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INTRODUCTION: ANDERSON LOCALIZATION

I. LECTURE I: THE PERIODICALLY KICKED ROTOR

II. LECTURE II: EXPERIMENTS WITH THE PERIODICALLY KICKED ROTOR

III. LECTURE III: THE QUASI-PERIODICALLY KICKED ROTOR

A. The model

How can the kicked rotor be used to study Anderson localization in more than one dimension? The first idea
is to use a higher-dimensional rotor with a classically chaotic dynamics and to kick it periodically. It turns out
that this is not easily realized experimentally, as it requires to build a specially crafted spatial dependence[1]. Yet,
remember that time and space have switched roles, and so a simpler idea is to use additional temporal dimensions
rather than spatial dimensions. Instead of kicking the system periodically with kicks of constant strength, one may
use a temporally quasi-periodic excitation. Various schemes have been used [2], but the one allowing to map on a
multi-dimensional Anderson model uses a quasi-periodic modulation of the kick strength, the kicks being applied at
fixed time interval [3].

We will be interested in a 3d Anderson model, obtained by adding two quasi-periods to the system:[27]

Hqp =
p2

2
+K(t) cosx

∑
n

δ(t− n) , (1)

with

K(t) = K [1 + ε cos (ω2t+ ϕ2) cos (ω3t+ ϕ3)] . (2)
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It is easy to write the classical evolution from kick n to kick n+ 1, exactly as we did for the periodically kicked rotor.
One obtains: {

pn+1 = pn +K(n) sinxn
xn+1 = xn + pn+1

(3)

that is the same result than for the periodically kicked rotor, except that K now depends quasi-periodically on time.
Now where is the three dimensional aspect in this problem? The answer lies in a mapping of this quasi-periodic

kicked rotor on a 3d kicked “pseudo”-rotor with the special initial condition of a “plane source”, as follows.

B. The periodically kicked pseudo-rotor

Let us consider a 3d periodically kicked pseudo-rotor, whose Hamiltonian is:

H =
p21
2

+ ω2p2 + ω3p3 +K cosx1 [1 + ε cosx2 cosx3]
∑
n

δ(t− n), (4)

This is not a true rotor, because of the unusual form of the kinetic energy in directions 2 and 3, where it is a linear
– instead of quadratic – function of the momentum, hence the name pseudo-rotor. Being a periodic system, we can
again write the map over one period:

p1n+1
= p1n +K sinx1n(1 + ε cosx2n cosx3n) ,

p2n+1
= p2n +Kε cosx1n sinx2n cosx3n ,

p3n+1
= p3n +Kε cosx1n cosx2n sinx3n , (5)

x1n+1
= x1n + p1n+1

,

x2n+1 = x2n + ω2 ,

x3n+1 = x1n + ω3 .

The last two equations are trivially integrated: x2n = x20 + nω2 and similarly for x3. If we now start with the
initial condition x20 = ϕ2, x30 = ϕ3, it is straightforward to realized that the mapping for p1 and n1 is exactly the
same than the mapping (3) of the quasi-periodically kicked rotor. In other words, the classical dynamics of the kicked
pseudo-rotor along the direction 1 is strictly identical to the one of the quasi-periodically kicked rotor.

The same mapping exists for the quantum evolution. Consider the evolution of a wavefunction Ψ with the initial
condition

Ψ(x1, x2, x3, t = 0) ≡ ψ(x1, t = 0)δ(x2 − ϕ2)δ(x3 − ϕ3). (6)

This initial state, perfectly localized in x2 and x3 and therefore entirely delocalized in the conjugate momenta p2
and p3, is a “plane source” in momentum space [4]. A simple calculation shows that the stroboscopic evolution of
Ψ under (4) coincides exactly with the evolution of the initial state ψ(x = x1, t = 0) under the Hamiltonian (1)
of the quasi-periodically kicked rotor (for details, see [5]). An experiment with the quasi-periodic kicked rotor can
thus be seen as a localization experiment in a 3d disordered system, where localization is actually observed in the
direction perpendicular to the plane source. In other words, the situation is comparable to a transmission experiment
where the sample is illuminated by a plane wave and the exponential localization is only measured along the wave
vector direction. Therefore, the behavior of the quasi-periodic kicked rotor (1) matches all dynamic properties of the
quantum 3d kicked pseudo-rotor.

