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I. INTRODUCTION

Soft condensed matter[1, 2] is a rich and vast subject of physics, that even a four-week

Boulder School is insufficient to cover comprehensively. The “soft” in soft matter connotes

that it is characterized by tiny cohesive energies comparable to thermal energies kBTroom ∼

1/40eV , and are thereby conventionally distinguished from their solid-state older “sibling”

characterized by 100 times larger, order of an electron-volt energetics. Because of this

quantitative “softness”, effects of thermal fluctuations are essential, with entropy playing a

primary role and must be taken into account.

However, in addition to this quantitative, material-focused characterization, soft matter

can also be distinguished by the qualitative softness of the elasticity of their ordered states.

Namely, there is a large and ever-growing class of soft matter systems, (often associated with

liquid crystalline order), that for symmetry reasons are distinguished by a set of vanishing

elastic constants. This has many drastic implications, such as fluctuations-driven instability

or qualitative modification of phases well-ordered at the mean-field level.

We refer to this class of phases as“critical” soft matter, because as we will illustrate below

they exhibit behavior akin to a state at a critical point of a continuous phase transition, but

here extending to the whole phase. Some of the prominent examples of states that fall into
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this fascinating class are smectics, cholesterics, columnar and other partially periodic phases

of matter[1, 2], as well as polymerized membranes[3] and liquid crystal elastomers[12]. These

are illustrated in Fig.(1) below.

FIG. 1: Illustration of critical phases: (a) smectics realized as conventional liquid crystals[2], 2d

colloids[4], quantum-Hall systems[5–7] and as striped “pair-density wave” FFLO superconducting

phases in degenerate atomic gases[8], (b) cholesteric liquid crystals[2, 9] and helical state of frus-

trated magnets[9, 10], (c) columnar liquid crystals and spontaneous vortex lattices[11], (d) nematic

elastomers[12, 13], and (e) polymerized membranes[3].

In these lectures, we will first describe in general terms the nature of such“critical matter”,

illustrating its distinction from conventional ordered states (whether in “soft” or “hard”

matter), and then will describe in detail how above listed systems realize this quite exotic

phenomenology.
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II. CRITICAL STATES OF SOFT MATTER

A. Conventional phases and critical phenomena

Much of the universal low-energy equilibrium phenomena in nature can be understood in

terms of symmetry-characterized disordered and ordered phases and continuous phase tran-

sitions between them. A paradigmatic example is a classical ferromagnet, that is mathemat-

ically equivalent to a large variety of physically distinct systems. Its low temperature ferro-

magnetic (FM) phase is characterized by a local magnetization order parameter ~φ(x), that

breaks the O(3) symmetry of the high-temperature disordered paramagnetic (PM) phase

down to O(2), with the order parameter “living” on the coset space M = S2 = O(3)/O(2).

The universal low-energy behavior of the phases and phase transition can be captured by

the Landau field theory, with an effective Hamiltonian density

HPM−FM =
1

2
J(∇~φ)2 +

1

2
t|~φ|2 +

λ

4
|~φ|4 + higher order terms . . . , (1)

used to calculate the thermodynamics via Z =
∫

[d~φ]e−βHFM and correlation functions of

~φ(x) and other local observables.

Ignoring fluctuations and simply minimizing HFM [~φ] over the order parameter, gives the

mean-field description of the FM-PM phase transition, and the corresponding phases. The

PM phase 〈~φ〉 = 0 is characterized by a large positive temperature t > 0, which allows one

to neglect nonlinearities and gradients, with harmonic energy density

HPM =
1

2
t|~φ|2 + higher order terms . . . .

The FM phase 〈~φ〉 = ~φ0 is characterized by a large negative (reduced) temperature t < 0,

which allows one to neglect nonlinearities (with one caveat, that in the interest of space we

will neglect here), with

HFM =
1

2
|∇δ~φ|2 + higher order terms . . . ,

governing the energetics of the Goldstone mode, δ~φ ⊥ ~φ0.

Problem 1: Derive the Goldstone mode Hamiltonian and show that for d > 2 its

harmonic fluctuations are finite.

Problem 2: Examine more carefully the lowest-order nonlinearities of the Goldstone and

longitudinal modes Hamiltonian. Thinking about the longitudinal (along ~φ0) susceptibility,

4



what do you think the aforementioned caveat is? (The answer may be clearer after discussing

critical phases, below).

Because of the asymptotically quadratic nature of the effective Hamiltonian of the two

phases, their description is effectively trivial, with fluctuations only leading to corrections

(above the lower-critical dimension dlc = 2, where the ordered phase is stable) that are small

at long scales.

In strong contrast, near the continuous transition itself, where the reduced temperature

is small, t ≈ 0 and therefore the quadratic term is small, the |~φ|4 nonlinearity is dominant,

with universal critical behavior determined by its balance against the gradient J term, with

Hcritical =
1

2
J(∇~φ)2 +

λ

4
|~φ|4 + higher order terms . . . .

This thereby leads to highly nontrivial effects of nonlinearities (below the upper-critical

dimension, duc = 4), the so-called non-mean-field critical behavior, characterized by universal

critical exponents.

In particular, at the critical point the order-parameter correlation function C(x, t = 0) =

〈~φ(x) · ~φ(0)〉 is characterized by a nontrivial power-law in real and Fourier spaces,

C(x, t = 0) ∼ 1/xd−2+η, C̃(q, t = 0) ∼ 1/q2−η ≡ 1/(J(q)q2),

that can be equivalently interpreted as a power-law, length-scale dependent exchange con-

stant J(q) ∼ 1/qη. Similarly, at the critical point the correlation function exhibit a divergent

power-law response to perturbations that take the system away from the critical point, as

e.g., the magnetic susceptibility χ(t) ≡ C̃(q = 0, t) ∼ 1/tγ (t should not be confused with

time). Thus, as illustrated in Fig.2, in conventional systems qualitative effects of fluctuations

only appear when tuned near a critical point, with phases behaving quite simply.

