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Abstract and Keywords

This chapter discusses the effects of disorder in fermionic systems, including
Anderson localization. There are important differences for the disorder
effects between the one-dimensional world, where localization occurs
because electrons bump back and forth between impurities, and the

higher dimensional world, where Anderson's localization is a rather subtle
interference mechanism. The discussion looks at one-dimensional electrons
subject to weak and dense impurities, in which the disorder can be replaced
by its Gaussian limit. The application of disordered systems to quantum
wires, one of the ultimate weapons to study individual one-dimensional
systems, is considered.

Keywords: disordered systems, fermionic systems, fermions, Anderson localization,
quantum wires, one-dimensional systems, collective pinning, individual pinning, quantum
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One of the advantages of being disorderly is that one is
constantly making exciting discoveries.

A. A. Milne

So far we have been interested in infinite and clean systems. Many of the
experimental realizations of Luttinger liquids however present additional
challenges. The first complication comes from the presence of the disorder.
Disorder is ever present, or can be artificially introduced in a controlled
way. As we will see it has particularly powerful and interesting effects in one
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dimension. Even if we have by now a good understanding of the effects of
disorder in a Fermi liquid, we are far from having reached the same level of
understanding in a Luttinger liquid.

Other challenging problems come from the size of the devices itself and
the constraints that one is able to impose on them. Indeed, because many
realizations of one-dimensional systems are made using nanotechnology,
the size of the sample is usually relatively small. This is, for example, the
case for quantum wires and nanotubes. In such systems it is also possible
to impose special boundary conditions at a given point (boundary, single
impurity, etc.). | examine these effects in the two coming chapters and
discuss their consequences for some realizations of Luttinger liquids.

9.1 Effect of disorder; Anderson localization

The question of disorder in Luttinger liquids is an extremely challenging

one. Indeed, even in higher dimensions the effects of disorder are mostly

to be understood. For free electrons we know that disorder can give rise to
very strong effects such as Anderson's localization. When interactions are
included the question is largely open. Before we move on to Luttinger liquids
let us examine some of the questions and techniques for disordered systems
in more details.

9.1.1 Generalities on disordered systems

Quite remarkably disorder in fermionic systems exhibits marked differences
with disorder in classical systems. Indeed, the very existence of a Fermi
energy Er ‘reduces’ the effects of disorder since the relative strength of the

disorder compared to the Fermi energy D/Er or the mean free path compared
to the Fermi length kgl now becomes the relevant parameter. Of course,

nature would not remain as simple as that and quantum effects lead in
fact also to reinforcement of disorder effects and turn in low dimensions a
free electron system into an insulator, as pointed out in Anderson (1958)
and Mott and Twose (1961). We (p.271) have now gained a very good
understanding of the properties of such disordered free electron systems.
To tackle them an arsenal of methods ranging from diagrams (Lee and
Ramakhrishnan, 1985) to scaling theory (Abrahams et al., 1979), replicas
(Wegner, 1979; Efetov et al., 1980), supersymmetry (Efetov, 1983) have
been developed. Because of quantum effects, disorder, if strong enough, can
lead to a complete localization of the electrons. The wave function decays
exponentially with a characteristic length known as localization length §),.
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The system is thus an insulator with a resistance increasing exponentially
with the size of the system as p ~ eL/&. In three dimensions, the disorder
needs to be larger than a certain threshold to cause the localization. Weak
disorder leaves the system metallic with a finite conductivity. Disorder can
thus induce a metal insulator transition. In two dimensions, the scaling
theory predicts that a free electron system is always localized. However, the
localization length can be very large, of the form (9.1)

gloc~ lexp| Tkl

where [ is the mean free path. In one dimension, the situation is much more
drastic, and one finds from exact solutions (Berezinskii, 1974; Abrikosov and
Rhyzkin, 1978) that the localization length is of the order of the mean free
path itself. It means that after bumping a couple of times on the impurities
the electrons are localized. This shows already that there are important
differences for the disorder effects between the one-dimensional world,
where localization occurs because electrons bump back and forth between
impurities and the higher dimensional world where Anderson's localization is
a rather subtle interference mechanism.

Life becomes much less simple when interactions among fermions are

taken into account. The naive approach would be to say that for a Fermi
liquid interactions are not so important and the free electron picture is a
good starting point. This is certainly true, at least from a practical (that is,
experimental) point of view if the disorder is very weak and the localization
length is large. Note that if we had considered bosons instead of fermions
then interactions would have to be included from the start. | will come back
to this interesting case in Section 11.1. But both from a conceptual point

of view and for practical purposes, when the disorder is moderately strong
this intuitive feeling that interactions should not play a major role is totally
incorrect. Even if in the pure system interactions can be ‘removed’ from the
system by resorting to Fermi Liquid theory, this is not the case when disorder
is present. Because disorder renders electrons slowly diffusive rather than
ballistic, they feel the interactions much more strongly, with explosive results
(Finkelstein, 1984; Altshuler and Aronov, 1985; Lee and Ramakhrishnan,
1985; Abrahams et al., 2001). Effective interactions increase when looking at
low-energy properties and Fermi liquid theory breaks down. In addition, when
the dimension is small or the interactions strong to start with (like in systems
undergoing Mott transitions) it is of course impossible to start from the non-
interacting limit and one has to solve the full problem.

(p.272) In that respect one dimension is a very interesting case. The separate
effects of disorder and interactions are at their strongest. The disorder gives
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rise in the non-interacting system to a very strong localization. Since there is
no diffusive regime the derivation used in higher dimensions for the increase
of interactions cannot be applied, but one would naively expects similar
effects to hold. If the electrons cannot move, then the interactions will be
felt differently: either not at all if the electrons are pinned at different points
in space, or extremely strongly if they are trapped at the same place. The
interactions also give rise to extremely strong effects, as we saw in the

rest of the book. In particular, the charge susceptibility in one dimension is
divergent at 2kg. One can thus expect very strong response to any potential
having such Fourier components, which is the case of the disorder (it is
present at all wavevectors) and thus a strong reinforcement of the disorder
due to the Luttinger liquid effects.

Before we move on to the study of the one-dimensional problem, let us see
which tools of our theoretical toolbox one can use to tackle a disordered
problem. If we put a random term in our Hamiltonian, then every observable
depends on the specific realization of the random potential. What is

needed is then to take an average of these observables with respect of the
probability distribution of the disorder to get the average response of the
system. This is of course a theoretical trick. A real experimental system

has usually only one realization of the disorder, and the self-averaging
comes from the fact that the system is large enough so that little pieces

of the system more or less behave as independent sub-systems. Solving
the problem for a given specific realization of the disorder and averaging
afterwards is of course a totally impossible program. In addition of being
impossible it is in general stupid, since a given realization of the disorder
breaks many symmetries of the system. Since a given realization of the
disorder is not invariant by translation, all correlation functions depend now
on both coordinates x and x” at which they are computed and not simply

on the difference x — x” as in a translationally invariant system. On the
other hand, the averaged correlation function is invariant by translation

so it is much simpler. Of course, averages can be done order by order in

a perturbation theory, but if one wants to go beyond perturbation one
wants a method to average over disorder from the start. Unfortunately,
many techniques that were useful for the non-interacting systems (such as
supersymmetry) fail when interactions are included. | present here a quite
general method that still works and is known as the replica method. We will
barely use it in this book, but since it is a fairly important method [ still feel
it is worth having seen it at least once in one's life. The other useful method
is the dynamical method (the so-called Keldysh technique) but it is of a
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more complex use. For a recent review on dynamical methods see Kamenev
(2002).

