the nearest sites and total energy −W0. There are two new ingredients
compared to a standard Anderson model: firstly, there are additional hopping amplitudes to other neighbors. But
since they decrease sufficiently fast at large distance, they do not play a major role. Secondly, the εm values,
determined deterministically by (20), are not really random variables, but only pseudo-random[19] with a Lorentzian
distribution.[20] Still, localization is expected and indeed observed.

This mapping shows that the on-site pseudo-randomness comes from the free propagation part of the evolution
operator, while the non-random hopping between the sites originates from the kick operator. The statistical distri-
bution of the εm in eq. (19) is a Cauchy (or Lorentz) distribution independently of k, while the hopping amplitudes
increase with k. Thus, the weak disorder limit (hopping dominates randomness) of this on-site Anderson model is
counterintuitively the large k limit where the classical dynamics is the most chaotic. Similarly, the strong disorder
limit corresponds to small k (small hopping), so that the particles are essentially localized on a single site with a
vaninshingly small localization length.

A consequence of this surprizing result is that the localization properties should not depend on the details of the
free propagation part of the evolution operator. In other words, one could replace the determninistic diagonal phase
factor exp(−im2~/2) by random uncorrelated phase factor exp(−iφm) without affecting the localization properties.
This modified system is called the random kicked rotor and numerical experiments show that is has similar localization
properties, see figure 8.

The localization length ploc can be approximately computed using the equivalence with an Anderson-like model
(which is rather a Loyd model). We will use a different way to compute it, which gives (of course!) the same result.

There is a significant difference between time-independent and time-periodic systems. The former have a discrete
pure point spectrum if the classical dynamics is bound; the latter usually have at least a dense spectrum. Indeed, the
quasi-energy spectrum is defined modulo 2π~/T. Hence, there is an infinite number of energy levels in a finite energy
range and the mean level spacing is not well defined. In fact, the quantity of interest is rather the local density of
states, that is the density of states weighted by the overlap with the initial state, something like

∑
i |ci|2 δ(E − Ei).

Most of the Floquet eigenstates are so weakly overlapping with the initial state that it may happen that the effective
density of states contributing to the dynamics is finite. In such a case, the Heisenberg time is just 2π~ times this
effective density of states. But this is also the localization time tloc. Indeed, when it reaches TH, the system resolves
the underlying Floquet spectrum and “knows” that it is discrete. It cannot thus explore new regions of phase space
and the quantum dynamics freeze.

This is what happens for the kicked rotor. We can derive a rough estimate of the Heisenberg time. Suppose that
the initial state is effectively coupled to ` Floquet states. Then, the mean level spacing is 2π~/` and the Heisenberg
time is:

TH = `. (21)

After TH, the system has undergone a chaotic diffusion and thus reached a typical value (assuming p ' 0 initially):

〈p2〉 ' 2DTH =
K2

2
` (22)
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Only states with sufficiently low m – such that m2~2 ≤ 〈p2〉 – will significantly contribute to the dynamics. The
number of such states is, by definition, `. This implies that:

2`2~2 ' K2

2
`. (23)

This determines:

` ' K2

4~2
(24)

and the localization length in momentum space:

ploc = `~ ' D

~
=
K2

4~
(25)

The localization time is in turn given by:

tloc = TH '
D

~2
=
K2

4~2
(26)

These estimates agree well with the numerical observations. For truly quantitative results, the full approximate
expression for the diffusion constant D, eq. (10) should be used.

In the semiclassical limit, both the localization length (actually in the momentum space) and the localization time
diverge, which means that dynamical localization disappears.

Note: the script pseudo random sequence.py computes the pseudo-random sequence εm. The script kr periodic.py
can also compute the temporal evolution of the random kicked rotor (set the variable random kicked rotor to True).

II. LECTURE II: EXPERIMENTS WITH THE PERIODICALLY KICKED ROTOR

A. Keys for a successful experiment

From the first lecture, we know what is really important and what it less important for a possible experimental
observation of dynamical localization. The essential ingredients are:

• One-body Hamiltonian without internal degrees of freedom;

• 1d dynamics;

• Time-periodic Hamiltonian;

• Spatially periodic Hamiltonian (periodic potential);

• Phase coherence over long time;

• Sufficiently large number of kicks;

• Incommensurability of the effective dimensionless ~ with 2π.