B. Critical phases

In stark contrast to the above conventional states, there is a class of exotic systems (e.g.,

smectics, cholesterics, columnar phases, elastomers, membranes,. . . ), where the importance

of fluctuations and nonlinearities extends throughout the ordered phase. Namely, as illus-

trated in Fig.3, in these systems the underlying symmetry of the disordered phase (“broken”

in the ordered state) requires a vanishing of a set of elastic constants of the Goldstone-mode
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FIG. 2: Illustration of unimportance of fluctuations inside phases of conventional systems, where

qualitative effects of thermal fluctuations are confined to a vicinity of a critical point.

Hamiltonian characterizing the ordered state. The ordered state is thus described by “soft”

(qualitatively, not just quantitatively) Goldstone-mode elasticity and is effectively critical

without any fine-tuning, enforced by the underlying symmetry.

Consequently, at finite temperature, fluctuations are divergently large, limited only by

strong nonlinear elasticity and lead to phenomenology akin to that of a critical point, but

extending across the whole phase. Namely, as illustrated in Fig.3 such critical phase is

characterized by an infrared stable, finite coupling fixed point, and as a result exhibits

universal power-law correlations, length scale dependent elastic moduli, divergent response

to symmetry breaking fields, etc.

For the known cases, some that we will discuss below, the necessary ingredients of critical

phases are anisotropy, spontaneously broken rotational and partial translational symmetries,

sufficiently low dimension such that nonlinearities are important at low temperature.
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FIG. 3: Illustration of importance of fluctuations inside ordered phases of “critical” soft matter.

Even deep in the ordered phase the quartic potential is missing a quadratic contribution resulting

in divergent fluctuations. The bottom of the figure shows the renormalization group flow, e.g., for

a smectic state in d < 3 dimensions, illustrating that at low T it is a “critical phase” displaying

universal power-law phenomenology, controlled by a nontrivial infrared stable fixed point.

III. SMECTIC

A. Liquid crystals

Liquid crystals are states of matter that spontaneously partially break spatial symmetries.

Defined in this symmetry- rather than materials-based way, such phases appear in systems

far beyond conventional liquid crystalline materials, typically composed of highly anisotropic

(rod-like or disk-like) constituents. Some of the novel systems include biopolymers like RNA

and DNA[14], viruses[15], frustrated magnets[10], and strongly correlated electronic and

bosonic systems (quite amazing in light of the fact that in these systems the constituents are

essentially point particles), such as FFLO“striped” (“pair density wave”) superconductors[7,

8, 16], finite momentum superfluids[17], and a two-dimensional electron gas in the quantum

Hall regime of high filling fraction ν = N + 1/2[5, 6, 18].

Illustrated in Fig.4, the most ubiquitous liquid crystal phases are the uniaxial nematic,
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FIG. 4: Most ubiquitous nematic (orientationally ordered uniaxial fluid), smectic-A and smectic-C

(one-dimensional density wave with, respectively isotropic and polar in-plane fluid orders) liquid

crystal phases and their associated textures in cross-polarized microscopy (N.A. Clark laboratory).

that spontaneously breaks rotational symmetry of the parent isotropic fluid and the smectic

state, a uniaxial one-dimensional density wave that further breaks translational symmetry

along a single axis. The uniaxial nematic is characterized by a quadrupolar order parameter

Qij = S(n̂in̂j − 1
3
δij), with S the strength of the orientational order along the principle

uniaxial axis n̂. The smectic is a periodic array of two-dimensional fluids, characterized by

a uniaxial periodic density modulation with Fourier components that are integer multiples

of the smectic ordering wavevector q0 = n̂2π/a (a is the layer spacing) parallel to the

nematic director n̂. The dominant lowest Fourier component ψ(x) = ρq0 can be taken as the

local (complex scalar) order parameter which distinguishes the smectic-A from the nematic

phase[2]. It is related to the density ρ(r) by

ρ(x) = Re[ρ0 + eiq0·xψ(x)] , (2)

where ρ0 is the mean density of the smectic.

As first discussed by de Gennes[2], the effective Hamiltonian functional HdG[ψ, n̂] that

describes the nematic-to-smectic-A (NA) transition at long length scales, in bulk, pure liquid

crystals, is:

HdG[ψ, n̂] =

∫
ddx

[
c|(∇− iq0δn̂)ψ|2 + t0|ψ|2 +

1

2
g0|ψ|4

]
+HF [n] , (3)
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where t0 ∝ T − TNA is the reduced temperature for transition at TNA,

δn̂(x) ≡ n̂(x)− n̂0 = δn̂⊥ + n̂0(
√

1− δn̂2
⊥ − 1)

is the fluctuation of the local nematic director n̂(x) away from its average value n̂0, which

we take to be ẑ, and HF [n] is the Frank effective Hamiltonian that describes the elasticity

of the nematic order director:

HF [n̂] =

∫
ddx

1

2

[
Ks(∇ · n̂)2 +Kt(n̂ ·∇× n̂)2 +Kb(n̂×∇× n̂)2

]
, (4)

where Ks, Kt, and Kb are the bare elastic moduli for splay, twist and bend of the nematic

director field, respectively.

The “minimal coupling” between n and ψ is enforced by the requirement of global rota-

tional invariance[2]. It is important to emphasize, however, that although the de Gennes

Hamiltonian HdG is closely analogous to that of a superconductor, there are essential differ-

ences. The physical reality of the nematic n̂ and the smectic ψ order parameters (in contrast

to the gauge ambiguity in the definition of the vector potential and the superconducting or-

der parameter), selects the liquid crystal gauge δn̂⊥ · n̂0 = 0 as the preferred physical gauge

and also allows measurements of n̂ and ψ. The strict gauge invariance of HdG is also explic-

itly broken by the splay term Ks(∇ · n̂)2 of the Frank Hamiltonian (contrasting with the

Maxwell action that involves purely gauge invariant derivatives, e.g., (∇ ×A)2), that will

be crucial for obtaining the smectic Goldstone-mode elasticity.