Let us assume we want to compute the average value of some observable O
for a system with a random potential V. The average value can be written as
a functional integral over the configurations of the system as (p.273) (9.2)

[DoO(d)eswi#)

[Dpe-sile)
where Sy(¢) is the action of the system for a given realization of the random
potential V. Of course, #0#, depends on V itself, so we have to average
over all realizations of V. If we assume that the disorder has a probability
distribution p(V) the average over disorder is (9.3)

[oviv)<o>
[DV,(V)

In general, Sy(¢) is linear in V, something like (9.4)

Sy = SO(¢)+fdx dtV(x)A(p(x, 7))

Note that for a quantum problem the disorder is time independent. For the
disorder one takes in general a gaussian disorder. This is very often justified
by the central limit theorem.35 For example using a distribution (9.5)

p(V) = e ldx VY’ = e-330%aVaVq

corresponds, using the techniques explained in Appendix C, to the average
(9.6)

V(X)V(x)= D8(x — x)

| will come back to the physical significance of this type of disorder in the
next section. With distribution (9.5) it would be very easy to perform the
average (9.3) if it were not for the denominator in (9.2). Indeed, in the
absence of such denominator one has (9.7)

L 2
s Iove Y o faxfar vyl 7
2D

<0>y=

<0> =

_ o2 faxfarfdr Algxm)Al¢xT)
One would end up with an effective action where the disorder has been
eliminated and has given after average an interaction term so the action
would be (9.8)

Serr=Sdb)— 5[ dx[ dr[ar Alelx, T)A(Slx, T)
we could then treat this problem using our favorite method since it would not
be more complicated than the type of problems that we already encountered
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in this book. Compare in particular with the integration over phonons for the
spin-Peierls transition in Section 6.2.

(p.274) Unfortunately, the presence of the denominator in (9.2) prevents us
from doing the average as in (9.7). The idea of the replica method (Edwards
and Anderson, 1975) is thus to get rid of the denominator and to transform
it into a numerator. As with any really great method the idea is very simple.
One can rewrite (9.9)

# B g n-1

Tope s ~H Poe

with n = 0. If we forget n = 0 for a moment and consider n as a positive
integern = 2, 3, 4, ..., then (9.10)

-1
[[Dpesvel]  =[[D e-51(e)]--|[D e-5vis)
where we have introduced the fields ¢, ¢3 etc. The denominator can thus

be rewritten as the product of n — 1 copies. The average (9.2) can thus be
rewritten (9.11)

<0>v=|[Dg,0(¢ Je-51¢)[[Dp,e-51(%)
[ B [[ R
=[D¢p,Do,...D$, 0 Je 51,

There is no denominator anymore. The price to pay is the introduction of
n copies of the system. Of course, one would only recover (9.2) if one can
take the limit n = 0 at the end. Before averaging over disorder in (9.11) all
replicas (copies) are independent. Since there is no denominator in (9.11)
one can do the average over disorder in the manner described above. One
thus finds (9.12)

<0> = chle(bz . Dd)nO((;bl)e_Seff

where the effective action is now (9.13)

Setf = aZ:So(qba) - %%lf dxf d Tf dT’A(d’a(x’ T))A(d)b(x’ T))

This is nearly the same form except that now one has n fields and the
interaction couples all fields together. We have thus traded a disordered
system with only one field for a clean interacting problem of n coupled fields.
Of course, the second one is more complicated due to the presence of the n
fields, but as explained before we should be more equipped to tackle it. One
important difficulty is of course that we should obtain a good enough solution
for any n to be able to make the analytic continuation to n —» 0 at the end,
since it is only in this limit that one (p.275) recovers the disordered solution.
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Taking this limit is far from being obvious and contains hidden difficulties
that | will briefly allude to later in this chapter.

A few remarks to conclude. The interaction in (9.13) is totally non-local

in time. This is a direct consequence of the fact that the disorder is time
independent. In Fourier space this would mean that the frequency is
conserved upon scattering on the impurities. This is very useful for the
non-interacting problem since it allows to solve for a given energy, but
for the interacting problem this does not help much. The fact that the
effective interaction between replicas is non-local in time is a pain in the
neck. A final remark for the professionals of diagrams: the role of replicas
in a perturbative expansion is simply to remove the diagrams that are
disconnected before the averaging over the disorder. Such diagrams
correspond to connected diagrams when one uses the replicated action
(9.13), and thus remain in the perturbative expansion. However, they are
proportional to n and thus vanish in the n = 0 limit, as they should since they
correspond in fact to a disconnected process.

9.1.2 Collective versus single individual pinning

Let us now consider the disorder in more details. Electrons are scattered by
impurities. The disorder term is simply (9.14)

Hgis= fdx V(x)p(x)= é; Vyct, 4Ck
q

where V(x) is the random potential produced by impurities. A good
approximation for it would be (9.15)
V(x)=Zf(X—R,-)

1
where fis the potential of a single impurity, and R; the random positions
of the impurities. In standard systems the impurity potential is relatively
short-range so that very often one takes f(x) = Vpb(x). If the impurities are
uniformly distributed this is a poissonian disorder. It is characterized by two
independent variables, the strength of one impurity Vy and the density of
impurities n;. Varying each one of these parameters leads to quite different
physical effect. There are various interesting cases. The first one is when
the impurities are dense enough and weak enough so that the effect of each
impurity is negligible. They can only act collectively. In that case the scale of
variation of the physical quantities is much larger than the distance between
the impurities (
n;!

1
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in one dimension). In a volume where the physical parameters are thus
practically constant, there are many impurities. In that case the central
limit theorem tells us that the disorder is equivalent to a gaussian disorder.
Physically it means that one can replace the original disorder by a coarse
grained version (9.16)

l‘[ d —V

=), x V(x) —V(x)

(p.276) where = is some volume small compared to the scale of variation

of the physical quantities, but large compared to the distance between
impurities. V(x) is the coarse grained potential. Since there are many
impurities in the volume = the central limit theorem imposes that V has a
gaussian distribution of the form (9.17)

V) = o407

ensuring that (9.18)

VV(x) = D(x—x)

where D(x — x’) is a short-range function, which is zero beyond a few
impurity distances

n;1

. Since the scale of variation of physical constants is much larger one
usually approximates D(x) ~ Dd(x). In that case the disorder is gaussian and
uncorrelated from point to point. The strength of the gaussian disorder can
easily be estimated from (9.15) to be (9.19)

D= niV(Z)

Notice that the gaussian disorder now depends on only one parameter. The
distance between impurities has completely disappeared from the problem
(or only stays as the correlation length of the disorder). Mathematically, the
gaussian disorder corresponds to taking infinitely dense impurities n; » « but
each one infinitely weak Vy = 0 so that the effect can only be collective. A
single impurity gives a very weak effect. The product

niV%

is kept constant and measures the strength of this ‘collective’ disorder. This
is the case we will examine in Section 9.2. The totally opposite limit that
we will examine in detail in Chapter 10 corresponds to the case where the
density of impurities is weak, and the strength of a single impurity Vj is
getting very large. In this case each impurity is having a strong effect in its
immediate vicinity, and one can essentially forget about collective effects
and has to solve the problem of a single impurity.
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9.2 Many impurities
9.2.1 Basics

Let us thus consider one-dimensional electrons subject to weak and dense
impurities. In that case one can replace the disorder by its gaussian limit, so
the disorder is (9.14) with the correlations for V (I drop the tilde from now
on) given by (9.18). If the disorder strength D is much smaller than the Fermi
energy, one can again consider that disorder produces effects only close to
the two Fermi points. One can thus approximate (9.20)
H gi5= é Z qu CL#H%Z qu cfey

ao Tk g=2kp Kk
There are of course also the 4kg, etc., harmonics. If one wants both k and k +
g to be close to a Fermi point, one obtains in the continuum limit (p.277)

-k o +k g +k r —k g
————— e,
maq) &a@)

Fig. 9.1. (left) Forward scattering on impurities. In the continuum this
conserves the chirality of a Fermion (that is, a right mover stays a right
mover). (right) Backscattering that changes a right mover into a left mover.

