Hysteresis and Dynamic Phase Transition in Kinetic Ising Models and Ultrathin Magnetic Films

Per Arne Rikvold Florida State University with many people over many years: A. Berger, H. Fujisaka, G. Korniss, M. A. Novotny, D. T. Robb, S. W. Sides, H. Tutu, and C. J. White-Oberlin http://www.physics.fsu.edu/users/rikvold/info/rikvold.htm Supported by NSF, DOE, and FSU

Topic

Finite-size scaling study of dynamical phase transition in Ising ferromagnet below T_c , driven by oscillating field.

Differences from previous finite-size scaling studies of nonequilibrium phase transitions:

- Explicit time dependence in Hamiltonian.
- Both "ordered" and "disordered" states nonstationary in time and space.

Transition _originally observed numerically. (Lo, Pelcovits, Acharyya, Chakrabarti.)

Ingredients

• Hysteresis.

Results from delayed response in systems subject to periodic applied force.

- Example: Ferromagnet in oscillating field.
- Finite-size scaling analysis of critical phenomena.
 - Major method to analyze numerical data for systems undergoing phase transitions.

• Decay of metastable phase.

Decay of a metastable phase in a spatially extended physical system, driven by thermal nucleation and subsequent growth of droplets.

 For large systems well described by the Kolmogorov-Johnson-Mehl-Avrami (KJMA) theory.

Model

2D Ising Hamiltonian on $L \times L$ square lattice:

$$\mathcal{H} = -J \sum_{\langle i,j \rangle} s_i s_j - H(t) \sum_i^{L^2} s_i$$

Dimensionless magnetization:

$$m = L^{-2} \sum_{i} s_i$$

Temperature $T < T_c \Rightarrow m$ for H=0 takes one of two degenerate equilibrium values:

$$m(T < T_c, H=0) = \pm m_{eq}(T)$$

Stochastic dynamic

Glauber (nonconserved) dynamic with transition probability

$$W(s_i \to -s_i) = \frac{\exp(-\beta \Delta E_i)}{1 + \exp(-\beta \Delta E_i)}$$

where ΔE_i is the proposed energy change.

KJMA (Avrami) theory of metastable decay

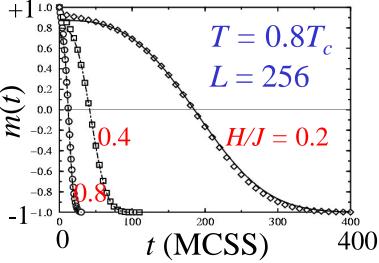
Following sudden field reversal, critical droplets nucleate at constant rate per unit volume

$$I(T, H) \propto \exp\left[-\frac{\Xi(T)}{k_{\rm B}TH^{d-1}}\right]$$

Large supercritical droplets grow at constant velocity $v \propto |H|$ Time evolution of magnetization in KJMA theory (randomly placed, freely overlapping droplets):

$$m(t) \approx m_{eq}(T) \left\{ 2 \exp\left[-I \int_0^t \Omega_d(vs)^d ds\right] - 1 \right\}$$
$$= m_{eq}(T) \left\{ 2 \exp\left[-\frac{\Omega_d}{d+1} \left(\frac{t}{\tau}\right)^{d+1}\right] - 1 \right\}$$

 $\langle \tau \rangle = (v^d I)^{-\frac{1}{d+1}}$ is average metastable lifetime. $R_0 \approx v \langle \tau \rangle$ is average droplet separation.



Snapshots

$\Theta = 0.1$

$\Theta = 0.3$

 $\Theta = 0.7$

Hysteresis

Apply oscillating field,

Commonly: $H(t) = H_0 \sin(\pi t/t_{1/2})$ Or square wave: $H(t) = H_0(-1)^{int(t/t_{1/2})}$

Time-dependent nucleation rate in adiabatic limit:

$$I(T, H(t)) \propto \exp\left[-\frac{\Xi(T)}{k_{\rm B}TH(t)^{d-1}}
ight]$$

and interface velocity

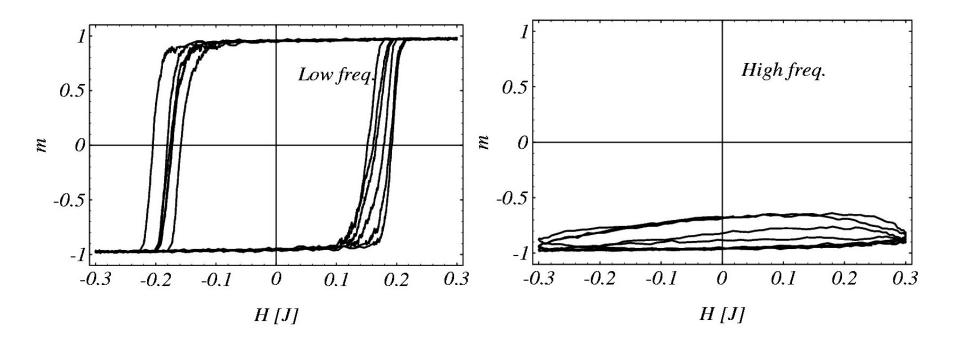
$$v(H(t)) \propto |H(t)|$$

Scaled field period:

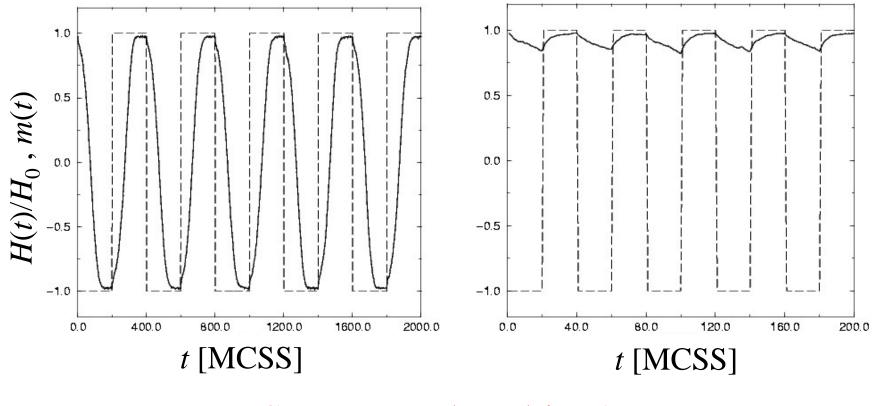
$$\Theta = rac{ ext{field half - period}}{ ext{metastable lifetime}} = rac{t_{1/2}}{\langle au(H_0, T)
angle}$$

Symmetry breaking in oscillating field

Ising model in sinusoidal field at $0.8T_{\rm c}$



Dynamic phase transition
(Square-wave field) $T = 0.8T_c$, $H_0 = 0.3J$ Low frequencyHigh frequency



Symmetry breaking!

Square-wave Field: Simulation Details

1. Parameters

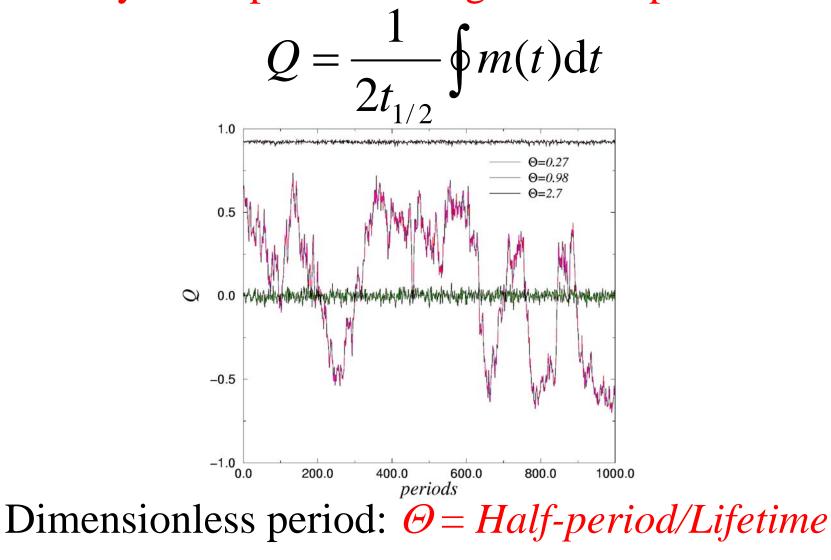
- Temperature: $T=0.8T_c$
- Square lattice, L=64, 90, 128, 256, 512
- Applied square-wave field: $H(t) = H_0(-1)^{int(t/t_{1/2})}, H_0 = 0.3J.$
- Lifetime: $\langle \tau(H = H_0, T) \rangle = 75$
- Droplet separation: $R_0 \approx 10$
- Dimensionless field period: $\Theta = \frac{t_{1/2}}{\langle \tau(H_0,T) \rangle}$
- Run lengths: $0.3 1.5 \times 10^7$ MCSS

2. Analysis

• Period-averaged magnetization: $Q = \frac{1}{2t_{1/2}} \oint m(t) dt$

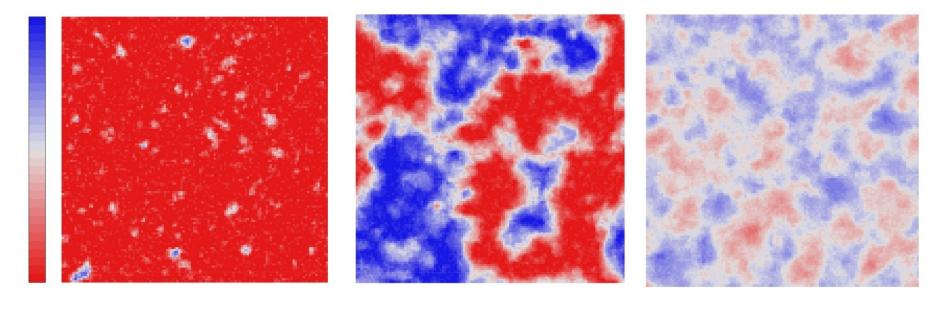
is the dynamic order parameter

Analyze the period-averaged order parameter



 $T = 0.8T_c$, $H_0 = 0.3J$

Configurations of local Q_i $T = 0.8T_c$, $H_0 = 0.3J$, L = 128



 $\Theta = 0.27 < \Theta_c \qquad \Theta = 0.98 \sim \Theta_c \qquad \Theta = 2.7 > \Theta_c$ Ordered Critical Disordered