For sufficiently large K and not too small ε, the classical dynamics of the pseudo-rotor is a chaotic diffusion in
momentum space. Indeed, coupling to the strongly chaotic direction 1 is sufficient to make the dyanamics along
directions 2 and 3 also diffusive [6]. However, the diffusion tensor is not isotropic. It can be computed like for
the periodically kicked rotor, that is assuming no position-momentum correlation and complete delocalization in
configuration space. One obtains for the anisotropic diffusion tensor (for ε smaller than unity):

D11 ≈ (K2/4)(1 + ε2/4) , (7)

D22 ≈ K2ε2/16 , (8)

D33 ≈ K2ε2/16 , (9)

Di6=j ≈ 0 . (10)
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FIG. 1. Final momentum distributions along p1 (in black) and p2 (in red), the distribution along p3 being approximately
identical to that along p2. After 1000 kicks, they display all a Gaussian shape characteristic of a diffusive motion. The blue and
green curves are fits by a Gaussian which do not show any statistically significant deviation. Parameters are K = 10, ε = 0.8,
ω2 = 2π

√
5 and ω3 = 2π

√
13.

The coupling between the 3 degrees of freedom tend to reduce the stability of phase space structures at low K.
For example, accelerator modes – which exist in the periodically kicked rotor – disappear for rather small values of ε.
Altogether, for ε > 0.1, the classical dynamics can be considered as an anisotropic chaotic diffusion down to K = 3−4.

Note: the script qpkr final momentum distribution.py generates the distribution of final momentum along the
three directions 1, 2 and 3 (only direction 1 is the physical dimension) starting from a ensemble of trajectories initially
located near p=0. For sufficiently large K (of the order of 3), it is a Gaussian, showing that the classical dynamics
of the QPKR is a deterministic chaotic diffusion. Interestingly, less deviations from pure Gaussian are observed for
the QPKR than for the KR (see corresponding script standard map final momentum distribution.py). The script
qpkr p2 vs time.py shows the linear increase of p2 with time.

C. Anderson transition

As for the standard 3d kicked rotor (4), the quantum dynamics of the periodically kicked pseudo-rotor can be
studied using the Floquet states via mapping to a 3d Anderson-like model:

εmΦm +
∑
r6=0

WrΦm−r = −W0Φm , (11)

where m ≡ (m1,m2,m3) labels sites in a 3d cubic lattice, the on-site energy εm is

εm = tan

{
1

2

[
ω −

(
~
m1

2

2
+ ω2m2 + ω3m3

)]}
, (12)

and the hopping amplitudes Wr are the Fourier expansion coefficients of

W (x1, x2, x3) = tan [K cosx1(1 + ε cosx2 cosx3)/ 2~] . (13)

A necessary condition for localization is obviously that εm not be periodic. This is achieved if (~, ω2, ω3, π) are
incommensurate. When these conditions are verified, localization effects as predicted for the 3d Anderson model are
expected, namely either a diffusive or a localized regime. Localized states would be observed if the disorder strength is
large compared to the hopping. In the case of the model (11), the amplitude of the disorder is fixed, but the hopping
amplitudes can be controlled by changing the stochasticity parameter K (and/or the modulation amplitude ε): Wr

is easily seen to increase with K. In other words, the larger K, the smaller the disorder. One thus expects to observe
diffusion for large stochasticity K and/or modulation amplitude ε (small disorder) and localization for small K and/or
ε (large disorder). It should be emphasized that stricto sensu there is no mobility edge in our system that would
separate localized from delocalized eigenstates. Depending on the parameters K, ~, ε, ω2, ω3, either all Floquet states
are localized or all are delocalized. The boundary of the metal-insulator transition is in the (K, ~, ε, ω2, ω3)-parameter
space. As seen below, K and ε are the primarily important parameters.
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FIG. 2. Experimentally measured temporal dynamics of the quasi-periodically kicked rotor, for increasing values of the kick
strength. The average kinetic energy 〈p2(t)〉 tends to a constant in the localized regime (lower blue curve) increases linearly
with time in the diffusive regime (upper red curve). At the critical point K = Kc ≈ 6.04 (middle purple curve), anomalous

diffusion 〈p2(t)〉 ∼ t2/3 (dashed curve) is clearly observed.