B. Smectic elasticity

1. From the nematic state via deGennes model

Within the ordered smectic phase, the fluctuations are conveniently described in terms

of the magnitude and phase of ψ. It is easy to show that the fluctuations of the magnitude

of ψ around the average value |ψ0| =
√
t0/g0 = const. are “massive”, and can therefore

be safely integrated out of the partition function, leading to only finite, unimportant shifts

in the effective elastic moduli. In contrast, the phase of ψ is a U(1) massless Goldstone

mode, corresponding to spontaneously broken translational symmetry. It is the essential

low energy phonon degree of freedom of the smectic phase, describing the local displacement
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of the smectic layers from perfect periodic order. In accord with this discussion, deep within

the smectic phase, we can represent the smectic order parameter as

ψ(x) = |ψ0|e−iq0u(x) , (5)

safely ignoring (actually integrating out the “massive”) fluctuations in the magnitude |ψ0| of

ψ. It is important to note that this can be done at any temperature below the transition,

without any qualitative consequences for phenomena occurring on sufficiently long length

scales, larger than a well-defined crossover length ξ(T ). The elastic model is then rigorously

valid on length scales larger than ξ(T ) and breaks down on shorter scales, and therefore, of

course can only make predictions about phenomena on scales longer than ξ(T ). As T → T−
NA,

ξ(T ) diverges and the range of length scales about which the elastic model is able to make

predictions shrinks, being pushed out to infinite scales.

Using this low-temperature ansatz inside the ψ-dependent part of the effective Hamilto-

nian, given by Eq.3 and dropping constant terms, we find

H[u, δn̂⊥] =

∫
ddx

[
B

2
(∇u+ δn̂)2 +

Ks

2
(∇ · δn)2 +

Kt

2
(ẑ ·∇× δn)2 +

Kb

2
(ẑ×∇× δn)2

]
,

=

∫
ddx

[
B

2
(∇⊥u+ δn̂⊥)2 +

B

2
(∂zu−

1

2
δn̂2

⊥)2

+
Ks

2
(∇ · δn̂)2 +

Kt

2
(ẑ ·∇× δn̂)2 +

Kb

2
(ẑ×∇× δn̂)2

]
, (6)

where B = 2c|ψ0|2q2
0 is the smectic compression modulus. We now observe a quite fascinating

phenomenon: the fluctuation mode ∇⊥u + δn̂⊥ is “massive” and leads to an analog of

the Anderson-Higgs mechanism, a hallmark of gauge theories. As a consequence, after a

simple Gaussian integration over δn̂⊥, we find that at long length scales, δn̂⊥ fluctuations

are constrained to follow ∇⊥u. The elastic smectic Hamiltonian is then obtained by the

replacement

δn̂⊥ → −∇⊥u , (7)

everywhere in Eq.(6) and Frank energy Eq.(4). Valid in the long wavelength limit and

provided dislocations are confined, we thus obtain an effective nonlinear elastic Hamiltonian

of the smectic phase,

Hsm[u] =

∫
ddx

[
K

2
(∇2

⊥u)
2 +

B

2
(∂zu−

1

2
(∇u)2)2

]
, (8)
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where K = Ks is the bend modulus. We close by noting that the aforementioned connection

to the Anderson-Higgs mechanism elucidates why a smectic state is characterized by only

a single Goldstone mode despite partially breaking rotational and translational symmetries.

In contrast a charged superconductor is well-known to have all its Goldstone modes “eaten”

by this mechanism.

Problem 3:

Fill in the details of the above derivation of smectic elasticity.

2. From the isotropic fluid

We now derive the nonlinear smectic elasticity in a more basic, complementary way,

starting instead with an isotropic fluid state. We begin with a generic energy functional

that captures system’s tendency to develop a unidirectional wave at wavevector q0, with an

arbitrary direction, and magnitude fixed at q0,

Hsm =
1

2
J

[
(∇2ρ)2 − 2q2

0(∇ρ)2
]
+

1

2
tρ2 − wρ3 + vρ4 + . . . , (9)

where J, q0, t, w, v are parameters of the isotropic fluid phase. From the first term, clearly

dominant fluctuations are on a spherical surface at a finite wavevector with a magnitude

q0. Thus let’s focus on the density at a finite wavevector q (neglecting the inconsequential

constant part of the density, ρ0), that for now we will take to be unrelated to q0

ρ(x) = Re
[
ρq(x)eiq·x] , (10)

where ρq(x) is a complex scalar and Re is a real part. Without loss of generality we take

the order parameter ρq(x) to have a (constant) magnitude ρ0 and the phase qu(x)

ρq(x) = ρ0e
−iqu. (11)

Clearly u(x) is just a phonon displacement along q. Gradients of ρ are easy to work out

∇ρ = ρ0Re
[
i(q− q∇u)ei(q·x−qu)

]
, (12a)

∇2ρ = ρ0Re
[{
−(q− q∇u)2 − iq∇2u

}
ei(q·x−qu)

]
. (12b)
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Substituting this form of ρ and its gradients into Hsm we find

Hsm =
1

4
Jρ2

0

[
(q− q∇u)4 + q2(∇2u)2 − 2q2

0(q− q∇u)2
]
+

1

4
tρ2

0 +
1

4
vρ4

0 + . . . , (13a)

=
1

4
Jρ2

0

[(
(q− q∇u)2 − q2

)2

+ q2(∇2u)2 + 2(q2 − q2
0)(q− q∇u)2

]
+

1

4
tρ2

0 + . . . , (13b)

= Jρ2
0

[
1

4
q2(∇2u)2 +

(
qq · ∇u− 1

2
q2(∇u)2

)2

+ 4(q2 − q2
0)

(
qq · ∇u− 1

2
q2(∇u)2

)]
+ . . . ,

(13c)

where we dropped constant parts as well as fast oscillating pieces as they will average away

after spatial integration of the above energy density. Note that then only even parts in ρ0

appear. Firstly, we observe that (as discussed on general grounds above) in a harmonic part

linear gradient elasticity in u only appears for gradients along q, namely q ·∇, with elasticity

transverse to q starting with a Laplacian type. Secondly, the elastic energy density is an

expansion in a rotationally-invariant strain tensor combination

uqq = q̂ · ∇u− 1

2
(∇u)2, (14)

whose nonlinearities in u ensure that it is fully rotationally invariant even for large rotations.