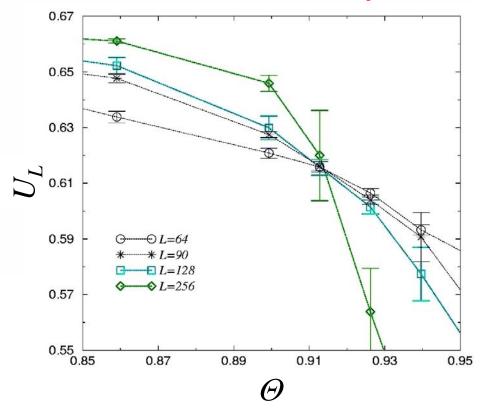
Finite-size scaling

Fourth-order cumulant ratio

$$U_L = 1 - rac{\langle |Q|^4
angle_L}{3 \langle |Q|^2
angle_L^2}$$

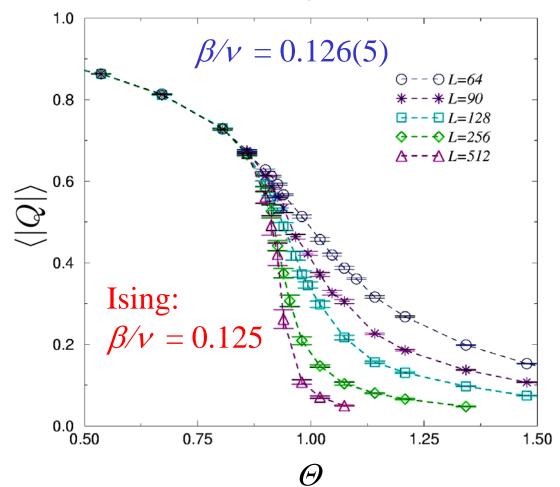
Describes shape of order-parameter distribution. Fixed point

 $U^* = 0.611(3)$, $\Theta_c = 0.918(5)$



Order parameter vs Θ $T = 0.8T_c$, $H_0 = 0.3J$

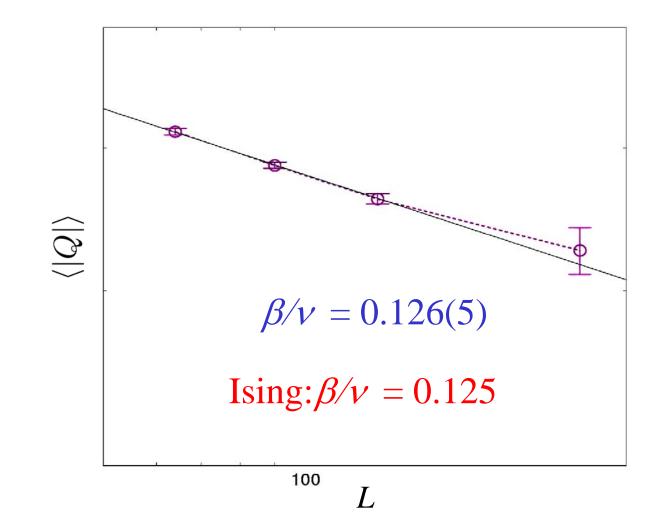
Scaling relation: $|Q(\Theta_c)| \sim L^{-\beta/\nu}$