In the experiment performed at the University of Lille [7], kicks are applied to atoms with an initially narrow
momentum distribution, and the final momentum distribution is measured using velocity-selective Raman transitions
[28]. Figure 2 shows the experimental data. For large disorder, one clearly sees the initial diffusive phase and the
freezing of the quantum dynamics in the localized regime (lower curve). In the diffusive regime (upper curve), 〈p2(t)〉
is seen to increase linearly with time. The intermediate curve displays an anomalous diffusion 〈p2(t)〉 ∼ t2/3.

Why is this exponent 2/3? It is in fact a prediction of the scaling theory. In its standard form, the theory focuses
on the scaling of the conductance g with the size L of the system:

g(L) = σ(L)Ld−2 (14)

where σ(L) is the conductivity of the medium, proportional to the size-dependent diffusion constant D(L). How to
pass from the size L to the time t which is the scaling variable for the kicked rotor? It t(L) is the characteristic time
associated with size L (in other words, the time needed for the system at the critical point to diffuse over a size L),
one has D(L)t(L) ∝ L2. At the critical point, g(L) is independent of L; thus, from eq. (14), one has D(L) ∝ L2−d.
By combining these two equations, we have t(L) ∝ Ld or L ∝ t1/d. Thus, the average value of 〈p2(t)〉 increases like
D(L)t(L) ∝ L2 ∝ t2/d, hence the 2/3 anomalous exponent in 3d. Only exactly at the unstable critical point will the
anomalous diffusion subsist for arbitrarily long times. At slightly larger (resp. smaller) K, the motion will eventually
turn diffusive (resp. localized) at long time. Experimental constraints prevent the observation beyond 150-200 kicks.
Numerical simulations may extend much beyond: it has been checked that the anomalous diffusion with exponent
2/3 is followed for at least 108 kicks [5].

Since in numerical or experimental practice one always works in finite-size systems, we should emphasize that there
is an important difference between a true metal-insulator transition and a cross-over between two limiting behaviors.
For example, consider the simplest 1d situation where the dynamics eventually localizes for sure, with a localization
time depending on the kick strength K. Over a finite experimental time, one may observe an apparently diffusive
behavior if the localization time is longer than the duration of the experiment [29]. An intermediate situation with the
localization time comparable to the duration of the experiment could produce data looking like anomalous diffusion.
However, this could be only a transient behavior and a longer measurement will eventually show localization. In
contrast, the t2/3 behavior at the critical point of the Anderson transition is not a transient behavior, it extends to
infinity, highlighting the scale-free behavior with fluctuations of all sizes present right at the critical point. Thus, the
quantity playing the role of the conductance for the kicked rotor is nothing but:

Λ(t) =
〈p2(t)〉
t2/3

(15)

It is independent of time (for sufficiently long time, in order to avoid finite-size effects) at the critical point of the
Anderson transition.

Note: The script qpkr quantum dynamics.py computes the temporal quantum evolution of the QPKR over many
kicks. It outputs both 〈p2〉 and the probability density in momentum space 〈|ψ(p)|2〉 at the final time. This is the most
important script for ”observing” the Anderson transition. With the present set of parameters, it performs 3 successive
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FIG. 3. Principle of the finite-time-scaling procedure. The raw data displaying Λ(t) vs. t−1/3 at various K values (left) are
displaced horizontally so that to collapse as well as possible on a single scaling function, with an upper diffusive branch and a
lower localized branch (middle). The displacement ξ(K) is shown on the left part and has a singularity at the critical point
Kc. The position of the tip of the scaling function gives the critical ”conductance“ Λc.

runs in the localized, critical and diffusive regimes. The data in qpkr p2 vs time quantum.dat should be plotted
in log-log scale to observe the anomalous diffusion at the critical point. Similarly, the momentum distributions in
qpkr quantum momentum distribution.dat display a localized exponential, a Airy function and a diffusive Gaussian.