To see this (picking q̂ = ẑ) note that a rigid (distortion-free) rotation of q (q0ẑ → q =

q0(cos θẑ+sin θx̂)), can be interpreted as u(x) = z(cos θ−1)+x sin θ, for which uqq vanishes

identically, thus, as required resulting in vanishing energy cost. Thirdly, the last term in

(13c) vanishes for |q| picked to equal q0.

Looking ahead, as one includes effects of fluctuations, the“bare”condition q = q0 will need

to be adjusted so as to eliminate the fluctuation-generated linear term in uqq order by order,

which amounts to an expansion in the nonlinear strain uqq around the correct (fluctuation-

corrected) ground state. Finally, we note that the relation between the curvature modulus

K of Laplacian (first) term and the bulk modulus B gradient (second) term is not generic

and can be relaxed to have distinct elastic constants, as can be seen if higher order gradient

terms are included in the original energy density, Eq. (9).

Choosing the coordinate system such that ẑ is aligned along q, we find that for q = q0,

Eq. (13c) reduces to a more standard smectic elastic energy density,

Hsm =
1

2
K(∇2u)2 +

1

2
B

(
∂zu−

1

2
(∇u)2

)2
, (15)
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consistent with Eq.(8) of previous subsection, and familiar from studies of smectic liquid

crystals, with all its fascinating consequences[1, 2].

Problem 4:

Fill in the details of the above derivation of smectic elasticity.

C. Finite T Gaussian fluctuation in a harmonic smectic

To assess the extent of thermal fluctuations of the smectic Goldstone mode u we first

analyze them within a harmonic approximation, neglecting elastic nonlinearities in Hsm.

[1, 19]. In terms of the Fourier modes uk, the Hamiltonian decouples, reducing to

Hsm =
1

2

∫
ddk

(2π)d

(
Kk4

⊥ +Bk2
z

)
|uk|2, (16)

thus allowing a straightforward computation of phonon correlation functions via standard

Gaussian integrals or equivalently invoking the equipartition theorem (kBT/2 of energy per

mode). In particular, either analysis gives mean-squared fluctuations

〈u2〉T0 =

∫ Λ⊥

L−1
⊥

ddk

(2π)d

T

Bk2
z +Kk4

⊥
, (17a)

≈

 T
2
√

BK
Cd−1L

3−d
⊥ , d < 3,

T
4π
√

BK
ln q0L⊥, d = 3,

(17b)

where we defined a constant Cd = Sd/(2π)d = 2πd/2/[(2π)dΓ(d/2)], with Sd a surface area

of a d-dimensional sphere, and introduced an infrared cutoff by considering a system of

finite extent L⊥ × Lz, with Lz the length of the system along the ordering (z) axis and L⊥

transverse to z. Unless it has a huge aspect ratio, such that Lz ∼ L2
⊥/λ >> L⊥, any large

system (L⊥, Lz >> λ) will have λLz � L2
⊥.

The key observation here is that the smectic phonons exhibit fluctuations that diverge,

growing logarithmically in 3d and linearly in 2d with system size L⊥; for d > 3 fluctuations

are bounded. Thus 3d smectics are akin to a 2d xy systems, such as superfluid films and

two-dimensional crystals, [20–23], also expected to exhibit a power-law order.

The expression for the mean-squared phonon fluctuations in (17b) leads the emergence

of important crossover length scales ξ⊥, ξz, related by

ξ⊥ = (ξz
√
K/B)1/2, (18a)

≡
√
ξzλ, (18b)
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that characterize the finite-temperature smectic state. These are defined as scales L⊥, Lz at

which phonon fluctuations are large, comparable to the smectic period a = 2π/q0. Namely,

setting

〈u2〉T0 ≈ a2 (19)

in Eq. (17b) we find

ξ⊥ ≈

 a2
√

BK
T

∼ K
Tq0

, d = 2,

ae4πa2
√

BK/T ∼ ae
cK
Tq0 , d = 3,

(20a)

where in the second form of the above expressions we took the simplest approximation for

the smectic anisotropy length λ =
√
K/B to be λ = a ∼ 1/q0, and introduced an order

1 Lindemann constant c[24], that depends on the somewhat arbitrary definition of “large”

phonon root-mean-squared fluctuations.

The smectic connected correlation function

Cu(x⊥, z) = 〈[u(x⊥, z)− u(0, 0)]2〉0 . (21)

is also straightforwardly worked out, in 3d giving the logarithmic Caillé form[19]

C3d
u (x⊥, z) = 2T

∫
d2k⊥dkz

(2π)3

1− eiq·x

Kk4
⊥ +Bk2

z

,

=
T

2π
√
KB

g3d
T

(
zλ

x2
⊥
,
x⊥
a

)
,

=
T

2π
√
KB

[
ln

(x⊥
a

)
− 1

2
Ei

(
−x2

⊥
4λ|z|

)]
, (22a)

≈ T

2π
√
KB

 ln
(

x⊥
a

)
, x⊥ �

√
λ|z| ,

ln
(

4λz
a2

)
, x⊥ �

√
λ|z| ,

(22b)

where Ei(x) is the exponential-integral function. As indicated in the last form, in the

asymptotic limits of x⊥ �
√
λz and x⊥ �

√
λz above 3d correlation function reduces to a

logarithmic growth with x⊥ and z, respectively.
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In 2d we instead have[25]

C2d
u (x, z) = 2T

∫
dkxdkz

(2π)2

1− eik·x

Kk4
x +Bk2

z

,

=
T

2π
√
KB

g2d
T

(
zλ

x2
,
x

a

)
,

=
2T

B

[(
|z|
4πλ

)1/2

e−x2/(4λ|z|) +
|x|
4λ

erf
( |x|√

4λ|z|
)]

(23a)

≈ 2T

B


(

|z|
4πλ

)1/2

, x�
√
λ|z| ,

|x|
4λ
, x�

√
λ|z| ,

(23b)

where erf(x) is the Error function.