(9.21)
Hass = e 9o + B+ 0]

+[AXEQP, 0P (0 +E QPP (0]
where n(x) and &(x) are the continuum limits corresponding to the g ~ 0 and
q ~ —2kr components of the random potential. They are given by (9.22)

n(x) = ézwo V geldx

E(X) = ézq~ovq—2kF elax
It is easy to see that n is real since V; = V_; (V(x) is real). Naively, the field
¢ is complex. In fact, this depends on the precise value of 2k and whether

one is on a lattice or not. | will come back to this point. Physically the field n
describes forward scattering (g ~ 0) on the impurities whereas the fields &
and &* are the backscattering where the momentum of an electron changes
by ¥2kg. These processes are shown in Fig. 9.1. This is a very specific
feature of one-dimensional systems. In higher dimensions, by playing with
angles one can exchange an arbitrary momentum while staying close to the
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Fermi surface. In one dimension, since one has to stay close to one of the
Fermi points, either the particle continues in the same direction (forward
scattering) or it bumps back on the impurity (backward scattering)

There are important things to notice about (9.22). Because n and § only
contain g ~ 0 terms in the Fourier sum, they vary slowly at the scale of

K7
and are thus well suited for a continuum limit. Since
VqVZ,:Déq,qr

from (9.18), the g ~ 0 and g ~ £2kf fields are essentially independent
random variables. So (9.23)

nx)&(x)=0

From the correlations of V(x) (I take V(x — x) = D6(x — x’)) one has (9.24)
nxnx) = Dfé(x— x’) = Dé(x— x’)

EWERX) = 0
M') = Dbé(x— x’) = D5(x— x’)

(p.278) The forward and backward scatterings can thus be treated
independently. The fact that

ENEX)
correlations are zero, traduces the fact that one cannot have two
consecutive scatterings of 2kg since it would take the particle away from the

Fermi surface. This is of course true if one is in the continuum. On a lattice,
if 2kg = 1 (that is 4kg = 21) a 4kg scattering brings the particle back to the
Fermi surface. One can indeed directly see from (9.22) that if one is on a

lattice and 2kr = i, then because ei2kex = (—1)x, the field € is now real. For

such commensurate cases the disorder becomes instead of (9.21) (9.25)
Has, = Jas o}, 05+ 240, ]

+ x| 9,40, + ), ]
This has drastic physical consequences as | will briefly discuss later. | will
also skip the interesting case where the potential is quasi-periodic, which
is intermediate between commensurate systems and disordered ones
(Kolomeisky, 1993; Vidal et al., 1999; Hida, 2001).

For the moment let me focus on the incommensurate case. For the non-
interacting system, powerful techniques exist that allow to solve rather
completely this problem (Berezinskii, 1974; Abrikosov and Rhyzkin, 1978;
Efetov, 1983). The first important point is that forward scattering does not
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affect the conductivity at all. This can be shown directly on the fermionic
Hamiltonian but we will show it more generally later. Physically this can be
understood easily. Since the forward scattering does not change the chirality
it cannot affect the current. If one remembers the Boltzmann expression of
the transport time (Mahan, 1981) it is weighted compared to the lifetime by
(9.26)

Tt‘rlanszfdGTi‘r}lp(l — cos(G))

where 0 is the scattering angle. In one dimension, the only ‘allowed’ angles
are 8 = 0 (forward scattering) and 6 = it (backward scattering). So we see
that forward scattering will not affect transport. The backward scattering

is the one giving rise to localization. One finds exponential decay of the
correlation functions with a characteristic length (9.27)

1
Eloc - ﬁb
The conductivity is of the form shown in Fig. 9.2. The low frequency behavior
of the conductivity can easily be understood in the fermion language in the
strong pinning regime (Mott, 1990). Let us assume that each electron is
pinned individually on an impurity as shown in Fig. 9.3. The power absorbed
in an external field is P = o(w)E2. To absorb a photon the system should be
able to make a transition from one occupied localized state of energy E; to an
empty one of energy Ef = E; + hw. If one assumes that the density of states
N(E) is (p.279)

o(@) | @2 log?(w)

F 3

w

o 0
l:upin_ ul 510;:

Fig. 9.2. Conductivity for the non-interacting one-dimensional electron
system. The main characteristic is the existence of a pinning frequency of
the order of wpin = VF/€joc. The low-frequency behavior is o(w) = w2 log2(1/w).
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Fig. 9.3. Interpretation of the conductivity in the strongly localized regime.
Transitions are absorption of the photons from one occupied localized state
to an empty state. This can occur only within a layer hw around the Fermi
level.

roughly unchanged by the disorder then the number of such states, which
are within an energy range hw below the Fermi level, is ~ N(Ef)hw. Each
transition absorbs hw), so the conductivity is o(w) ~ w2. This simple result
can be refined to show that logarithmic corrections should be present. The
result is confirmed by more rigorous calculations.

The non-interacting system is thus rather well understood. When interactions
are included the question becomes much more complicated. However, since
the bosonization form provides a natural framework to treat the interactions
in one dimension, one can hope that the disorder problem in the presence
of interactions will be tractable in the boson form. So, let me first rewrite
the disorder Hamiltonian (9.21) in this much more convenient form. Using
Appendix D one gets (9.28)

3k,
Hgis = — fdx n(xl%VdJ + fdxg ) 29l +h.c

21X
for spinless fermions and (p.280)

(@) P
X
®) ¢ 2o 2
X
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Fig. 9.4. (a) The disordered interacting electron system can be viewed as

a charge density wave of periodicity 2k that tries to pin on impurities.

It should distort to take advantage of the impurity potential. Quantum
fluctuations of the charge density wave are measured by the LL parameter K
and compete with pining, (b) It can also be viewed as a periodic array of lines
that get pinned by columnar disorder, that is, by disorder that is independent
of one of the coordinates z which is the imaginary time for the quantum
problem. The lines are the space-time trajectories of the particles.

(9.29)

Hgs = — [dxn|x

x\/' Vo,

4 JaxER s eos2 2¢_(x) + h.c

for fermions with spin. Of course, now all interactions are included in the
‘free’ Luttinger liquid Hamiltonian HO, which is essentially quadratic. This is
of course the main advantage of using the boson representation. Before we
move to the solution let us use the physical images explained in Chapter 3 to
make two interesting analogies. We first see that we can interpret the total
Hamiltonian (3.25) and (9.28) or (9.29) as one describing a charge density
wave where the density is of the form (3.53), which tries to pin on the
impurities, as shown in Fig. 9.4. The phase has to distort to take advantage
of the impurity potential. Quantum fluctuations that are taken into account
by the N2 term in the Hamiltonian HO prevent the phase ¢ to have a too well-
defined value at a point and thus fight pinning. These quantum fluctuations
are controlled by the LL parameter K. If K = 0 the problem would be purely
classical. When K increases the amount of quantum fluctuations increases.
Another analogy is provided by our analogy with a classical system of lines
as explained in Chapter 3. We see that in that language since the disorder is
independent of time the disorder would be a so-called columnar disorder as
shown in Fig. 9.4. The system is thus equivalent (p.281) to a ‘crystal’ of lines
pinned by columnar disorder. This allows to make contact with the body of
literature devoted to such problems (Nelson and Vinokur, 1993; Blatter et al.,
1994).

Let us now solve the problem. The forward scattering acts as a random
chemical potential (compare with (2.57)). The backward scattering gives
rise to a cosine-like potential not dissimilar to the one of the Mott transition.
In fact if the disorder had only one Fourier component at 2kg it would give

rise exactly to a sine-Gordon term. This would be exactly similar to the
Mott problem except for the fact that the most relevant periodicity is at 2kf
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instead of 4kg for the Mott problem. Since the forward scattering is like a

random chemical potential it can be eliminated by the same techniques than
in Chapter 2. One completes the square in HO by defining (9.30)

~ X

¢(><) = ¢ -5/ dynb)
The Hamiltonian becomes (e.qg. for spinless fermions) (9.31)
J‘dxg*(x)ei%jdeW) ~

b+ h.c

H = HU‘J; +
The only effect of the forward scattering is thus to redefine the phase of the

backward scattering. Since § is a complex random variable with a gaussian
distribution

£ (x) = E(x)eistaxny

is a random variable with exactly the same distribution. Thus, the
absorption of the forward scattering in (9.30) has absolutely no effect on
the Hamiltonian. Another way to see this is to use the replica method. Since
forward and backward scatterings are independent random variables with
gaussian distributions one can perform the averages independently. If one
performs the average over the backscattering only the action becomes (e.g.
for spinless fermions in the incommensurate case) (9.32)

s =50 8% - Jaxnx)y,_[%ve]

D
= ne? Zapd A dT cos2(x 7), ~ 29(x, 7))

where SO is the Luttinger action (3.26). One can absorb the forward
scattering by using (9.30) for each replica. Since each field is shifted by

the same amount and the replicated backward term is local in space, it is
absolutely invariant. The forward scattering can thus be treated exactly, and
completely eliminated from the Hamiltonian. It does not mean of course that
the correlation functions are not affected by it since ¢ should be replaced by
®. However, since (9.30) is a simple shift & = 8, it means that any correlation
function containing only 0 is invariant. This is in particular the case of

the current-current correlation (p.282) function and the superconducting
correlation functions. Another way to see that is to say thatj ~ 9:¢ and the
shift depends only on space. The conductivity is thus totally independent of
the forward scattering even in the presence of interactions, in agreement
with our physical arguments. The other correlation functions are easily
computed. For example, the 2k density is (9.33)

< eRNe240)> | = ei2] axknly) < ei2dlr)e-i280) 43l
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The correlation function for ¢# is the one that contains only backscattering.