D. Finite-time scaling

The unavoidable experimental limitation by finite size can also be turned into a powerful tool of analysis. It is
known as finite-size scaling [8] and has its roots in the scaling properties observed in the vicinity of the transition.
The idea is that all results, obtained for various values of parameters and time, are described by a universal scaling
law depending on a single parameter, viz. the distance to the critical manifold. Close to the transition, there is only
one characteristic length (which diverges at the critical point) and all details below this scale are irrelevant. Such
an approach has been extremely successful to extract critical parameters from numerical simulations of the Anderson
model for various system sizes. The approach has been transposed to the kicked rotor—see [5, 9] for details—and
makes it possible to extract the localization length (in momentum space) from numerical or experimental data acquired
over a restricted time interval. The one-parameter scaling hypothesis states that all data can be reduced to a universal
scaling function F (actually, this ”function“ has two branches, a localized one and a diffusive one), and a localization
length depending on the external parameters, in our case K, ε and ~ [30]:

Λ(t) =
〈p2(t)〉
t2/3

= F

(
ξ(K, ε, ~)

t1/3

)
(16)

Although there are 3 relevant parameters which could be varies (K, ε, ~), for practical reasons, ~ (that is the kicking
period) is kept fixed during an experimental run, while either K, ε or both at the same time are varied. To observe a
transition as well defined as possible, it is advisable to cross the critical line, see section III F as fast as possible, that
is ”at right angle“, thus by simultaneously increasing K and ε. Then, by gathering experimental (or numerical) results
got at increasing times and various K values, one can, by collapsing them on a single scaling function F, extract both
F and the localization length ξ(K). The procedure is shown in fig. 3.

The results extracted from the experimental data are shown in fig. 4. As expected, the charateristic length ξ(K)
(the localization length on the insulator side) has a pronounced maximum around K =, indicating that this is the
position of the critical point. The divergence is smoothed by experimental imperfections and the finite duration of
experiments. It is nevertheless possible to extract the critical exponent of the transition, by a simple fit in the vicinity
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FIG. 4. Scaling function F, eq. (16 (left), and characteristic length ξ(K) (for localization in momentum space)(right) extracted
from real experiments on the quasi-periodically kicked rotor, in the vicinity of the metal-insulator Anderson transition [11].
Finite-size scaling is used. The characteristic length is proportional to the localization length on the insulating side, and to the
inverse of the diffusion constant on the metallic side. It has an algebraic divergence 1/|K −Kc|ν at the transition, smoothed
by finite size and decoherence. It is however possible to extract a rather precise estimate of the critical exponent ν.

of the transition:

1/ξ(K) = α|K −Kc|ν + β (17)

where β is a parameter taking into account the unavoidable cut-offs.
For the numerical experiments, one finds ν = 1.58± 0.01 in perfect agreement with the best determination on the

Anderson model. Moreover, it has been checked that this exponent is universal, i.e. independent of the microscopic
details such as the choice of the parameters ~, ω2, ω3 [10]. This is an additional confirmation that the transition
observed is actually the metal-insulator Anderson transition.

E. Universality

A key property of the Anderson transition is that the critical exponent ν does not depend on any microscopic
details such as the value of a parameter (the position of the critical point, on the other hand, depends on such
details). We have therefore varied the parameters ω2, ω3, ~ as well as the path followed in the (K, ε) plane to cross the
critical line and measured systematically the critical exponent. The raw results are shown in Table I and the critical
exponent (with its error bars) shown in fig. 5. The 9 sets of data are compatible with the value ν = 1.58 obtained
from the numerical experiments [10], which is also the value obtained on the standard Anderson model [12]. The
value extracted from these experimental results is ν = 1.63± 0.05. It definitely excludes the value ν = 1 observed in
solid-state experiments [13]. Most probably, electron-electron interactions are responsible for the breakdown of the
Anderson scenario in real solid-state samples. Cold atoms as used in the kicked rotor experiments do not suffer from
this drawback and allowed for the first unbiased measurement of the critical exponent.

Two additional remarks can be made. Firstly, the critical point is the same for sets A and B which differ only by
the values of ω2 and ω3. This is expected, as their only effect is to modify which realizations of the disorder are taken,
which should not affect the average values. Secondly, note that sets H and I have the same parameters, the only
difference being how the δ-peaks are produced: they use different laser intensitiy/duration producing the same K.
This produces a small change in both Kc and ν, showing that imperfections are always present in real experiments.

F. Self-consistent theory of localization

We have not yet computed, even approximately, the boundary between diffusive and localized motion, that is the
critical line in the (K, ε) plane.