Less important points are:

• Kicks (mainly for convenience of the calculation);

• Dispersion relation;

• Well defined initial state, as long as it is smaller than the localization length.

The spatial periodicity implies to use some kind of lattice, an optical lattice when we use cold atoms.
The external dynamics of cold atoms in an optical lattice can satisfy all these constraints: the atomic internal

degrees of freedom can be forgotten, and the versatility of atom-laser interaction makes it possible to build a fully
externally controlled effective Hamiltonian. The time and length scales are favorable: the typical quantum time scale
for cold atoms is the inverse of the recoil energy, that is around 100 microseconds. The typical length scale is the
wavelength of the laser light used to manipulate the cold atoms, that is a fraction of a micro-meter. The associated
velocity if of the order of 1 cm/s. All these orders of magnitude are rather easily reached with standard experimental
techniques.
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B. Atom-light interaction - Optical potential

Consider a two level atom interacting with a laser of frequency ωL = kLc detuned by ∆L = ωL − ω0 from the
atomic transition of frequency ω0. It is well known that there are two kinds of interactions between the atom and the
radiation: Firstly, the atom can absorb a photon from the laser and re-emit it spontaneously in a random direction.
This is a dissipative process giving rise to radiation pressure force, whose rate is ΓΩ2/4∆2

L where Γ is the natural
width and Ω the resonant Rabi frequency (we assume |∆L| � Γ). Secondly, the atom can pick a photon in a laser
mode and emit it by stimulated emission. This conservative process is associated with a potential acting on the atom’s
center of mass motion, called the optical or dipole potential, whose value is:

Vopt =
~Ω(r)2

4∆L
(27)

where r is the atom center of mass position. Being proportional to the square of the Rabi frequency, it is directly
proportional to the laser intensity at position r.

How to create a spatially modulated potential (for the kicks) thus requires a spatially modulated intensity, which is
easily done with a standing wave. Clearly, this interaction is one dimensional, as momentum exchanges between the
atom and the radiation are always along the standing wave: The atom absorbs a photon in one of the propagating
beams and emits it in the counterpropagating beam, leading to a quantized momentum exchange of 2~kL along the
laser axis. An important point is that the optical potential amplitude scales as Ω2/∆L whereas the spontaneous
emission rate scales as ΓΩ2/∆2

L. In the regime |∆L| � Γ, the optical potential is the dominant contribution to the
dynamics, with spontaneous emission events being rare. Moreover, one can reduce the spontaneous emission rate by
increasing the detuning ∆L, provided that the laser has enough power to keep the potential amplitude at the required
level.

C. The atomic kicked rotor

Suppose now that, instead of having the atom interacting continuously with the standing wave, one modulates the
radiation intensity periodically (with period T1) so that it is on for a short time τ (as compared to the atom dynamics)
and off the rest of the period. One then obtains the Hamiltonian:

H =
P 2

2M
+

~Ω2τ

8∆L
cos (2kLX)

∑
n

δτ (t′ − nT1) (28)

where δτ (t) = 1/τ if |t| ≤ τ/2 and zero otherwise. This functions tends to the Dirac δ-function as τ → 0.
It is useful to introduce a set of scaled, dimensionless units [14]:

x = 2kLX

p = 2kLT1P/M

t = t′/T1

K =
~Ω2T1τk

2
L

2M∆L
(29)

~eff = 4~k2
LT1/M

H =
4k2
LT

2
1

M
H

In the limit of short pulses τ � T1, one then has:

H =
p2

2
+K cosx

∑
n

δ(t− n) (30)

which is precisely the Hamiltonian of the kicked rotor. One has thus realized an atomic kicked rotor [15]. The above
Hamiltonian is associated with the Schrödinger equation:

i~eff
∂ψ

∂t
= Hψ. (31)
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~eff (sometimes noted k̄) plays the crucial role of an effective Planck constant, which can be adjusted at will by
modifying e.g. the period T1. The interesting physics takes place in the momentum space. The scaling Eqs. (29) is
such that P = 2~kL corresponds to p = ~eff. If the atom is cold enough that its typical momentum is comparable
to 2~kL (the “quantum” of momentum exchange), quantum effects can be observed in the system. Fortunately,
magneto-optical traps produce atoms with a typical momentum of a few ~kL. It is customary to measure the atomic
momentum P in units of 2~kL, i.e. measure p in units of ~eff.