In the absence of backscattering it would thus just be the standard LL power
law. Averaging over the disorder gives for the first term (9.34)

1 7 2k2D
eiZfédx% l‘l(x) = e—zu—’ffgdxjgdx’Dfri(x—x’) e 0
The forward scattering thus causes an exponential decay of the density-
density correlation functions. Let me again emphasize that this does not
correspond to Anderson's localization since the current is unchanged.

X—X

The difficult, but physically interesting part is thus to solve the backward
scattering Hamiltonian (9.35)
)

*
X .
$ = [axdr| e[ b0 Voo |+ oy et e

| have reintroduced in the above formula h and other pesky constants to
show explicitly the various physical limits. Note that although we are mainly
concerned here with fermions (9.35) describes in fact nearly every one-
dimensional disordered problem since all this problems have essentially

the same boson representation. | will examine dirty bosons in Section

11.1. To understand the physical effects of the backward scattering let

us go back to the interpretation of (9.35) in terms of a charge density

wave that gets pinned on impurities. The elastic term in (9.35) wants the
phase of the density wave to be as constant as possible, and have a nice
sinusoidally modulated density, since phase and density are related by
(3.53). The disorder term on the contrary wants to pin this charge density
on the impurities by distorting the phase, as shown in Fig. 9.4. The problem
of localization of interacting fermions is thus very similar to the one of the
pinning of classical charge density waves (Fukuyama and Lee, 1978). The
charge density wave is here intrinsic to the one-dimensional interacting
electron gas and not due to a coupling to phonons (Phononic formation of
CDW is the Peierls transition analogous to the one seen in the spin chain
context in Section 6.2.2). The main features are nevertheless similar, the
main difference being the fact that the effective mass of the ‘CDW'’ is much
smaller in the absence of the electron-phonon coupling (the phononic CDW
has to carry the lattice distortion with it which gives a very large mass)

and hence the importance of the quantum fluctuations is much higher. In
the absence of quantum fluctuations, ¢ would be a classical field and we
would have a good idea of what happens. This is the way Fukuyama (p.283)
and Lee (1978) looked at this problem. Such an approximation is of course
very good for ‘phononic’ charge density waves (Gruner, 1988) since the
quantum term is M2/(2M) and thus very small. For fermions this corresponds
to the ‘classical’ limit h -» 0, K - 0 keeping K™ = K/h fixed, and thus to very
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repulsive interactions. In that case we can ignore all quantum fluctuations,
and look for a static solution for ¢. It is of course crucial for the existence of
such solution that the disorder does not depend on time. This solution ¢g(x)
describes the static distortion of the phase imposed by the random potential.
In the absence of kinetic energy (V$)2, it would be easy to ‘determine’ ¢,.

If we write the random field £* as an amplitude —|&(x)| and a random phase
—2C, the disorder term is proportional to (9.36)

- fdxlE(x){eiz(ddex» +h.c

The optimum is thus for ¢g(x) to follow the random phase on each point.

For point-like impurities located on random positions R;, || would just be
the strength of each impurity potential and ¢ = kgR;. Thus, ¢o(x) = C(x) is
the generalization to any type of disorder (and in particular to the gaussian
disorder so dear to the theorist) of the physics expressed in Fig. 9.4: get the
density minimum at each impurity. In presence of kinetic energy, following

the random phase would cost too much kinetic energy. We do not know
exactly how to determine the optimal ¢o(x) but we can use some scaling

arguments. Let us assume that ¢ remains constant for a lengthscale §;,.. On

this lengthscale ¢ takes the value that optimizes the disorder term, which
now reads (9.37)

gl .
fo OCE*(X) ei2¢ +h.c

Because the average of a gaussian random variable on a box of size
€loc IS proportional to the square root of the size of the box, the disorder

contributes as (9.38)

Egis= — ,’ Dbgloc i2¢0-25)
where = is some phase. It clear that the optimum energy is reached if ¢q
adjusts to this (now unknown) phase. The global energy gain now scales as

Ve

Between two segments of size g, the phase has to distort to reach the next
optimal value. This is sketched in Fig. 9.5. The distortion being of the order of

21 the cost in kinetic energy reads (9.39)
1

loc
minimizing the total cost shows that the length over which ¢o remains

constant is given by (9.40)

Edis =

Ekinoc g

£ 5]
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This tells us that the system does pin on the impurities and that below &,
the system looks very much like an undistorted system. Since at the scale
Eloc, (p-284)

9

S

‘S]DC \ 'glcu:

.x’x

B

F

Fig. 9.5. The phase ¢ adjusts to the random phase over a length .. This

length results from the best compromise between the ‘elastic’ energy and
the pinning on disorder.

o varies randomly one naively expects the 2kr density-density correlations
to decay exponentially with a characteristic size §|,c. It is thus very tempting
to associate g, with the Anderson localization length. In the context of
charge density waves this is known as the Fukuyama-Lee length (Fukuyama
and Lee, 1978). The same arguments were introduced earlier in the context
of classical systems, to show the existence of an analogous lengthscale for
the pinning of vortices (the Larkin-Ovchinikov length, Larkin 1970; Larkin and
Ovchinnikov 1979) or for random field Ising models (Imry-Ma length, Imry
and Ma 1975).

Note that for the free fermion point §|,c « 1/Dy, instead of (9.40), so the
above formula is clearly missing a piece of physics when K is not zero.
Nevertheless, from this simple scaling argument we have obtained: (i) the
fact that classical CDW or very repulsive fermions are pinned (localized) by
disorder; (ii) the localization length; (iii) the fact that the ground state should
contain a static distortion of the phase due to the disorder. Unfortunately,
we have no other information on ¢g, which is certainly a drawback. Even
with our limited knowledge of the statics we can nevertheless try to extract
the dynamics. Let us assume that all deformations of the phase that are not
contained in the static distortion are small and thus we can write (9.41)

B )= dfx) + 59{x 7
with 8¢ (x, T) < ¢g(x) in a very vague sense since we deal with random
variables. One can try to expand the random term in power of 6¢ (9.42)

Sais= —JdT dNE(xJcos(2Ablx, T) - ¢[x))
v ko ) o
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One can thus use in principle (9.42) to compute the various physical
quantities. Note that the conductivity (see Section 7.2) will not depend
directly on the static solution ¢q since 9:¢g = 0, so we can hope to compute
it. Of course, the dependence of the fluctuations 8¢ in ¢q is hidden in (9.42).
If g was following the (p.285) random phase at every point, then the cosine
in (9.42) would just be a constant. Disorder would just lead to a mass term
for the fluctuations and the optical conductivity would show a gap as in Fig.
7.12. In fact, this is not true at every point so (9.42) leads to a distribution
of masses for the fluctuations. Unfortunately, the knowledge of ¢ is too

crude to compute the conductivity accurately and depending on what
exactly is €, one can find either a gap, a non-analytic behavior or a o(w)

~ W2 behavior at small frequencies (Fukuyama and Lee, 1978). Based on
physical intuition Fukuyama and Lee opted for the later (Fukuyama and
Lee, 1978), but the method shows its limitations here and does not allow a
reliable calculation of the physical quantities. More precise calculations of
¢o and the conductivity can be performed in the classical limit K - 0 using a

transfer matrix formalism (Feigelmann and Vinokur, 1981). A self-consistent
harmonic approximation, similar to the variational method of Appendix E.2,
can be used to approximately take into account quantum fluctuations in the
localization length (Suzumura and Fukuyama, 1983). It gives (9.43)
1
1 3-2K
w13

This expression for the localization length suggests that a derealization
transition is induced by the quantum fluctuations and occurs at K = 3/2. In
the fermion language this corresponds to extremely attractive interactions.