Scaling plot for β/ν

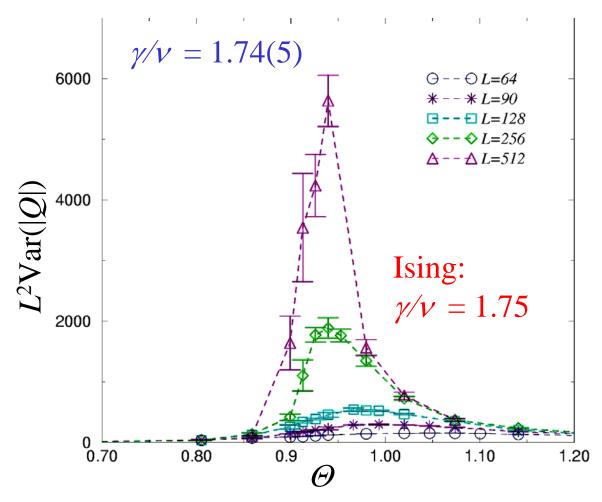
Scaling relation

 $\langle |Q(\Theta_{\rm c})| \rangle \propto L^{-\beta/\nu}$



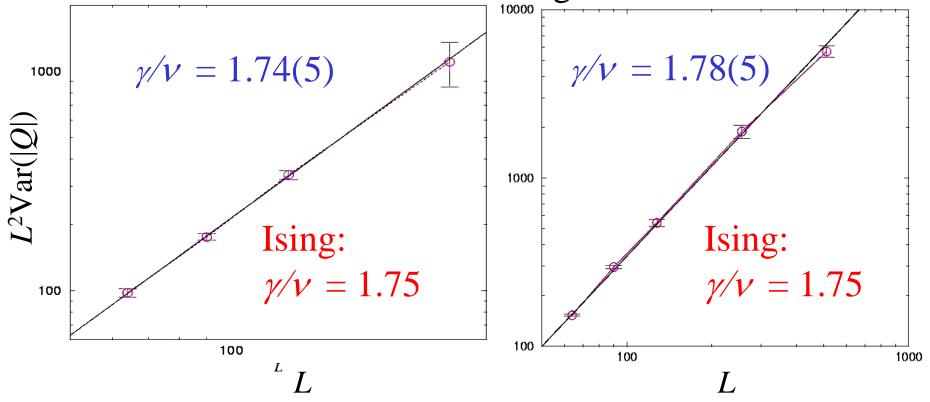
Order-parameter fluctuations vs Θ $T = 0.8T_c$, $H_0 = 0.3J$

Scaling relation at Θ_c : $X = L^2 Var(|Q|) \sim L^{\gamma/\nu}$

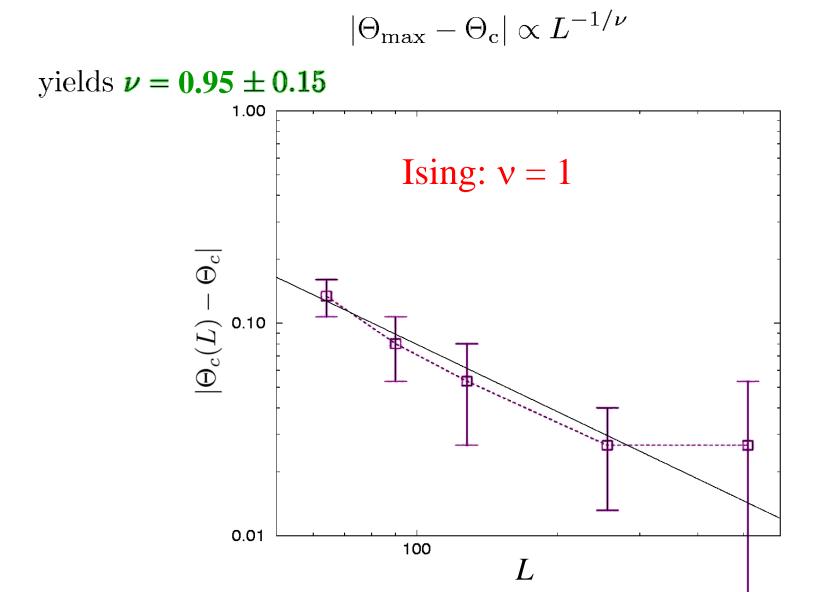


Scaling plot for γ/ν

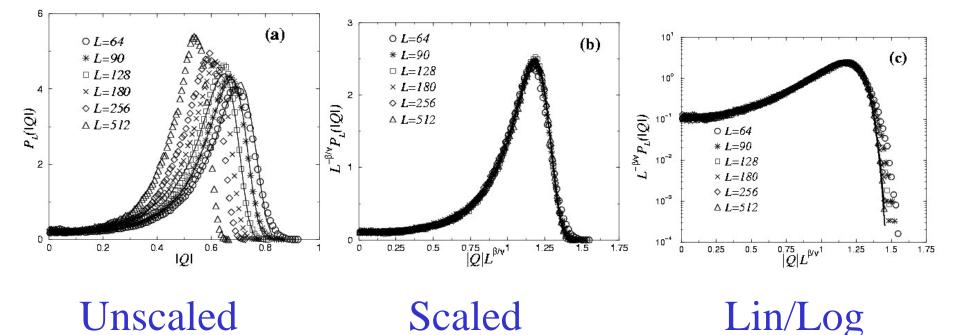
$$X = L^{2} \operatorname{Var}(|Q|) = L^{2} \left[\langle |Q|^{2} \rangle - \langle |Q| \rangle^{2} \right] \propto L^{\gamma/\nu}$$



Scaling plot for $1/\nu$



Scaling of order-parameter distribution, $P_L(|Q|)$ Scaling with Ising exponents, $\beta/\nu = 1/8$

