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Classical anisotropic diffusion

Diffusion tensor diagonal in the (1,2,3) axes:

Approximate expressions: 

Numerics along the “1” axis

Numerics along the “2” or “3” axis

Gaussian fits



Schematic view of the experiment

Initial 
atomic cloud

Final atomic cloud

Time

Kicks (amplitude 
quasi-periodically 
modulated with time)
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Numerical results for the three-color kicked rotor
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How to identify unambiguously the transition?

Time (number of kicks)
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How to identify unambiguously the transition?

At criticality, one expects an anomalous diffusion with 

Time (number of kicks)

3 increasing
K values
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Phase diagram of the Anderson transition

1000 kicks

(from numerics)



From localization to diffusive regime: 
experimental results

localized

diffusive <p2(t)> ~ t

critical regime <p2(t)> ~ t2/3
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Experimental momentum distributions

momentum (in units of 2 recoil momenta)
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Experimental momentum distributions

momentum (in units of 2 recoil momenta)
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From localized to diffusive regime

time (number of kicks, log scale)

Numerical results
Experimental 

results

localized regime (slope 0)

diffusive regime 
(slope 1)

critical regime 
(slope 2/3)
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Critical regime of the quasi-periodic kicked rotor

Excellent agreement with the
one-parameter scaling law over 7.5 decades



Rescaled dynamics at various times (numerics)

K (kick strength)

Critical point

increasing 
time
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Finite time scaling

The “displacement” is 
proportional to »(K)

Diffusive

Localized
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Finite time scaling analysis of numerical results

Scaling function Localization length

Critical point K
c
=6.6

Critical exponent

Chabé et al, PRL, 101, 255702 (2008)
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Numerical data up 106 kicks, latest  result: º = 1:58§ 0:02

º = 1:60§ 0:05



Rescaled experimental results

The critical regime is the horizontal 
line.
Problem: it requires very long 
times to accurately measure the 
position of the transition as well as 
the critical exponent.

increasing
K values

             : Population in the 
zero-velocity class
¦0(t)

increasing time

localized (slope 2)

diffusive (slope -1)
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Experimental measurement of the critical exponent

Scaling function:
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Fit using:
Experimental
points

¯ : cut-off taking into account
experimental imperfections 

º = 1:64§ 0:08
M. Lopez et al, PRL, 108, 
095701 (2012), arxiv:1108.0630



Universality of the critical exponent: experimental test

The critical exponent
is universal

Table of 
data sets

Weighted average:

º = 1:63§ 0:05

M. Lopez et al, PRL, 108, 
095701 (2012), arxiv:1108.0630

º = 1:58



Prediction of the self-consistent theory of localization

Experimental points

Very good agreement 
for the position of the 
critical point

Only fair agreement for the 
critical “conductance”

simple prediction

improved predictions

M. Lopez et al, NJP 15, 065013 
(June 2013)  arXiv:1301.1615



Momentum distribution at the critical point
Very localized initial state =>                         is a direct measure of 
the average intensity Green function
Numerical experiment at the critical point:

Time invariant shape (neither Gaussian, nor exponential)

(millions of kicks)

Momentum
Green

Function
(log scale)

G(0; p; t)
hjÃ(p; t)j2i



Momentum distributions at criticality

Distributions at various times
Distributions at various times
rescaled by the critical t1/3 law



Experimental measurements in the critical regime
Characterized by a specific scaling:

p / t1=3 p / t1=2p / t0

p=t0 p=t1=2

Raw 
experimental

data

Rescaled 
data

Lemarié et al, Phys. Rev. Lett. 105, 090601 (2010)

p / t1=3

p=t1=3



Experimentally measured critical Green function

Analytical prediction
(Airy function)

p=t1=3

Experimental points 
(with error bars)

Residual
/Airy function

Residual
/Exponential

Residual
/Gaussian

Rescaled momentumLemarié et al, PRL 105, 090601 (2010)
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