9.2.2 Physical properties

The previous method starts directly from the localized phase. It provides
some limited information about this phase, but suffers from serious
limitations. An alternative approach is to start from the pure Luttinger
liquid and investigate the effects of disorder perturbatively, and build a
renormalization group analysis. The RG provides us with the best possible
description of the delocalized phase and the critical properties of the
transition. It also gives a very accurate description of the localized phase
up to lengthscales of the order of the localization length §,.. To build an RG

we use the same techniques that were described in Section 2.3.2 It is even
simpler since the replicated disorder term already contains a double integral
over time and we can thus expand to first-order only. Note that in fact this
corresponds to an expansion to second order in the random potential V
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since D, ~ VV. Before we start with the RG itself one has to notice that it
is necessary to introduce a cutoff in the double time integral. This cutoff is
not there in the original disorder term, since the double integral over time
should be unrestricted to give the elastic scattering on the impurities. We
thus replace (9.44)

Db”dr ar — Db”T_T}MdT dar

Introducing this cutoff has consequences that | will examine in detail in
Section 9.2.3, but for the moment we will ignore this little difference.

(p.286) Using the methods of Section 2.3.2 or Appendix E.1 one can easily
get the renormalization equations for the spinless case. The renormalization
of Dy, is the easiest since it is only the dimension of the operator (9.32). At
this order only terms diagonal in replica index survive upon average since
the quadratic part of the action is diagonal in replicas: (9.45)

a1 = 3-2K|D,,

The 3 comes from the two integrations in time and the integration over
space, and the —2K from the correlation #ei2¢e—-i20# ~ (1/Y)2k. In a similar
way to that for the Mott transition (9.32) gives also a renormalization of the
quadratic part of the action (9.46)

_ Dbfdxfoxh—‘r’k(x’d-r dT’COS(2¢a(Xa T) - 2¢a(x’ T))

o< [dx (@l 7))
Such a term renormalizes the coefficient 1/(uK) in the action (3.26). Since the
disorder generates only (a:¢(x, T))2 terms and no (3,$(x, T))2, the coefficient
u/K is not renormalized. Disorder thus gives both a renormalization of K and
the velocity, since it breaks the space-time invariance. The RG equations are
(9.47)

2 ~
4 =-%D,
dapy, ~
> =(3— ZK)Db
G =-4D,
where (9.48)
~ ZDbO(
b=

We now briefly analyze these equations. The flow is shown in Fig. 9.6. In the
variables
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KD,

the flow is identical to the one obtained in Section 2.3.2 The equation for the
disorder indicates that two fixed points are possible. If K > K. the disorder
flows to zero, whereas it increases under renormalization if K < K.. Note
that the critical value K. depends on the disorder. However, at the transition
the whole boundary renormalizes to the universal value K* = 3/2, thus in
particular K.(Dp = 0) = 3/2. The phase where the disorder flows to zero is a
Luttinger liquid, with renormalized parameters K* and u*. Note that since K*
> 3/2 this phase has strong superconducting fluctuations. From Section 7.2,
it is a perfect conductor, with a finite charge stiffness # = u* K*. The naive
interpretation of this phase is thus that it is a delocalized phase in (p.287)
5ﬁu2 (b) Ejﬁm

Fig. 9.6. Phase diagram and flow for spinless fermions in presence of
disorder: (a) flow in D~y and K variables; (b) flow in D~ and interactions V.

Disorder kills inelastic interactions.

which the disorder has been screened by the strongly attractive interactions.
Below the transition line the disorder flows to strong coupling. Since the flow
is going to strong coupling one cannot use the perturbative RG equations
above the lengthscale for which™Dy ~ 1. To understand the physics of

this phase we can proceed in two ways. The simplest is to notice that this
phase contains the free electron line K = 1 for which we know that electron
localization takes place. This phase is thus a localized phase. The other
method is to use the fact that the disorder becomes large so one can try to
tackle the strong coupling action. | will come back to this in Section 9.2.3

Although one cannot use the RG equations above a certain lengthscale
one can still use them to extract many physical quantities, in a way similar
to what we did for the Mott transition. For example, one can extract the
localization length. Let us renormalize up to a point where™Dy(/*) ~ 1. The
true localization length of the system is given by (9.49)

Eloc - e_rrgloc([k)
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but if" D,(/*) ~ 1 the localization length of such a problem is of the order of
the lattice spacing (this is the same trick than the one used to compute the
gap for a Mott phase). Thus, (9.50)

EIOCN el

One can then integrate the flow to get /*. As for the Mott phase this depends
on the position in the phase diagram. When one is deep in the localized
phase (far from the transition) one can consider K as constant (see Section
2.3.2) and thus (9.51)

Dy(I) = DI = 0)el3-2K)1

Thus, (9.52)

T
£ oL
loc Db

One recovers the form (9.43). Thus, we see that the self-consistent harmonic
calculation corresponds in fact to the limit of infinitesimal disorder, which is
a (p-288) fact that we already noticed in Section 2.3.2 for such variational
methods. For K = 1 one does recover that §,,c ~ 17Dy, in agreement with the
exact solution for free fermions, a sign that we have taken the right physics
into account. Close to the transition the localization length diverges in a
different way (setting K = 3/2 + n) (see Section 2.3.2) (9.53)

L~ een\oDy-r2

As for the Mott transition, one can extract the frequency and temperature
dependence of the conductivity. Let us here look at the temperature
dependence by a very simple technique (Giamarchi and Schulz, 1988b). The
idea is simply to renormalize until the cutoff is of the order of the thermal
length I+ ~ u/T corresponding to er* ~ Ir/a. At this lengthscale the disorder
can be treated in the Born approximation. As the conductivity is a physical
guantity it is not changed under renormalization and we have (9.54)

d(n, 0)\ Dy O) 0= o‘(n 1) D(z) 1): o n{)Dy0) _ - elD,(0)

nO)Dyl) ° Dyf)

where o(n(/),"Dy(l), I) = o(l) and n(/) are, respectively, the conductivity and
the electronic density at the scale .

0y = e2v/2mhD,,

is the conductivity in the Born approximation, expressed with the initial
parameters. This is the simplified version of coupling RG with the memory
function calculation as explained in Section 7.2. If one is deep in the localized
phase, one can again retain only the RG equation for the disorder and
consider K as constant and one has (9.55)

loc
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1 22K
T|~=—T
d() Dy,

This result is schematized in Fig. 9.7. It poses a paradox since (9.45) gives

a localized-delocalized boundary at K = 3/2 whereas (9.55) gives perfect
conductivity above K = 1 (that is, the non-interacting point). This shows that
the RG equation for the disorder cannot be considered alone. Indeed, the
RG equation for the disorder traduces in fact the dressing of the scattering
on the disorder by the interactions. Such an effect has been derived long
ago using either diagrams or RG (Gorkov and Dzyaloshinski, 1973; Mattis,
1974; Luther and Peschel, 1974; Apel, 1982; Apel and Rice, 1982a; Apel and
Rice, 1982b; Giamarchi and Schulz, 1987; Giamarchi and Schulz, 1988b). In
fact (9.45) would not allow in itself to really determine the metal-insulator
transition point. One can immediately see that if one introduces a new
variable such as (9.56)

Dy = e-alDy,

the dimension of such a variable would be (3-a—2K), leaving the location

of the transition point as determined from (9.45) alone quite arbitrary. For
example, (p.289)

o(T)
F' Y

i »
TI{J::: uf éluc r

Fig. 9.7. Temperature dependence of the conductivity. For K > 3/2

(top) the system is delocalized and the conductivity increases with
decreasing temperature. For 1 < K < 3/2 (middle) the system is localized
but the conductivity starts increasing with decreasing temperature. The
renormalization of K due to disorder pushes the system to the localized
side forcing the conductivity to decrease with decreasing temperature.
For K < 1 (bottom) the conductivity decreases with temperature even at
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high temperatures. Below temperatures of the order of u/§ o, the system is
strongly localized and the conductivity decreases exponentially.

