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Undulation instability on dilation

Strain-induced instability of monodomain smectic A and cholesteric
liquid crystals
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A mechanism is proposed for the observed mechanical instability of monodomain smectic A
and cholesteric liquid crystals subjected to uniaxial dilative stress, The threshold condi-

tions for the instability are derived, and the possible roles of dislocations in controlling
the instability and in producing large plastic distortions are discussed.
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FIG. 1. Perioaic undulation of the layers of a dilated smectic
A liquid crystal. Regions of maximum dilation are marked S.



Chiral liquid crystals: cholesterics

cholesteric pitch

* color selective Bragg reflection
from cholesteric planes

* temperature tunable pitch -> wavelength



Chirality in liquid crystal N. Clark

“Liquid crystals are beautiful and mysterious; I am fond of them for both reasons.” - P.-G. De Gennes
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6bp 5-CGATCG-3' (L~2.0 nm) M. Nakata

increasing DNA concentration ——#» N. Clark, et al



Nematic Elastomer Terentjev

Finkelmann

. Ratna
cross-linked polymer liquid crystal PLC
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nematic liquid-crystal

polymer

“Solid” Liquid-Crystal
exhibits most conventional liquid-crystal phases (I, N, Sm-A, Sm-C, ...)



Nematic Elastomer Terentjev

Finkelmann
Ratna

“Solid” Liquid-Crystal
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Thermal response and stress-strain relation
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Properties: e« spontaneous distortion (~ 400%) at T, N thermoelastic

 “soft” elasticity
* giant electrostriction

Applications: e plastic displays
 switches
* actuators
e artificial muscle

Terentjev, et al



Nematic elastomer as heat engine

e monodomain nematic

ECE
1 e 5cm X S5mm x 0.3mm
n e |ifts 30g wt. on
heating, lowers it on
cooling
\4

e large strain (>400%)

n= 105 Pa H. Finkelmann,
Shahinpoor, et al

(P. M-Palffy)



Visualization of soft deformation
a “liquid” solid <--> a “solid” i
liguid crystal
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. Xing + L.R., PRL, EPL, AOP
Elastic theory of NE  Lubensky + Stenull, EPL (2003)

» Construct rotationally invariant elastic theory of deformations about U
 Study fluctuations and heterogeneities about U

Must incorporate underlying rotational invariance of the nematic state

1% »” ° ° °
=== some distortions cost no energy: SOﬁ uniaxial solid
fIR)) = fIOrR(Orx)] =55 (5 o)-eaouas

 Vanishing energy cost for: 5g = _GiF U, - s U,

* Harmonic elasticity about nematic state: € =u — U,

0 2 2 2 2 4
HNE — %Ezi i stzz ", H1E;; + ’\57511 + Azi€22€ii
0, required by rotational invariance

* Nonlinear elasticity about nematic state:
2 2 2
HNE = B,w,, + pirw;; + Awj; + AWz, Wy

1
Wy, = O,U, + %(Vuz)2 Wi; = 5(5(7;’&3') . 37:Uz5juz)



Fluctuations and heterogeneity

 Thermal fluctuations: Z = Trace,, [6_[3 H[u]]

* Heterogeneity === random torques and stresses:
nematic elastomers are only statistically homogeneous
and isotropic

Hied = Mgl — u-o(r) - (- §(r))?

e .
encodes heterogeneity

Elastic “softness ~ leads to strong qualitative effects of thermal
fluctuations and network heterogeneity



Predictions Xing + L.R., PRL (2003)
e Universal elasticity: (|ou(q)|?) ~ q14+", forr, >& ~K?%/A

* Non-Hookean elasticity: 0z ~ (uzz)5 6> 1
(cf. non-Fermi liquid) 104
— vanishing slope

no linear reSpOnSN

 Length-scale dependent elastic moduli: |
Keff(L) > Lna ,U'eff(L) ~ L—n“a Bef‘f(L) ~ By

* Macroscopically incompressible: Keff ~ Mefi(L)/Beg(L) — 0

. . . 5
* Universal Poisson ratios: Uyy = ZUzz
‘ Upy > 0 = 19
N — o U
— i 7 1
Uy, > 0 == Ugy = Uyy = —E’U,zz