As a consequence of above divergent phonon fluctuations, the smectic density wave order

parameter (11) vanishes in thermodynamic limit

〈ρq(x)〉0 = 2ρ0〈cos
[
q0 · x− qu(x)

]
〉0,

= 2ρ0e
− 1

2
q2
0〈u2〉0 cos

(
q0 · x),

= 2ρ̃0(L⊥) cos
(
q0 · x), (24a)

with the thermally suppressed order parameter amplitude given by

ρ̃0(L⊥) = ρ0

 e−L⊥/ξ⊥ , d = 2,(
a

L⊥

)η/2

, d = 3,
(25a)

→ 0, for L⊥ →∞, (25b)

where we used results for the phonon and phase fluctuations, (17b), and defined the Caillé

exponent

η =
q2
0T

8π
√
BK

. (26)

Thus, in qualitative contrast to its mean-field cartoon, at long scales (longer than ξ⊥,z) the

smectic state is characterized by a uniform mass density.

Since the average density is actually uniform, a better characterization of the smectic

state is through the structure function, S(q), a Fourier transform of the density correlation
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function, that in 3d is given by

S(q) =

∫
d3x〈δρ(x)δρ(0)〉e−iq·x, (27a)

≈ 1

2

∑
qn

|ρqn|2
∫

x

〈e−iqn(u(x)−u(0))〉0e−i(q−qnẑ)·x, (27b)

≈ 1

2

∑
n

|ρqn|2

|qz − nq0|2−n2η
, for d = 3, (27c)

where we approximated phase and phonon fluctuations by Gaussian statistics (in 3d valid

up to weak logarithmic corrections[26]). Thus as anticipated we find that the logarithmically

divergent 3d phonon fluctuations lead to a structure function, with highly anisotropic (qz ∼

q2
⊥/λ) quasi-Bragg peaks replacing the true (δ-function) Bragg peaks characteristic of a true

long-range periodic order.[1, 2, 27]

In two dimensions, smectic order is even more strongly suppressed by thermal fluctua-

tions. The linear growth of the 2d phonon fluctuations leads to exponentially short-ranged

correlations of the density, expected to result in dislocation unbinding at any finite temper-

ature, thereby completely destroying smectic state in 2d.[25]

D. Nonlinear elasticity: beyond Gaussian fluctuations

1. Perturbation theory

As is clear from the derivation of the previous subsection, the restoration of the transla-

tional symmetry (a vanishing 〈ρq(x)〉, etc.) by thermal fluctuations is a robust prediction

of the quadratic theory, that cannot be overturned by the left-out nonlinearities. However,

the asymptotic long-scale form of the correlation functions computed within the harmonic

approximation only extends out to the nonlinear length scales ξNL
⊥,z , beyond which the di-

vergently large smectic phonon fluctuations invalidate the neglect of the nonlinear phonon

operators

Hnonlinear = −1

2
B(∂zu)(∇u)2 +

1

8
B(∇u)4. (28)

These will necessarily qualitatively modify predictions (22b), (23b), and (27) on scales longer

than the crossover scales ξNL
⊥,z , that we compute next.

To see this, we use a perturbative expansion in the nonlinear operators (28) to assess

the size of their contribution to e.g., the free energy. Following a standard field-theoretic
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FIG. 5: Feynman graph that renormalizes the elastic moduli K, B of the smectic state.

analysis these can be accounted for as corrections to the compressional B and bend K elastic

moduli, with the leading contribution to δB, summarized graphically in Fig.5, and given by

δB = −1

2
TB2

∫
q

q4
⊥Gu(q)2 , (29a)

≈ −1

2
TB2

∫ ∞

−∞

dqz
2π

∫
L−1
⊥

dd−1q⊥
(2π)d−1

q4
⊥

(Kq4
⊥ +Bq2

z)
2
,

≈ −1

8

Cd−1T

3− d

(
B

K3

)1/2

L3−d
⊥ B . (29b)

In above, we used smectic correlator, Gu(q), focused on d ≤ 3 (which allowed us to drop

the uv-cutoff (Λ) dependent part that vanishes for Λ → ∞), and cutoff the divergent con-

tribution of the long wavelength modes via the infra-red cutoff q⊥ > 1/L⊥ by considering a

system of a finite extent L⊥. Clearly the anharmonicity become important when the fluc-

tuation corrections to the elastic constants (e.g., δB above) become comparable to its bare

microscopic value. As we will see in more detail below, the divergence of this correction as

L⊥ →∞ signals the breakdown of the conventional harmonic elastic theory on length scales

longer than a crossover scale ξNL
⊥

ξNL
⊥ ≈


1
T

(
K3

B

)1/2

, d = 2,

ae
c
T

“
K3

B

”1/2

, d = 3,

(30)

which we define here as the value of L⊥ at which |δB(ξNL
⊥ )| = B. Within the approximation

of the smectic screening length λ = a, these nonlinear crossover lengths reduce to the phonon

disordering lengths (20),(18b), defined by a Lindemann-like criterion. Clearly, on scales

longer than ξNL
⊥,z the perturbative contributions of nonlinearities diverge and therefore cannot

be neglected. Their contribution are thus expected to qualitatively modify the harmonic

predictions of the previous subsection.
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Similar analysis gives a positive fluctuation correction to the bend modulus K, stiffening

the undulation mode.

Problem 5:

In the process of computing a correction to the bend modulus K, you will discover that

indeed a lower-order term proportional to (∇u)2 is generated, seemingly leading to violation

of underlying rotational invariance discussed above. This seeming paradox is resolved by

noting that in addition a term ∂zu is also generated with a coefficient that is exactly −2

that of the (∇u)2 piece. Thus the generated fluctuation correction neatly assembles into a

term linear in the rotationally invariant nonlinear strain tensor uqq, (14).