Fig. 9.8. Diagrams describing the renormalization of the disorder by the
interactions (a) and the renormalization of the interactions by the disorder
(b). Solid and dotted lines are fermions with £kf, the wiggly line is the

interaction and the cross is the impurity scattering.

remembering that
nl-V(Z)
one would get for the renormalization of the strength of one impurity (n;

scales as el) (9.57)
a1 = I—K)VO

One could naively conclude (incorrectly) from this result that the metal-
insulator transition takes place at K = 1. The answer to this simple paradox
is of course that (9.45) is complemented by the other RG equation that
describes the renormalization of the interactions by the disorder. Both RG
equations (9.45) and (9.47) have a diagrammatic representation shown

in Fig. 9.8. In the presence of (9.47) one cannot rescale arbitrarily the
variable ™Dy, and the position of the (p.290) transition is now unambiguously
fixed to K = 3/2. One easily checks that if one starts with 1 < K < 3/2 the
resistivity starts by decreasing with decreasing temperature but then the
renormalization of K takes over and when K(/) < 1 starts shooting up again
as shown in Fig. 9.7. Note that the advantage of the bosonization derivation
is to allow to reach the non-perturbative point in interactions K = 3/2 where
such a metal-insulator transition would take place. These predictions are
directly relevant for spin chains, using the equivalence between spins

and spinless fermions. The predictions for the phase diagram have been
confirmed by numerical calculations (Schmitteckert et al., 1998).

Let us stop here for spinless fermions and go to the case of fermions

with spin, since this presents some twists compared to the much simpler
spinless case. | will not give here the full derivation of the equations. The
methodology to derive them is identical to the one presented in Chapter 2
and the derivation is well detailed in the literature (Giamarchi and Schulz,
1988b). I will rather focus on the salient points of this problem. To obtain the
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RG equations one starts with (9.29) and uses the methods of Chapter 2 and

also sketched in this chapter for spinless fermions. One obtains (9.58)

daKp Up .2
= ", K Db(l)

dK g _I 2() A2

el
@kl ol

dup
)
du usK
a =" UDb(I)
where now (9.59)
~ 2Db0( Uy Kp
Dy= TS, (“_p)

and y = g7 /(nivg). The equations look formidable but are in fact quite simple.
The equation for'Dy, is as before the dimension of the disorder operator.
There is now a renormalization of the charge and spin LL parameters K, and
K5 due to the disorder. Of course, there is still the standard renormalization
of K5 due to the backscattering g; ,. Note that one recovers the spinless
fermions case by setting y = 0 and K, = K as one should (all couplings
between different spin species are zero). Unfortunately, these equations

are incomplete since it is easy to see that they do not obey spin rotation
symmetry. The disorder™Dy, appears in the renormalization of K5 but the
equivalent term is not present in (p.291) the renormalization of y. So the
flow will not stay on the separatrix g;; = g1, as it should. This is due to the
fact that we have not collected all the contributions of order two. The precise
details are given in Giamarchi and Schulz 1988b but let me present here the
basic idea. This is again due to the fact that one can bring two operators at
the same point as explained in Chapter 3. For example, if one combines one
backscattering operator g; | with a disorder term (9.29) one gets (9.60)

yDbfdx cos(\/g ¢ U(x))fdx’ eil2 o x )COS(\/E ¢U(X'))

If the two points are within a cutoff distance of each other |x — x| < a one
can combine the two cosines to get (forgetting less relevant operators)
(9.61)

~ yDy [ dx e scos(\2 ¢ (x)
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which is exactly a disorder term. In the same way combining two disorder
terms at the same point cancels the ¢, contributions and gives (9.62)

Dﬁjdx cos\2 () ~ %‘i [ax Cos(\/g ¢ U(x

which is a backscattering term. When varying the cutoff there is thus
a renormalization of the disorder by terms of the order of yD,, and a

renormalization of the backscattering by terms of order
~2

Dy,

. The total equations are thus (9.63)

de Llp
= ", K Db(l)

dKg _[ 2() yZ(I)Kz

dl ~

% =(2-2Ko)y - Dy
d -
B ook )Py
where | have not written again the equations for the velocities. In particular,
the renormalization of the disorder is changed, and the coefficient is not the
simple dimension of the operator any more. This has serious consequences
that | will examine in Section 9.2.3

By now we are old hands at looking at fixed points so we can analyze the
flow rapidly. For systems invariant by spin rotation (g;; = g1,) one is forced
to stay on the separatrix so there are only two possibilities: K; = 1 and y

- 0ory—- —ow. If one is in the first case, then the disorder is irrelevant for
Ko > 2. This regime is thus delocalized with a LL fixed point. By comparing
with Fig. 2.9 we see that this region is dominated by triplet superconducting
correlations. If (p.292)

p N
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Fig. 9.9. Distortion of the charge order imposed by the impurity. In a totally
rigid spin density wave state the density is uniform, so naively the disorder
would not couple at lowest order. In fact, the disorder shifts locally the
positions of the two density waves of spin up and down electrons to create
locally a charge density wave modulation and pins it.

Ko, < 2 then the disorder is relevant and the system localizes. Note that in our
equations if Dy » « it seems that it always forces y = —. This is obviously
an artefact of the lowest-order RG equations. y - —« means a CDW ground
state that is very efficiently pinned on impurities since the density varies
spatially. On the other hand, y = 0 gives a SDW type phase. In such a phase
the density is uniform while the spin density is modulated. Thus, at lowest
order the average of the coupling (9.29) vanishes. Of course, what happens
in fact is that locally the disorder shifts the SDW order to make a distortion
of density to which it can couple as shown in Fig. 9.9. This process occurs at
next order, this is why in the lowest order RG when the disorder is relevant
it always favors the CDW phase over the SDW. If the repulsion between
opposite spins is very strong the electrons localize individually, as shown in
Fig. 9.10, giving rise to a random SDW. Because the electrons are localized,
only the spin degrees of freedom exist and since the distance between the
electrons is random, one has a random exchange antiferromagnet as shown
in Fig. 9.10.

The localization length can be computed by the method explained above.
Far from the transition one can replace in (9.63) K*; = 1 and y = 0 in the RG

equation for the disorder and one gets (9.64)

1
2Kp

1
EIOCN(IN)_b
Close to the transition extracting the localization length from the RG is more
tricky because all equations have to be taken into account. One finds an
exponential divergence of the localization length (Giamarchi and Schulz,
1988b).

(p.293)
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Fig. 9.10. For repulsive and strong enough interactions it is more favorable
for the electrons to localize individually. The charge degrees of freedom are
frozen but spin degrees of freedom remain and the resulting phase is thus a
random antiferromagnet (a). If the interactions are not repulsive enough or
attractive the electrons want to localize by pair and form singlet states. The
spin degrees of freedom are gapped and the ground state is a pinned charge
density wave (b).

If y is not large enough, then the disorder term pushes y to negative values.
When y is negative it renormalizes to —». As we saw in Section 2.3.2 this
means that the system opens a spin gap. The electrons thus tend to pair.
Because of the spin gap

\2e,)

acquires a finite average value. Thus, at energies smaller than the spin gap
the effective disorder is (9.65)

Heff = J'dX% eiﬁd’p(X)
where (9.66)

C= <COS(\/_(IJ )

Since the fluctuations due to the ¢, field are suppressed the disorder is

more efficient. | will come back to this paradoxical result in the next section.
The system is now consisting (at low-energy) of pairs of electrons bound
together. These ‘molecules’ act as a hard core bosons able to hop from site
to site. If the spin gap was large the hopping element would be tes = t2/A,.