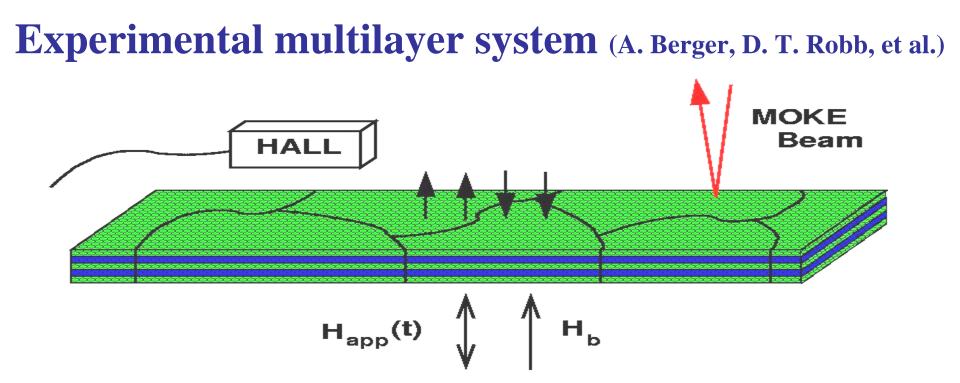


Conclusion: This nonequilibrium phase transition is in the equilibrium Ising universality class!! (Confirmed analytically, Fujisaka, Tutu, Rikvold PRE **63**, 036109 (2001))

Experimental observation

[Co/Pt]₃ multilayer under oscillating field with nonzero bias

D. T. Robb et al., Phys. Rev. B 78, 134422 (2008)

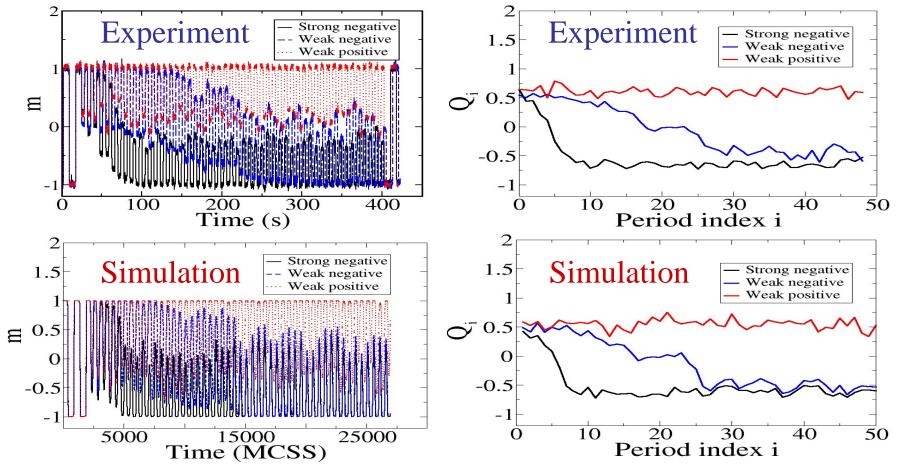


- [Co(0.4nm) / Pt(0.7 nm)]₃ multilayer. Lateral grain size: 30-300 nm
- Strong perpendicular anisotropy

 \rightarrow Little effect from demagnetizing field

- •Apply out-of-plane periodic magnetic field with electromagnet, as well as small constant "bias field" of varying strength
- Measure magnetic field with Hall probe, and magnetization response with MOKE (Magneto-Optic Kerr Effect) beam (spot size ≈ 1 mm²)

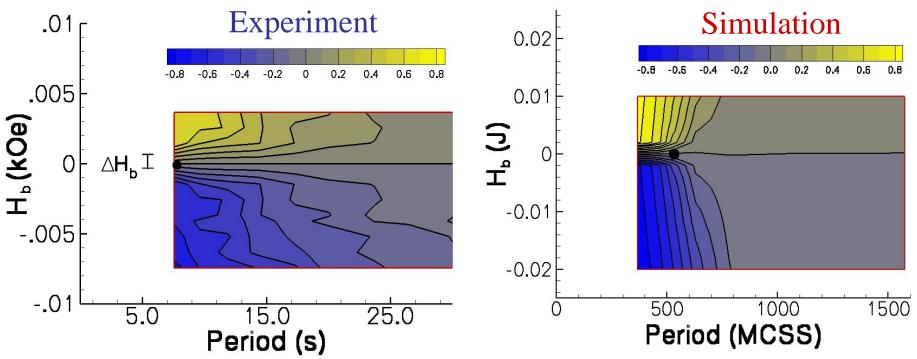
Experimental evidence for DPT : metastable state



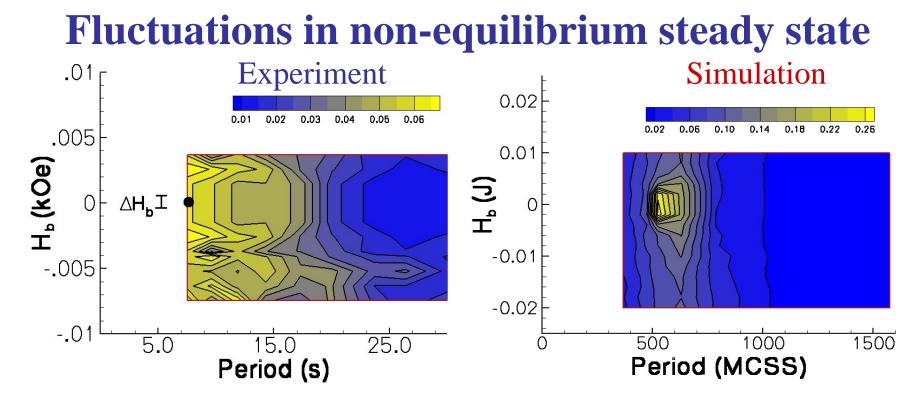
• Q_i vs *i* in experiment at P = 7.6 s, in varying bias fields. Similar to Q_i vs *i* in simulation at $P = 500 MCSS = 0.95P_c$ (with comparable bias)