The spatial dimensions perpendicular to the laser beams do not play any role in the problem, so that we have an
effectively one-dimensional time-dependent problem. The mapping of the dimensionfull Hamiltonian for cold atoms
to the kicked rotor Hamiltonian shows that the effective Planck’s constant of the problem is ~eff = 8ωrT, that is 8
times the ratio of the atomic recoil frequency ωr to the pulse frequency, and can be easily varied in the experiment,
from the semiclassical regime ~eff � 1 to the quantum regime ~eff ∼ 1.

There is however a slight complication: the configuration space of the atomic kicked rotor is the full x axis, not
the [0, 2π] interval of the model system. Thus, the wavefunction in configuration space is not 2π-periodic. The Bloch
theorem gives the solution of this problem. Instead of using strictly 2π-periodic functions, one can expand any (non
periodic) wavefunction in the basis of Bloch waves, which are products of 2π-periodic functions by a plane wave
exp(iβx) characterized by the quasi-momentum ~β, β taking any value in the interval [−0.5, 0.5[ (first Brillouin zone).
Because the spatial potential is periodic, the temporal evolutions of the various β components are independent.
The only price to pay is the replacement of the integer m characterizing the momentum eigenstates by m + β in
the various equations above. In particular, different β produce different realizations of the on-site disorder of the
equivalent Anderson model:

εm = tan
[(
E − 1

2 (m+ β)2~2
)
T/2~

]
. (32)

In other words, the distribution of quasi-momentum performs the disorder averaging for free! This is why the
experimental signals do not display the same large fluctuations than the numerical calculations for the pure kicked
rotor keeping β = 0.

D. Experimental observation of dynamical localization

The simplest observation uses a cold atomic gas, prepared in a standard magneto-optical trap with a typical velocity
spread of few recoil velocities [6, 7, 16]. After the trap is switched off, a periodic train of laser pulses is applied to the
atoms. Each pulse is composed of two far-detuned counter-propagating laser beams producing a spatially modulated
optical potential. Each laser pulse thus produces a kick on the atom velocity, whose amplitude is proportional to the
gradient of the optical potential.

After the series of pulses is applied, the momentum distribution is measured either by a time of flight technique [6]
or velocity selective Raman transitions [7]. Fig. 9 shows the average value 〈p2〉 as a function of time (number of kicks).
One clearly sees a linear growth at short time followed by a saturation, that is a freezing of the diffusive growth when
dynamical localization takes place.

Figure 10 shows the momentum distribution as a function of time. While, at short time, the distribution is
Gaussian—as expected for a classical diffusion—, its shape changes around the localization time and evolves toward
an exponential shape exp(−|p|/ploc) at long time, a clear-cut manifestation of Anderson/dynamical localization.

The parameters used in this experiment (Na atoms, K = 11.6, ~ = 2.0) are such that the theoretical prediction is a
localization time of 8.3 kicks, in good agreement with numerical experiments and the experimental observation. The
saturation level of 〈p2〉 at long time is also quantitatively predicted.

E. Experimental imperfections - Decoherence effects

The experiments of course suffer from several imperfections and limitations. It is the simultaneous minimization of
all these drawbacks that dictate the optimal experimental parameters.

A first limitation is the finite duration of the kicks, which puts an upper limit on the atomic velocities. Indeed,
if the atom is sufficiently fast to travel a significant fraction of the spatial period when the laser standing wave is
switched on, the kick approximation breaks down. This leads to a reduction of the diffusion constant for fast atoms
which could mimick Anderson localization. This is why more recent experiments use heavier (hence slower) atoms
like Cs.

More importantly, there are several microscopic phenomena that can kill the phase coherence of the atomic wave-
function. The most important ones are:
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FIG. 9. Average value 〈p2〉 for a collection of cold atoms exposed to a series of kicks, as a function of time (the number of
kicks). The solid line shows the linear growth predicted by theory at short time (classical chaotic diffusion). The dashed line
is the saturation value predicted by dynamical localization and the dots are the experimental observation. The inset shows the
final momentum distribution on a logarithmic scale, see also Fig. 10 (courtesy of M. Raizen).