This part of the phase diagram has thus strong connections with the boson
problem that | will examine in Section 11.1. The RG equations can be derived
(Giamarchi and Schulz, 1988b) for the effective disorder (9.65). Since only
the charge part remains the derivation is very similar to the one we showed
for spinless bosons. One obtains (p.294)
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Fig. 9.11. Phase diagram for a one-dimensional disordered system. Solid
lines denote the parts that can be extracted from the RG approach (see
text). The dashed lines are the parts that cannot be extracted reliably
from the weak coupling RG. TS and SS are, respectively, triplet and singlet
superconductivity. RAF is a random antiferromagnet. PCDW is a pinned
charge density wave. (After Giamarchi and Schulz, 1988b.)

(9.67)

dK K5 ~
=2 Dp
dDy, o
a1 =(3—KpDy
dllp Hpr ~
ar=-"2 Dy
where

D),=2CDya/(rud)

. Notice the change in dimension for the disorder from (3 — K; — K5 — y)

to (3 — Kj), due to the fact that all spin fluctuations are now frozen. As a
result the transition now occurs for K*, = 3, that is, for even more attractive
interactions. The disorder pins much more effectively the system with a spin
gap. The delocalized regime is a Luther-Emery liquid (Luttinger liquid with a
spin gap). It corresponds to dominant singlet superconducting fluctuations.
The charge stiffness is finite # = 2u*, K*,. In the localized regime since the
spins are paired the system has only charge fluctuations. The localized phase
is thus a pinned charge density wave. The generic phase diagram is shown in
Fig. 9.11. The localization length is now given (deep in the localized phase)
by (9.68)
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(p.295)
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Fig. 9.12. Frequency and temperature dependence of the conductivity in a LL
liquid. Tp = Wp = Up/§|oc is the pinning frequency or temperature. u =K, — 1
for a system with spin and spin isotropic interactions (K*o = 1) provided that
K, > 1/3. For K, < 1/3 the disorder pins the 4kr density fluctuations and p =
4K, — 2. For a spinless fermion system u = 2K — 2.

while it has a Berezinskii-Kosterlitz-Thouless form similar to (9.53), close to
the transition.

For the system with spin the temperature dependence or frequency
dependence of the conductivity can be extracted from the RG, down to
energy scales where the disorder is of order one (see Section 7.2) and that
correspond to W ~ Up/§joc OF T ~ Up/§joc. Deep in the localized phase one
can neglect the renormalization of the LL parameter K in the initial steps of
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the RG, since the RG trajectories are nearly vertical (see Section 7.2). The
temperature and frequency dependence of the conductivity is thus given by
(9.69)

p(T)~D,T

o)1

This is summarized in Fig. 9.12. Of course, more generally the LL parameters
are renormalized by the disorder and all equations should be used (see
Section 7.2), leading to a more complicated functional dependence than a
simple power law. (p.296) Below the pinning frequency and temperatures,
the RG cannot be used. For the frequency dependence one can use the
method explained in the next section to show that the conductivity behaves
as w2 (up to logarithmic terms) in good agreement with the solution for free
fermions. For the temperature dependence calculations are more subtle
(Lee and Larkin, 1978; Nattermann et al., 2003). One finds a variable range
hopping law of the form p(T) ~ e(1/T)1/2,

Kp-1

A final word. For systems with spin, the above values of the exponents apply
when the interactions are not too repulsive. Indeed, we have retained the
coupling of disorder to the 2kg component of the density. This is correct as

long as this component is the most relevant one. We have seen in Chapter 3
that for K, < 1/3 the 4kr component of the density is in fact the one that has

the slowest decay. This component should thus be kept for the coupling to
disorder, which becomes (9.70)

H= f dx E’(x)e“lg(i’p(")

The RG equation for the disorder becomes (9.71)

db,
dal —

Thus, o(T) ~ T2 - 4kp and o(w) ~ (1/w)4 — 4ke. Note that for the case of

Coulomb interactions K, - 0 and thus one recovers universal exponents

(Maurey and Giamarchi, 1995) for the transport properties (up to log
corrections).

3- 4Kp)Db

9.2.3 Extensions and pitfalls

Let us examine some further consequences of the RG equations derived
in the previous section and discuss some of the finer points. Since it is

a relatively specialized section it can be safely skipped unless you are
interested in the dirty detail of the disordered systems.
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9.2.3.1 Inelastic scattering

The first point to notice is that quite remarkably (9.47) seems wrong. Indeed,
K naively depends on the (inelastic) interactions. Perturbatively, for the

pure system K = 1 — V/(2ng). If one starts for K = 1, that is, for the non-
interacting system, it would thus seem from (9.47) that the elastic scattering
on the impurities can generate inelastic fermion-fermion interactions. The
solution of this paradox is hidden in the precise way the RG procedure is
build. In order to have the elastic nature of the scattering on impurities, the
time integrations in (9.28) should be done independently for T and t. When
we have performed the RG we have introduced a cutoff and imposed |t — T'|
> a. Thus, a part is left out of (9.44) which is (9.72)

Dbfdxfr—rkad-r dT’p(X, T)p(x, T’) ~ 2D, & f dxde plx, T)p(x, )

This is exactly an inelastic interaction term. Thus, K contains not only the
original inelastic interactions V but also a small correction coming from

the disorder itself. In order to determine the flow for V it is thus necessary
to take this (p.297) small correction into account (Giamarchi and Schulz,
1988b), which gives the flow of Fig. 9.6(-b). One thus sees that the elastic
case V = 0 indeed remains elastic and also that for spinless fermions, the
perturbative flow indicates that the inelastic interactions are reduced by
the disorder. This is compatible with the physical image that one would get
at strong disorder: fermions localize individually and since the overlap of
wavefunctions is exponentially small, so is the effect of interactions. One
could thus naively expect that below &, the effect of interactions are strong

but disappear above & ,.. For fermions with spin the exchange interaction
between the localized spins remains even in the localized phase.

9.2.3.2 RG equations

The second important point is the consequences of getting the proper RG
equation (9.63) for the disorder. This is in particular crucial if one tries to
relate the variation of some physical quantity to microscopic parameters. Let
us, for example, see how the localization length varies with the interaction U
for a Hubbard model. Indeed, for a Hubbard interaction the relation between
the LL parameters and U is given by (7.9) at small U. Substituting in the RG
equation gives for the initial steps of the flow (9.73)

dbb U ~
a1 =\ g Po
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whereas the substitution in the incorrect equation (9.58) or at the fixed point
Ks =1,y = 0 would lead to

(1+ ‘ITI\{F)

, leading to quite different physics. Equation (9.73) implies that for Hubbard
type interactions repulsive interactions make the system less localized

(Giamarchi and Shastry, 1995) than for attractive interactions, that is,
§U>O §U<O

loc loc
. Similar effects exist for the charge stiffness and the persistent currents,

that is, for a system with spin the persistent currents are in fact enhanced by
repulsive interactions. Of course, for the Hubbard model both the repulsive
and the attractive sides are always localized since K, < 2 (see Chapter 7)

and for the attractive side one needs Kp > 3 to delocalize. The counter-

intuitive increase of the localization length by a positive U can be explained
physically: interactions have two effects: (i) They tend to reinforce, when
attractive, the superconducting fluctuations in the system. This screens
disorder and makes it less effective. This is the only effect occurring for
spinless fermions. (ii) When spin degrees of freedom exist, repulsive
interactions also tend to make the density more uniform by spreading the
charge (see Fig. 9.9). This makes it more difficult to couple to disorder. These
two effects compete and for the Hubbard model (purely local interaction)
the second effect wins, hence the decrease of localization length when the
interactions become more attractive. Note that for the Hubbard model, since
K, < 2 both the repulsive and the attractive side are always localized. To
reach derealization one needs attractive interactions with a range of at least
nearest neighbors. For more on this problem see Bouzerar et al. (1994),
Giamarchi and Shastry (1995), Berkovits and Avishai (1995) and Gambetti-
Cesare et al. (2002).

(p.298) 9.2.3.3 Strong coupling

Can we analyze the strong coupling in the same way than what we did for
the Mott phase. Indeed, if the coefficient of the cosine becomes large one
would naively think that one can expand the cosine, leading to the disorder
term (9.74)

Dbfdx”deTZ( ( ) (x, T))2

Unfortunately, |t is easy to see that this is essentially wrong. In particular,
this only gives ¢(w, = 0) contributions to the action that does not modify the

current. Thus, no trace of localization will be found in the conductivity, which
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is obviously incorrect. Even a better approximation for the cosine such as the
variational approach of Appendix E.2 does not improve the result.