• Metastable dynamically ordered state in weak *negative* bias field

Evidence for DPT: non-equilibrium phase diagram



- Characterize response by non-equilibrium phase diagram (NEPD) $\langle Q_i \rangle (P, H_b)$, in analogy with equilibrium phase diagram $\langle m \rangle (T, H)$
- Similarity: large change in $\langle Q_i \rangle$ over small range of H_b as $P \to P_{c+}$
- Difference: greater impact of a given bias field for $P > P_c$ in experiment (believed to be caused by pinning in reversal process)



• In equilibrium Ising system, fluctuations $\sigma_m(T, H)$ increase

as $T \to T_c$ and $H \to 0$

• By analogy, near DPT in kinetic Ising simulation, $\sigma_Q(T, H)$ increases as $P \to P_c$ and $H_b \to 0$: similar trend in experiment

Natural questions about the DPT

1. Given the experimental results, is there a field H_c conjugate to Q, analogous to the magnetic field H in the equilibrium Ising model?

A: Yes, the period-averaged magnetic field ('bias field') H_b , as suggested by the recent experiments on [Co/Pt]-multilayers, is the conjugate field H_c .

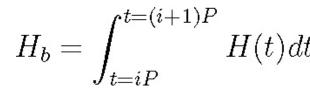
2. In the equilibrium Ising system, a fluctuation-dissipation

relation (FDR)
$$\frac{\partial \langle m \rangle}{\partial H} \equiv \chi_L^M = \frac{L^2 \sigma_M^2}{T} \equiv \frac{X_L^M}{T}$$
 holds

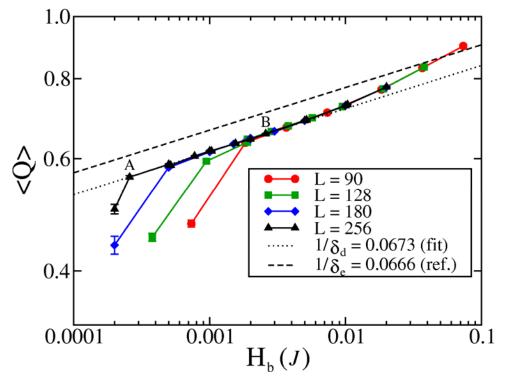
everywhere. Assuming H_c exists, is there a corresponding FDR between Q and H_c ?

A: Yes, in the critical region (above $P = P_c$), for H_c not too large, an FDR between Q and H_c holds to a very good approximation. D. T. Robb et al., Phys. Rev. E **76**, 021124 (2007)

Definition of H_b , direct scaling at $P = P_c$



$H_b = \int_{t=iD}^{t=(i+1)P} H(t)dt$ defines the period-averaged magnetic field, or 'bias field'



• find power-law $\langle Q \rangle \sim H_b^{1/\delta'}$ at

 $P = P_c$ with $\delta' = 14.85 \pm 0.18$

 analogous to equilibrium scaling $\langle m \rangle \sim H^{1/\delta}$ at $T = T_c$, with $\delta = 15$

note finite-size effects

Predictions from finite-size scaling analysis

• Treat finite-size effects in DPT systematically by writing scaling functions analogous to those used for equilibrium system

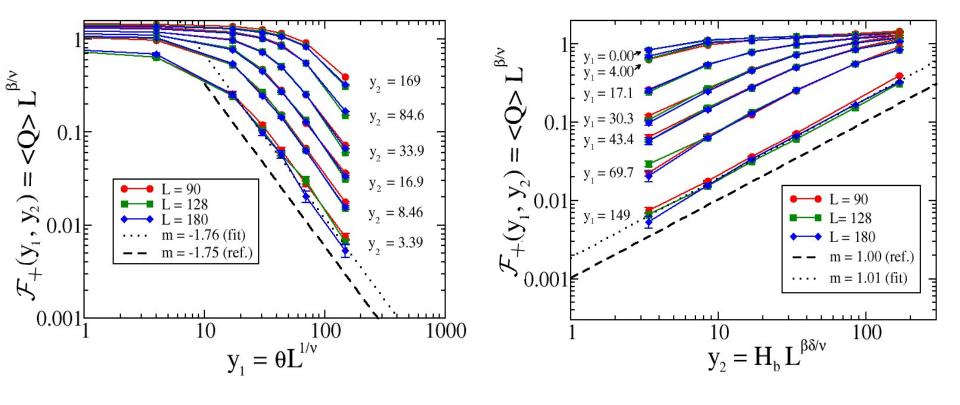
Scaling variables:
$$y_1 \equiv \theta L^{1/\nu} \equiv \left(\frac{P - P_c}{P_c}\right) L^{1/\nu} \qquad y_2 \equiv H_c L^{\beta \delta/\nu}$$