For this task, we will use the self-consistent theory of localization [14, 15]. The starting point is the so-called weak
localization correction to the diffusion constant, due to constructive interference between paths which follow the same
closed loop, but in opposite direction [16]. For the perodic or quasi-periodic kicked rotor in dimension d, it gives a
frequency-dependent diffusion tensor [17]:

Dii(ω) = Dii − 2~Dii

∫
ddq

(2π)d
1

−iω +
∑
j Djjq2j

. (18)
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~ ω2
2π

ω3
2π

Path in (K, ε) Kc ν

A 2.89
√

5
√

13 4,0.1 → 8,0.8 6.67 1.63±0.06

B 2.89
√

7
√

17 4,0.1 → 8,0.8 6.68 1.57±0.08

C 2.89
√

5
√

13 3,0.435 → 10,0.435 5.91 1.55±0.25

D 2.89
√

5
√

13 7.5,0 → 7.5,0.73 εc=0.448 1.67±0.18

E 2.00
√

5
√

13 3,0.1 → 5.7,0.73 4.69 1.64±0.08

F 2.31
√

5
√

13 4,0.1 → 9,0.8 6.07 1.68±0.06

G 2.47
√

5
√

13 4,0.1 → 9,0.8 5.61 1.55±0.10

H 3.46
√

5
√

13 4,0.1 → 9,0.8 6.86 1.66±0.12

I 3.46
√

5
√

13 4,0.1 → 9,0.8 7.06 1.70±0.12

TABLE I. The 9 sets of parameters used: ~, ω2 and ω3 control the microscopic details of the disorder, K controls the
amplitude and ε the anisotropy of the hopping amplitudes. The critical point Kc depends on the various parameters but the
critical exponent is universal. The weighted mean of the critical exponent is ν = 1.63 ± 0.05. The duration of the kicks is
τ = 0.8µs for sets A-H, and τ = 0.96µs for set I.

FIG. 5. Experimental test of the universality of the metal-insulator transition. The critical exponent ν, measured for 9
different sets of parameters A-I (see Tab. I), is universal, i.e. independent of the microscopic details. The error bars indicate
one standard deviation, measured using the experimental uncertainties and a bootstrap technique. The dashed line is the
commonly accepted value ν = 1.58.

The self-consistent theory (which is actually not a real theory, but more a cooking recipe on how to include approx-
imately higher order corrections) proposes to extend this equation to the strong disorder limit, where the correction
is no longer small, by replacing self-consistently the raw diffusion constant in the correction term by the frequency-
dependent one:

Dii(ω) = Dii − 2~D〉〉(ω)

∫
ddq

(2π)d
1

−iω +
∑
j Djj(ω)q2j

. (19)

This leads to rather simple calculations, but sometimes surprisingly accurate results. For example, in 1d, for the
periodically kicked rotor, it correctly predicts that all states are localized, and even gives the correct localization
length D/~ (see lecture I).

For the 3d quasi-periodically kicked rotor, the solution is a bit more complicated, because of a large q divergence
of the integral, which must be regularized by e.g. cutting at the inverse of the mean-free path. If one chooses
to a direction-dependent cutoff having the same anisotropy than the diffusion tensor, the equations can be solved
exactly [18]. It predicts both the critical point and the critical conductance:

Kc(ε) =

(
23

π2

)1/3 ~
(ε2
√

1 + ε2/4)1/3
(20)

Λc(ε) =
3~2

Γ(2/3)

(
2

π

)2/3(
1 + ε2/4

ε2

)2/3

(21)

As shown in [18], these predictions are in good agreement with both numerical and experimental results.
Finally, the self-consistent theory also gives specific predictions for the behaviour of the system at the critical point.

Not surprisingly, it there predicts that the diffusion tensor D(ω) scales (in dimension 3) like (−iω)1/3. This is nothing
but the scaling law 〈p2(t)〉 ∝ t2/3. It also predicts the shape of the momentum distribution at long time (starting from
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FIG. 6. Experimental data for the rescaled critical momentul density averaged over time (black circles with error bars) and
a fit given by Eq. (22). The agreement is clearly excellent. The residual does not significantly differ from zero. Fits by an
exponentially localized or a Gaussian distribution show significant deviations.

a localized initial distribution), that is the intensity average Green function in momentum space. The result is:

|ψ(p, t)|2 ≈ 3

2

α√
Λc(ε)t2/3

Ai

[
α

√
|p|2

Λc(ε)t2/3

]
(22)

where α = 31/6Γ(2/3)−1/2 and Ai the usual Airy function. This prediction has been tested experimentally [6], as
shown in fig. 6. The agreement is excellent, with no statistically significant deviation.