Verify the above claim by explicit perturbative calculation and demonstrate (following the

derivation of smectic elasticity) that such linear term simply corresponds to a fluctuation-

generated shift in the smectic wave-vector q away from its lowest-order value q0.

2. Renormalization group analysis in d = 3− ε dimensions

To describe the physics beyond the crossover scales, ξNL
⊥,z – i.e., to make sense of the

infra-red divergent perturbation theory found in Eq.29b – requires a renormalization group

analysis. This was first performed in the context of conventional 3d liquid crystals and

Lifshitz points in a seminal work by Grinstein and Pelcovits (GP)[26]. For completeness,

we complement GP’s treatment with Wilson’s momentum-shell renormalization group (RG)

analysis, extending it to an arbitrary dimension d, so as to connect to the behavior in 2d,

that has an exact solution[28].

To this end we integrate (perturbatively in Hnonlinear) short-scale Goldstone modes in an

infinitesimal cylindrical shell of wavevectors, Λe−δ` < q⊥ < Λ and −∞ < qz <∞ (δ`� 1 is

infinitesimal). The leading perturbative momentum-shell coarse-graining contributions come

from terms found in direct perturbation theory above, but with the system size divergences

controlled by the infinitesimal momentum shell. The thermodynamic averages can then be

equivalently carried out with an effective coarse-grained Hamiltonian of the same form (15),

but with all the couplings infinitesimally corrected by the momentum shell. For smectic

moduli B and K this gives

δB ≈ −1

8
gBδ`, δK ≈ 1

16
gKδ`, (31)

18



where dimensionless coupling is given by

g = Cd−1Λ
3−d
⊥ T

(
B

K3

)1/2

≈ T

2π

(
B

K3

)1/2

, (32)

and in the second form we approximated g by its value in 3d. Eqs.(31) show thatB is softened

and K is stiffened by the nonlinearities in the presence of thermal fluctuations, making the

system effectively more isotropic, as one may expect on general physical grounds.

For convenience we then rescale the lengths and the remaining long wavelength part of

the fields u<(r) according to r⊥ = r′⊥e
δ`, z = z′eωδ` and u<(r) = eφδ`u′(r′), so as to restore

the ultraviolet cutoff Λ⊥e
−δ` back up to Λ⊥. The underlying rotational invariance ensures

that the nonlinear fluctuation corrections preserve the rotationally invariant strain operator(
∂zu− 1

2
(∇⊥u)

2
)
, renormalizing it as a whole. It is therefore convenient (but not necessary)

to choose the dimensional rescaling that also preserves this form. It is easy to see that this

choice leads to

φ = 2− ω . (33)

The leading (one-loop) changes to the effective coarse-grained and rescaled free energy func-

tional can then be summarized by differential RG flows

dB(`)

d`
= (d+ 3− 3ω − 1

8
g(`))B(`) , (34a)

dK(`)

d`
= (d− 1− ω +

1

16
g(`))K(`) . (34b)

From these we readily obtain the flow of the dimensionless coupling g(`)

dg(`)

d`
= (3− d)g − 5

32
g2 , (35)

whose flow for d < 3 away from the g = 0 Gaussian fixed point encodes the long-scale

divergences found in the direct perturbation theory above. As summarized in the bottom

of Fig.3 for d < 3 the flow terminates at a nonzero fixed-point coupling g∗ = 32
5
ε (with

ε ≡ 3− d), that determines the nontrivial long-scale behavior of the system (see below). As

with treatments of critical points[1], but here extending over the whole smectic phase, the

RG procedure is quantitatively justified by the proximity to d = 3, i.e., smallness of ε.

We can now use a standard matching calculation to determine the long-scale asymptotic

form of the correlation functions on scales beyond ξNL
⊥,z . Namely, applying above coarse-

graining RG analysis to a computation of correlation functions allows us to relate a corre-

lation function at long length scales of interest to us (that, because of infrared divergences
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is impossible to compute via a direct perturbation theory) to that at short scales, evaluated

with coarse-grained couplings, B(`), K(`),. . . . In contrast to the former, the latter is readily

computed via a perturbation theory, that, because of shortness of the length scale is con-

vergent. The result of this matching calculation to lowest order gives correlation functions

from an effective Gaussian theory

Gu(k) ≈ T

B(k)k2
z +K(k)k4

⊥
, (36)

with moduli B(k) and K(k) that are singularly wavevector-dependent, determined by the

solutions B(`) and K(`) of the RG flow equations (34a) and (34b) with initial conditions

the microscopic values B and K.

2d analysis: In d = 2, at long scales g(`) flows to a nontrivial infrared stable fixed

point g∗ = 32/5, and the matching analysis predicts correlation functions characterized by

anisotropic wavevector-dependent moduli

K(k) = K
(
k⊥ξ

NL
⊥

)−ηK fK(kzξ
NL
z /(k⊥ξ

NL
⊥ )ζ) , (37a)

∼ k−ηK

⊥ ,

B(k) = B
(
k⊥ξ

NL
⊥

)ηB fB(kzξ
NL
z /(k⊥ξ

NL
⊥ )ζ) , (37b)

∼ kηB

⊥ .

Thus, on scales longer than ξNL
⊥,z these qualitatively modify the real-space correlation function

asymptotics of the harmonic analysis in the previous subsection. In Eqs.(37) the universal

anomalous exponents are given by

ηB =
1

8
g∗ =

4

5
ε ,

≈ 4

5
, for d = 2 , (38a)

ηK =
1

16
g∗ =

2

5
ε ,

≈ 2

5
, for d = 2 , (38b)

determining the z − x⊥ anisotropy exponent via (36) to be

ζ ≡ 2− (ηB + ηK)/2 , (39a)

=
7

5
, for d = 2 , (39b)
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as expected reduced by thermal fluctuations down from its harmonic value of 2. The k⊥−kz

dependence of B(k), K(k) is determined by universal scaling functions, fB(x), fK(x) that we

will not compute here. The underlying rotational invariance gives an exact relation between

the two anomalous ηB,K exponents

3− d =
ηB

2
+

3

2
ηK , (40a)

1 =
ηB

2
+

3

2
ηK , for d = 2, (40b)

which is obviously satisfied by the anomalous exponents, Eqs.(38b),(38a), computed here to

first order in ε = 3− d.