Scaling functions: $\mathcal{F}_+(y_1, y_2) \equiv \langle Q \rangle L^{\beta/\nu}$ $\mathcal{G}_+(y_1, y_2) \equiv \hat{\chi}_L L^{-\gamma/\nu}$

Predicted asymptotic forms for scaling functions:

$$\mathcal{F}_{+}(y_{1}, y_{2}) \sim \begin{cases} y_{1}^{-\gamma} y_{2} & \text{for } y_{1} \gg y_{2} \\ y_{2}^{1/\delta} & \text{for } y_{1} \ll y_{2} \end{cases} \quad \mathcal{G}_{+}(y_{1}, y_{2}) \sim \begin{cases} y_{1}^{-\gamma} & \text{for } y_{1} \gg y_{2} \\ y_{2}^{(1-\delta)/\delta} & \text{for } y_{1} \ll y_{2} \end{cases}$$

Numerical results for first scaling function (\mathcal{F}_+)



• Find $\mathcal{F}_+ \sim y_1^{-\gamma'}$ with

 $\gamma' = -1.76 \pm 0.07$ for $y_1 \gg y_2$

• Find $\mathcal{F}_+ \sim y_2^{\omega'}$ with

 $\omega' = 1.01 \pm 0.01$ for $y_1 \gg y_2$

Form of nonequilibrium FDR

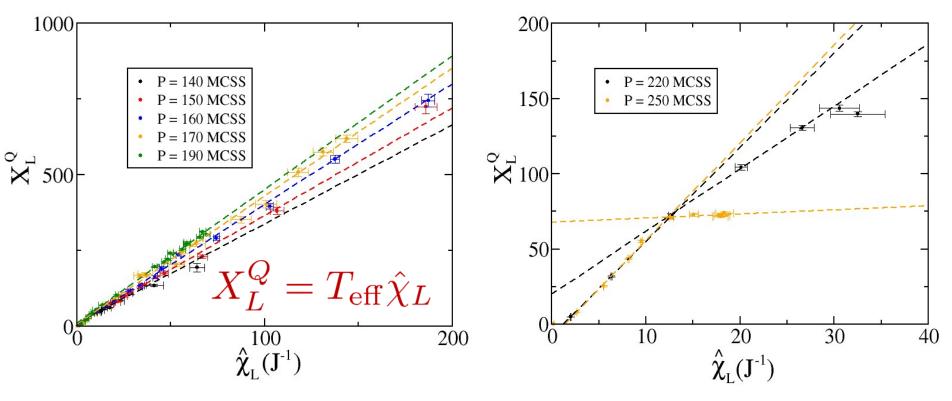
• Equilibrium FDR:
$$rac{\partial \langle m \rangle}{\partial H} \equiv \chi^M_L = rac{L^2 \sigma^2_M}{T} \equiv rac{X^M_L}{T}$$

holds for all (H,T), since it follows directly from the partition function

• Nonequilibrium FDR: does it hold?

$$\frac{\partial \langle Q \rangle}{\partial H_b} \equiv \hat{\chi}_L \stackrel{?}{=} \frac{L^2 \sigma_Q^2}{T_{\text{eff}}} \equiv \frac{X_L^Q}{T_{\text{eff}}}$$