This however does not mean that the self-consistent theory can predict only correct results. For example, it predicts
ν = 1 in dimension 3, a badly wrong prediction

G. Perspectives

Since the atom-atom contact interaction in a cold dilute gas is much smaller than the electron-electron Coulomb
interaction in a solid sample, and since atoms are less easily lost than photons, cold atoms appear particularly suitable
for precise measurements of the Anderson transition. Moreover, the possibility to picture wave functions directly opens
the way to studies of fluctuations in the vicinity of the critical point [6], and may even permit to observe multifractal
behavior [19] with matter waves. The flexibility of the kicked rotor could also be used to study the Anderson transition
in lower dimensions (by reducing the number of quasi-periods) or, why not, even higher dimensions (by increasing it
beyond 3).

Other possibilities could be to go to a different universality class. The unitary symmetry classe should be quite
easily reached by breaking any anti-unitary symmetry such as the product of time-reversal and parity. Going to other
symmetry classes would probably be more difficult. It would require an internal degree of freedom of the atoms (such
as Zeeman hyperfine levels) with a coupling to the kicks depending on the internal state. There are for example ideas
of observing the analog of the Quantum Hall Effect [22].

The incommensurate or commensurate character of the various parameters: ~, ωi, π could also be used to study
different regimes of quantum transport [23], or spectra with fractal properties, like the Hofstadter butterfly [24].

Very recently, the atomic kicked rotor periodically kicked with two standing waves with different periods has been
studied experimentally in the group of D. Schneble in Stony Brook. It seems that the two incommensurate periods
break any Anderson localization, restoring classical diffusion [25]. Similar results were obtained in Lille years ago,
using two temporally incommensurate series of kicks [26].

Altogether, the main advantage of kicked rotor systems is that the tunable temporal sequence of kicks makes it
possible to separate the notion of physical dimension (the system remains 1d) from the notion of ”dynamical“ dimen-
sion (which is 3 for the quasi-periodically kicked rotor). This may be very interesting when atom-atom interaction
must be taken into account, e.g. in ultra-cold atomic Bose-Einstein condensates (or Fermi degenerate gases), as one
can dream of using well established techniques such as bosonization and DMRG (see lectures of T. Giamarchi in this
School) together with a complex temporal dynamics. Future will tell...
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In any case, the kicked rotor is an attractive alternative to experiments on spatially disordered systems.
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[2] H. Lignier, J. Chabé, D. Delande, J.C. Garreau and P. Szriftgiser, “Reversible destruction of dynamical localization”,

Phys. Rev. Lett. 95, 234101 (2005).
[3] G. Casati, I. Guarneri and D.L. Shepelyansky, “Anderson transition in a one-dimensional system with three incommensu-

rable frequencies”, Phys. Rev. Lett. 62, 345–348 (1989).
[4] O.I. Lobkis and R.L. Weaver, “Self-consistent transport dynamics for localized waves”, Phys. Rev. E 71, 011112 (2005).
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[10] G. Lemarié, B. Grémaud and D. Delande, “Universality of the Anderson transition with the quasiperiodic kicked rotor”,

Europhys. Lett. 87, 37007 (2009).
[11] M. Lopez, J.F. Clément, P. Szriftgiser, J.C. Garreau and D. Delande, Phys. Rev. Lett. 108, 095701 (2012), arXiv:1108.0630:

“Experimental Test of Universality of the Anderson Transition”
[12] K. Slevin and T. Ohtsuki, “Corrections to Scaling at the Anderson Transition”, Phys. Rev. Lett. 82, 382 (1999).
[13] S. Katsumoto, F. Komori, N. Sano and S. Kobayashi, “Fine tuning of metal-insulator transition in Al0.3Ga0.7As using

persistent photoconductivity”, J. Phys. Soc. Jap. 56, 2259 (1987).
[14] P. Woelfle and D. Vollhardt, arXiv:1004.3238.
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