Thus, as advertised, we find that a finite temperature, a 2d smectic state is highly non-

trivial and qualitatively distinct from its mean-field perfectly periodic form. In addition to

a vanishing density modulation and associated fluctuation-restored translational symmetry,

it is characterized by a universal nonlocal length-scale dependent moduli, Eq. (37). Conse-

quently its Goldstone mode theory and the associated correlations are not describable by a

local field theory, that is an analytic expansion in local field operators. Instead, in 2d, on

length scales beyond ξNL
⊥,z thermal fluctuations and correlations of this smectic critical phase

are controlled by a nontrivial fixed point, characterized by universal anomalous exponents

ηK,B and scaling functions fB,K(x) defined above.

Above we obtained this nontrivial structure from an RG analysis and estimated these

exponents within a controlled but approximate ε-expansion. Remarkably, in 2d an exact

solution of this problem was discovered by Golubovic and Wang[28]. It predicts an anomalous

phenomenology in a qualitatively agreement with the RG predictions above, and gives exact

exponents

η2d
B = 1/2, η2d

K = 1/2, ζ2d = 3/2. (41)

3d analysis: In d = 3, the nonlinear coupling g(`) is marginally irrelevant, flowing to 0

at long scales. Despite this, the marginal flow to the Gaussian fixed point is sufficiently

slow (logarithmic in lengths) that (as usual at a marginal dimension[1]) its power-law in `

dependence leads to a universal, asymptotically exact logarithmic wavevector dependence[26]

K(k⊥, kz = 0) ∼ K|1 +
5g

64π
ln(1/k⊥a)|2/5 , (42a)

B(k⊥ = 0, kz) ∼ B|1 +
5g

128π
ln(λ/kza

2)|−4/5. (42b)
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This translates into the smectic order parameter correlations given by

〈ρ∗q(x)ρq(0)〉 ∼ e−c1(ln z)6/5

cos(q0z), (43)

(c1 a nonuniversal constant) as discovered by Grinstein and Pelcovits[26]. Although these 3d

anomalous effects are less dramatic and likely to be difficult to observe in practice, theoret-

ically they are quite significant as they represent a qualitative breakdown of the mean-field

and harmonic descriptions, that respectively ignore interactions and thermal fluctuations.

We conclude this section by noting that all of the above analysis is predicated the validity

of the purely elastic model, Eq. (15), that neglects topological defects, such as dislocations.

If these unbind (as they undoubtedly do in 2d at any nonzero temperature[25]), then our

above prediction only hold on scales shorter than the separation ξdisl between these defects.

IV. CHOLESTERIC AND HELICAL STATES

A. Background

Another beautiful example of a system that realizes a critical phase is a cholesteric phase of

chiral liquid crystals, illustrated in Fig.1(b), actually the first liquid crystal phase discovered

in cholesterol benzoate by Reinitzer in 1886. This orientationally periodic state is ubiquitous

in nature and, as is obvious from its structure is equivalent to the helical state that appears

in non-centrosymmetric magnets like MnSi, FeSi and many others[29].

In this section we will derive the low-energy, long wavelength (longer than its period,

a = 2π/q0) elasticity of a cholesteric. The latter is expected from symmetry and explicit

harmonic derivation by Lubensky, et al.[2, 30] to be identical to that of a smectic, i.e., that

of a one-dimensional crystalline order, that spontaneously breaks underlying translational

and rotational symmetry, with homogeneous and isotropic layers transverse to the ordering

wavevector, q0. In fact as we will see there are subtle but important distinctions, that

particularly affect the nature of phase transitions in/out of this state.

In a chiral nematic liquid crystal, an additional chiral q0 term is allowed, giving:

H∗
F =

1

2
Ks(∇ · n̂)2 +

1

2
Kb(n̂×∇× n̂)2 +

1

2
Kt(n̂ · ∇ × n̂+ q0)

2 +HSS, (44)

that tends to twist the nematic structure into a helix with a pitch 2π/q0 along a sponta-

neously chosen axis.
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Lack of inversion symmetry also allows the so-called saddle-splay boundary term

HSS =
1

2
K24∇ ·

[
(n̂ · ∇)n̂− n̂∇ · n̂

]
, (45)

that is crucial for understanding the stability of Blue phases as it drives a nonplanar, non-

collinear expression of chirality. To see this in more detail we note that for a planar state

characterized by a phase φ(r) and fixed reference frame,

n̂(r) = [cosφ, sinφ, 0], (46)

the saddle-splay density is given by:

HSS =
1

2
K24∇ ·

[
− ∂yφ, ∂xφ

]
= −1

2
K24∇×∇φ. (47)

which is nonzero only for a singular φ(r), e.g., with screw dislocations of the cholesteric

state. Otherwise it vanishes for an ordered cholesteric state characterized by a single-valued

phase φ(r) = q · r + χ(r).

To simply the analysis we focus on Frank elasticity with independent space and “spin”

rotational invariance that appears in the isotropic limit of Ks = Kb = Kt = K24. The

spin-space coupling still enters through the chiral term. The resulting chiral Frank energy

density is then given by

H∗
F =

1

2
K

[
(∂in̂j)

2 + 2q0n̂ · ∇ × n̂+ q2
0

]
, (48)

=
1

2
K (∂in̂j + q0εijkn̂k)

2 − 1

2
Kq2

0, (49)

where after integration by parts we utilized the identity

(∂in̂j)
2 = (∇ · n̂)2 + (∇× n̂)2 +∇ ·

[
(n̂ · ∇)n̂− n̂∇ · n̂

]
(50)

In the absence of K24, H∗
F is a sum of squares and is therefore clearly minimized by a

twist-only cholesteric state

n̂(r) = ê10 cos(q · r) + ê20 sin(q · r), (51)

(ê10, ê20, ê30 ≡ ê10 × ê20 form a constant orthonormal triad) with a constant twist

n̂ · ∇ × n̂ = −q0. (52)
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We therefore use the above form to derive the Goldstone-mode elasticity of the cholesteric

state.