• Collision between atoms. An elastic collision produces a local (in space) phase shift that breaks the global phase
coherence in momentum space. This is why a rather dilute atomic gas must be used. The rate is typically
around 1 collision every few hundred kicks.

• Spontaneous emission. When an atom spontaneously scatters a photon in a mode which is not one of the laser
modes, it picks a random recoil (depending on the direction of emission). This leads to an additional phase factor
exp(iprecoilx) in the atomic wavefunction, i.e. a random shift of the quasi-momentum. After such an event,
the precise phase relations between momentum components which ensure localization are no longer satisfied
and classical diffusion restarts, as shown in figure 11. By increasing the detuning of the laser (and increasing
simultaneously its intensity), one can limit this process to few thousandths per kick.

• Noise on the kick strength. The kick strength may fluctuate from one kick to the next kick. Although this is not
strictly decoherence, but rather a Hamiltonian random dephasing process, it also can kill dynamical/Anderson
localization.

• Because of gravity, the atoms fall and tend to escape the horizontal laser beam, again breaking temporal
periodicity. This limits the duration of the kicking sequence to about 200 kicks.
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FIG. 10. Experimental time evolution of the momentum distribution of the atomic kicked rotor [6], from the initial Gaussian
distribution until the exponentially localized distribution at long time; N is the number of kicks (courtesy of M. Raizen).

FIG. 11. Modelization of the effect of a decoherence process, such as spontaneous emission, on dynamical/Anderson localization.
A single decoherence event (left) destroys phase coherence and classical diffusion restarts until localization sets is again on a
longer scale. When decoherence events occur randomly in time, this recreates a global diffusion (middle) with a diffusion
constant smaller than the classical diffusion constant, and the momentum distribution tends to a Gaussian (right).

• If the laser beam is not perfectly horizontal, there is a residual linear potential along the laser axis which breaks
spatial periodicity, and hence dynamical/Anderson localization.

All these effects limited the coherence time to few tens of kicks in the first generation of experiments. As will be
discussed in Lecture III, this is too short to allow for observing Anderson localization in dimension higher than 1.
Fortunately, improvements in the experimental setups has now pushed this limit to several hundred kicks, and the
next generation could reach 1000 kicks or more, opening the way to new experiments.

Decoherence can be modelled by events which brutally kills the phase coherence (or by small dephasing effects
leading to progressive loss of phase coherence). The effect on dynamical/Anderson localization is shown in figure 11. It
is important to note that a decoherence rate larger than the inverse of the localization time will make the unambiguous
observation of localization quite difficult. When the decoherence rate γ is small compared to the localization time
tloc, the residual diffusion constant is simply [16]:

D∗ = Dclassical γ tloc. (33)

A controlled addition of decoherence has been performed in real experiments. Adding decoherence on the system—
either by adding spontaneous emission [16] or by weakly breaking the temporal periodicity [17]—induces some residual
diffusion at long time, see figures 12 and 13. This is another proof that dynamical localization is based on delicate
destructive interference.
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FIG. 12. Average value 〈p2〉 as a function of time (the number of kicks), in the presence of decoherence, due to spontaneous
emission of photons by the atoms. At long time, decoherence restore a diffusive behaviour, albeit with a diffusion constant
smaller than predicted by classical mechanics. The various curves correspond to various decoherence rates (courtesy of H.
Ammann).

Note: the scripts kr periodic with one decoherence event.py, kr periodic with fixed decoherence rate.py
and kr periodic with noise.py are various models for decoherence and noise, showing the appearance of a global
residual diffusion at long time.
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FIG. 13. Average value 〈p2〉 as a function of time (the number of kicks), in the presence of amplitude noise for the kicks (a)
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[12] G. Casati, B.V. Chirikov, J. Ford and F.M. Izrailev, “Stochastic Behavior of Classical and Quantum Hamiltonian Systems”,
Lecture Notes in Physics, 334, G. Casati and J. Ford eds., Springer, New York (1979).

[13] D.R. Grempel, R.E. Prange and S. Fishman, Phys. Rev. A 29, 1639 (1984).
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