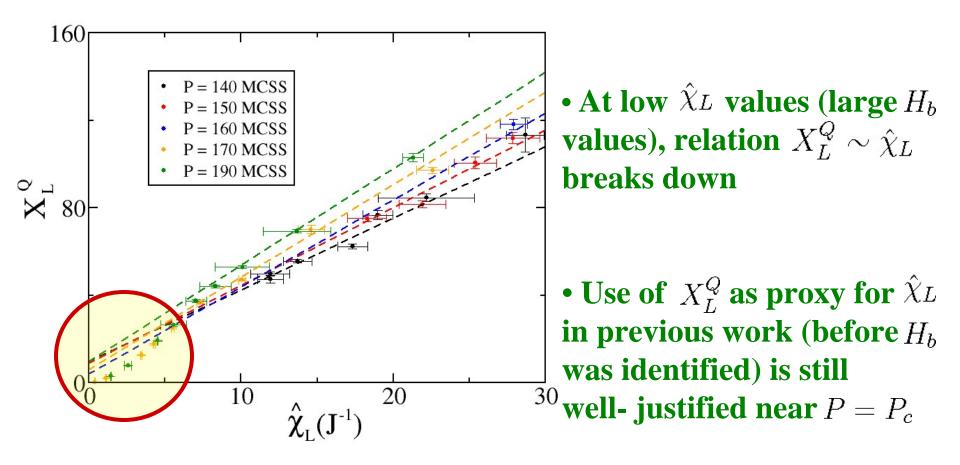
Numerical data on FDR



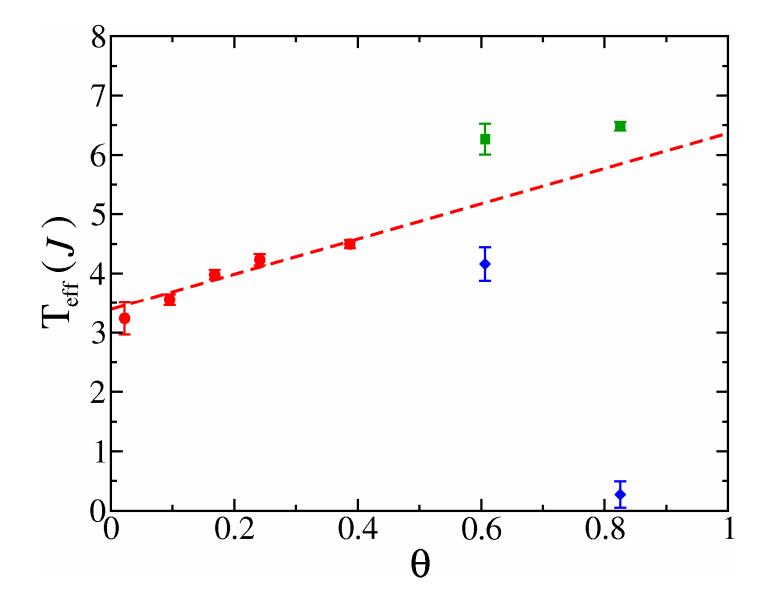
• For $P_c < P < 190$ MCSS, find $X_L^Q \sim \hat{\chi}_L$ over wide range of $\hat{\chi}_L$ $(P_c = 136.96 \pm 0.75$ MCSS)

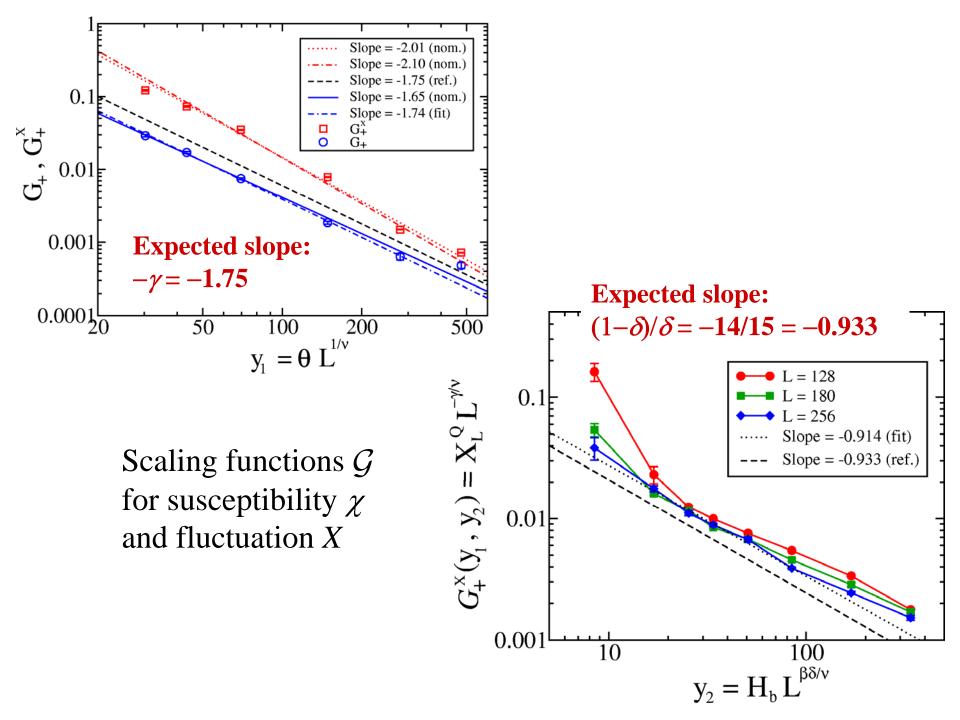
• For $P \ge 220$ MCSS, 'doubly linear' behavior \rightarrow no unique T_{eff}

Numerical data on FDR: data at large $H_{\rm b}$



 $T_{\rm eff}$ versus $\Theta = (P - P_c)/P_c$





Conclusions

- Hysteresis is a far-from-equibrium phenomenon found in many physical and chemical contexts, including magnetism, ferroelectrics, and surface adsorption
- Dynamic phase transition (DPT) for kinetic Ising model driven by oscillating field.
- Numerical and analytical evidence shows that the DPT at intermediate frequency is in the <u>equilibrium</u> Ising universality class
- Experimental evidence for DPT in Pt/Co multilayers
- Identified bias field as field conjugate to dynamic order parameter
- Numerically demonstrated nonequilribium Fluctuation-Dissipation relation in the critical region