This peculiarity is due to the fact that we have ultimately to take the limit

n = 0 to get the physics of the disordered system. There are various ways
to take this limit. One is the so-called replica symmetric way, which is the
one the expansion of the cosine would give. The correlation #¢,¢,# has a
value for equal replica indices and another one for different replica indices.
This is the natural choice since it corresponds to the structure of the action.
Unfortunately, this solution is unstable, as it often happens in disordered
problems, and one has to break the replica symmetry. It would take us too
far to explain the process here so | refer the reader to Giamarchi and Le
Doussal (1996) and Giamarchi and Orignac (2003) for more details. Taking
into account replica symmetry breaking it is possible to use a variational
method along the lines of Appendix E.2 to analyze the strong coupling
regime. It is a very nice approach since it can reach the energy regimes that
the RG cannot reach.

9.2.3.4 Commensurate disorder

How much of this physics is modified if one is at commensurate filling and
the disorder Hamiltonian is (9.25) instead of (9.21)? We see immediately
two important differences. First, g is real since there is no random phase any
more to which the phase ¢ will try to adjust. The physics of the disordered
phase is thus very different. The backward scattering term is (9.75)

H =fdx E(x)cos(2¢(x))

Thus, the system has only two different minima 2¢ = 0 or 2¢ = . depending
on whether E is positive or negative. The physics of the commensurate
systems is not about ¢ trying to adjust to a random phase, as for the
incommensurate one, but about how to make kinks between these two
minima at favorable places as indicated in Fig. 9.13. This leads to quite
different properties. In particular, the commensurate system has a state at
zero energy that is localized only as (9.76)

W~ e W

so formally the localization length diverges at zero energy. There are other
interesting properties and | refer the reader to Fisher (1994), Monthus et al.
(1998) and Damle and Huse (2002) for more details.

(p.299)
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Fig. 9.13. Commensurate disorder. The phase now has only two values that
lead to degenerate energy of the ground state. The physics of the system
with such a disorder is thus controlled by the excitations that bring the phase
from one value to the other. This is very different from the standard case
where the phase has to adjust to a random value.

One last word about commensurate systems. Because of the form of
disorder (9.75) one cannot eliminate the forward scattering any more

by transformation (9.30). Since the elimination of the forward scattering
was giving a random phase to § it thus replaces the commensurate
backward scattering by a ‘normal’ one when present. For this reason the
commensurate case is not very relevant for the case of fermions. For the
case of spins, on the other hand, it is easy to find a form of the disorder
that does not generate forward scattering such as random exchange.
Indeed, random exchange does not change the spin density by spin rotation
symmetry, it thus does not contain any component that would be for

the fermions the equivalent of a chemical potential (that is, the forward
scattering). Its effect has been worked out in (6.63) for the spin-Peierls
distortion. The coupling to a staggered modulation of the exchange is
sin(2¢). A random exchange thus produces a term (9.77)

[ dx 81(x)sin(2(x)
Random spin chains are thus prime candidates to study the effects of
commensurate disorder.

9.3 Quantum wires

An experimental realization of Luttinger liquids is provided by the so-called
quantum wires. The idea is to confine the electron gas in a narrow enough
channel, so that only one direction of motion matters. For example, let us
assume that one starts with a two-dimensional electron gas. Such systems
are routinely made for quantum hall devices and semiconducting industry.
One can then either by lithography or by applying a potential repelling
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the electrons from a gate confine the electrons in a channel of width L, as
explained in Fig. 9.14. The (p.300)

E

E

”:

Fig. 9.14. Confinement of the electron gas in a one-dimensional wire. Only
half of the dispersion relation E(k) is shown for clarity. k is the momentum
parallel to the wire direction. The degrees of freedom transverse to the

wire direction lead to the formation of minibands, labelled by a quantum
number n. If the channel in which the electrons are confined is narrow
enough the distance between minibands can be made large compared to the
temperature. One can be in a situation where only one miniband is occupied
and the quantum wire is equivalent to a one-dimensional system. If two (or
more) minibands are occupied the wire is equivalent to a ladder system.

wavefunction of the system is thus of the form (9.78)

Wx, y) = etkxg(y)
where ¢ depends on the precise form of the confining potential (for an

infinite well ¢ is also a combination of plane waves). The energy is of the
form (9.79)

Kk

E=om tom

where for simplicity | have taken ¢ to be a plane wave. The important

point is the fact that due to the narrowness of the transverse channel /, the
quantization of k, is sizeable. Indeed, the change in energy by changing the

transverse quantum number n, is at least (e.g. n, = 0 ton, = 1) (9.80)

This leads to minibands as shown in Fig. 9.14. If the distance between the
mini-bands is larger than the temperature one can by changing the chemical
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potential (with an external gate) be in a situation where only one miniband
is occupied. The transverse degrees of freedom are thus frozen and only k
matters. The system is a one-dimensional electron gas.

(p.301)

Fig. 9.15. A two-dimensional electron gas formed at the interface between
GaAs and the insulating AlGaAs. The carrier density is controlled by the
application of a voltage V, to the substrate. To transform the 2DEG into a

one-dimensional wire, metal electrodes on the surface confine the electron
gas into a one-dimensional channel. The voltage v, on the electrodes allows

to control the width of the channel. (From Meirav et al., 1990 (Copyright
(1990) by the American Physical Society).)

An actual example is shown in Fig. 9.15 (Meirav et al., 1990). Various
variants can be found (Thornton et al., 1986; Scott-Thomas et al., 1989;
Calleja et al., 1991; Gohi et al., 1991; Tarucha et al., 1993; Hwang et al.,
1994). Typically, so far the possible length of a wire using these techniques
is about 10 um. The Fermi energy in these systems is quite small ~ 100K,
which imposes to work at very low temperatures. This has the advantage

of allowing to forget most of the phonons, but has the drawback that the
length of the wire is becoming a real limitation since the thermal length L+ ~

u/T can become comparable to the size of the wire. Although in practice one
could imagine getting a wire as thin as desired, it is much less easy to do so
in practice, without cutting the wire due to some potential fluctuations.

We already saw some spectroscopy data in Fig. 4.2, which was in good
agreement with the expectations for a one-dimensional electron gas.

Let us examine here the transport properties in such wires. An example

of conductance is shown in Fig. 9.16. One clearly sees the conductance
quantization at the value e2/h (per spin). This is in agreement with the
theoretical expectation (see Section 7.2) and clearly shows that there is only
one miniband at the Fermi level. From these data one sees that there are
deviations to the perfect conductance quantization when the temperature is
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lowered. It is tempting to interpret these deviations as due to the disorder
present in the wire following the analysis presented in this chapter. One
indeed observes a decrease of conductance with temperature as shown in
Fig. 9.16.

(p.302)
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Fig. 9.16. Conductance of a quantum wire. One observes quantization of the
conductance at a value of e2/h per spin. This is an indication that there is
only one channel of conduction at the Fermi level. The deviations from the
perfect quantization can be interpreted as being due to the disorder in the
wire. The data are consistent with the expected behavior for a LL but given
the short-range of temperatures it is difficult to draw definite conclusions.
(From Tarucha et al., 1995 (Copyright (1995), with permission by Elsevier).)

Another very interesting technique (Yacoby et al., 1996; de Picciotto et al.,
2000) consists in making the wire at the edge of a two-dimensional electron
gas. This technique allows to have a very uniform width for the wire. The
interpretation of the data in these systems is however more complex due
to large contacts between the one-dimensional electron gas and the large
2D-1D scattering (de Picciotto et al., 2001). These systems allow however
for beautiful experiments both in transport and in tunneling between wires
(Auslaender et al., 2002; Carpentier et al., 2002; Tserkovnyak et al., 2002).

It would be impossible to review here all possible measurements that can
be made in these systems. This is a field in constant expansion given the
progress in the experimental realization of these systems. Quantum wires
are clearly one of the ultimate weapons to study individual one-dimensional
systems.
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Notes:

(35) And also because these are essentially the only integrals one knows how
to do!
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