Kicked rotor and Anderson localization

Dominique Delande

Laboratoire Kastler-Brossel Ecole Normale Supérieure et Université Pierre et Marie Curie (Paris, European Union)

Boulder – July 2013

- Depends on a single parameter K = kT.
- Mainly regular for small K => momentum growth is bounded.

$$\begin{cases} I_{n+1} = I_n + K \sin \theta_n \\ \theta_{n+1} = \theta_n + I_{n+1} \end{cases}$$

- Depends on a single parameter K = kT.
- Mainly regular for small $K \Rightarrow$ momentum growth is bounded.
- Chaos appears around *K*=0.5, then progressively invades the whole phase space.
- Unbounded momentum growth above *K*=1.

I=1p

- Depends on a single parameter K = kT.
- Mainly regular for small $K \Rightarrow$ momentum growth is bounded.
- Chaos appears around *K*=0.5, then progressively invades the whole phase space.
- Unbounded momentum growth above K=1.
- Almost globally chaotic above *K*=4.

- Depends on a single parameter K = kT.
- Mainly regular for small K => momentum growth is bounded.
- Chaos appears around *K*=0.5, then progressively invades the whole phase space.
- Unbounded momentum growth above K=1.
- Almost globally chaotic above *K*=4.

Chaotic diffusion for the standard map

Momentum distribution at long time Fully chaotic regime

Standard map - K=8.0 - t=100

Momentum distribution at long time Almost fully chaotic regime

Standard map - K=7.0 - t=100

Momentum distribution at long time Partially chaotic regime

Standard map - K=4.0 - t=1000

Chaotic diffusion for the classical kicked rotor

Standard map - Periodically kicked rotor

Diffusion constant for the classical kicked rotor Diffusion constant for the standard map

Quantum kicked rotor – Dynamical localization

Quantum kicked rotor – Dynamical localization

Quantum dynamics of the kicked rotor

- Numerical experiment: compare classical and quantum dynamics (averaged over an ensemble of initial conditions).
- Start from a state well localized in momentum space.

Time *t* (number of kicks)

Quantum dynamics of the kicked rotor

- Numerical experiment: compare classical and quantum dynamics (averaged over an ensemble of initial conditions).
- Start from a state well localized in momentum space.
- At short time, the quantum and classical dynamics are equivalent.

 $|\psi(p)|^2$ (log scale)

 $\langle p^2(t) \rangle$

Classical dynamics Quantum dynamics

Time t (number of kicks)

Quantum dynamics of the kicked rotor

- Numerical experiment: compare classical and quantum dynamics (averaged over an ensemble of initial conditions).
- Start from a state well localized in momentum space.
- At long time, the quantum dynamics freeze.
- Equivalent to Anderson localization in momentum space (Fishman et al, 1982)

 $|\psi(p)|^2$

(log scale)

Quantum dynamics: dynamical localization

Casati et al. (1979) $\langle p^2(t) \rangle$

Classical dynamics: chaotic diffusion

Time *t* (number of kicks)

Floquet spectrum in the localized regime

Kicked rotor: Floquet eigenstates of the evolution operator

Three typical Floquet eigenstates of the chaotic quantum kicked rotor showing exponential localization in momentum space

$$|\psi(p)|^2 \simeq \exp\left(-\frac{|p-p_0|}{\ell}\right)$$

The localization length depends on K, but is similar for all states

Quantum kicked rotor – Dynamical localization

Anderson localization in 1d

Propagation of an initially localized wave-packet:

Anderson localization in 1d

 When averaged over time and/or different realizations of the disorder, the fluctuations are smoothed out:

Random vs. Deterministic (chaotic) kicked rotor

The "kicked rotor" collaboration (Paris-Lille)

Dominique Delande

Benoît Grémaud

Jean-Claude Garreau

Pascal Szriftgiser

Jean-François Clément

Gabriel Lemarié

Panayotis **Akridas-Morel**

Hans Lignier

Matthias Lopez

Laboratoire Kastler-Brossel Université Pierre et Marie Curie and Ecole Normale Supérieure (Paris)

Laboratoire PHLAM Université de Lille

Experimental setup

Standard Magneto-Optical Trap

Experimental setup (simplified)

Initial momentum distribution (experimental)

Experimental observation of dynamical localization with cold atoms

M. Raizen et al (1995)

Experimental observation of dynamical localization with cold atoms

Destruction of dynamical localization by "noise"

- Change kick strength at each kick
 - The evolution is completely Hamiltonian, but the evolution operator over one kick varies.
 - Scrambles the phases and kills destructive interference effects => restoration of chaotic diffusion.
- Experimental observation using noise on the kick strength

Experimental observation of decoherence on kicked atoms

• Add some spontaneous emission events. One event is enough to kill the phase coherence of the atomic wavefunction (with negligible energy transfer) and destroy dynamical localization.