Problem 6:

Verify that in the cholesteric state:

n̂ · ∇ × n̂ = −q · ê3, (53a)

∂in̂j = qi[−ê1j sin(q · r) + ê2j cos(q · r)], (53b)

εijkn̂k = (ê2iê3j − ê3iê2j) cos(q · r) + (ê3iê1j − ê1iê3j) sin(q · r), (53c)

(∂in̂j)
2 = q2, (53d)

(εijkn̂k)
2 = 2. (53e)

We note, that because of the identity Eq. (53e), unsymmetrized strain ∂in̂j cannot satu-

rate the complete square as it cannot equal to the fully antisymmetric q0εijkn̂k. Thus energy

density in (49) is frustrated in the helical state, ultimately due to the saddle-splay K24 term.

B. Low-energy Goldstone mode theory of a cholesteric/helical state

We now derive the theory of low energy Goldstone modes about the cholesteric/helical

ground state. A general state close to the latter can be parameterized according to

n̂(r) = ê1(r) cos(q · r + χ(r)) + ê2(r) sin(q · r + χ(r)), (54)

where fluctuations are captured through a spatially dependent orthonormal triad

ê1(r), ê2(r), ê3(r) and the helical phase

χ(r) = −q0u(r) (55)

that corresponds to the phonon field u(r) of the chiral layers, The helical state breaks a group

of three dimensional translations and rotations G = T ×O(3) of the isotropic fluid down to

H = Tx × Ty × U(1) (latter U(1) = diagonal[Tz, Oz(2)]). Thus, since dim[G/H = O(3)] = 3

three independent Goldstone modes χ(r) (one), and ê3(r) (two) are expected; the azimuthal

angle φ(r) defining the orientation of the ê1,2 around ê3 is not independent of χ(r) as it can

be absorbed into it. The low-energy coset space is isomorphic to S1 × S2, a ball (radius π)

of the group space of SO(3).
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Substituting the form for n̂(r) from Eq. (54) into the Frank energy of the chiral nematic,

Eq. (49), and using

∂in̂j = (qi + ∂iχ)[−ê1j sin(q · r + χ) + ê2j cos(q · r + χ)]

+∂iê1j cos(q · r + χ) + ∂iê2j sin(q · r + χ), (56)

together with

∂iê1j = aiê2j + c1iê3j, (57a)

∂iê2j = −aiê2j + c2iê3j, (57b)

ai = ê2 · ∂iê1, c1i = −ê1 · ∂iê3, c2i = −ê2 · ∂iê3, (57c)

where we introduced spin-connections a, c1, c2, we find (taking K = 1 for simplicity)

H∗
F =

1

2

[
(aiê2j + ciê3j) cos(q · r + χ) + (−aiê1j + c2iê3j) sin(q · r + χ)

+(qi + ∂iχ)
[
− ê1j sin(q · r + χ) + ê2j cos(q · r + χ)

]
+q0(ê2iê3j − ê3iê2j) cos(q · r + χ) + q0(ê3iê1j − ê1iê3j) sin(q · r + χ)

]2

− 1

2
q2
0,

=
1

2
(∇χ+ a + q− q0ê3)

2 +
1

4
(c1 + q0ê2)

2 +
1

4
(c2 − q0ê1)

2 − 1

2
q2
0. (58)

Taking q = q0ẑ, with ẑ defining the helical axis (distinct from the normal to the helical

plane, ê3) and noting the compatibility condition on effective flux or its equivalent Pontryagin

density

∇× a = εij ê3 · ∂iê3 × ∂j ê3 = 0, (59)

required by well-defined cholesteric layers, i.e., in the absence of dislocations and disclinations

in the layer structure, allows us to take

a = ∇φ. (60)

Under this condition φ can be eliminated in favor of χ, i.e., χ + φ → χ and in the labora-

tory coordinate system x̂, ŷ, ẑ, the fluctuations are characterized by the local helical frame

described by χ and ê3, with

ê3 = ê3⊥ + ẑ
√

1− ê2
3⊥ ≈ ê3⊥ + ẑ(1− 1

2
ê2

3⊥). (61)
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We thus obtain

H∗
F =

1

2
(∇⊥χ− q0ê3⊥)2 +

1

2
(∂zχ+

1

2
q0ê

2
3⊥)2 +

1

4
(c2

1 + c2
2) +

q0
2

(c1 · ê2 − c2 · ê1). (62)

From the minimization of the first term (or equivalently integrating out the independent ê3⊥

degree of freedom, I obtain an effective constraint

∇⊥χ = q0ê3⊥, (63)

that is an example of an emergent Higgs mechanism (akin to smectic liquid crystals discussed

above) locking the cholesteric layers orientation with the molecular frame orientation. With

this constraint (valid at low energies) the effective Hamiltonian reduces to

H∗
F =

1

2

[
∂zχ+

1

2q0
(∇⊥χ)2

]2
+

1

4q2
0

(êαγ · ∂⊥β ∂⊥γ χ)2 +
q0
2

(ê1αê2β∂β∂αχ− ê2αê1β∂β∂αχ),(64)

=
1

2

[
∂zχ+

1

2q0
(∇⊥χ)2

]2
+

1

4q2
0

(êαγ · ∂⊥β ∂⊥γ χ)2 + q0ẑ · (∇×∇χ), (65)

=
1

2
B

[
∂zu−

1

2
(∇u)2

]2
+

1

2
K(∇2u)2 (66)

where êα,iêα,j = δij and ê1,iê2,j − ê2,iêi,j = ê3,kεijk were used, and to eliminate the last term

in the penultimate expression above we used the condition of the single-valuedness of the

phase field χ, i.e., well defined cholesteric layers with no dislocations. Above we defined

effective moduli

B = Kq2
0, K = K. (67)

Thus, as advertised and expected on symmetry grounds we indeed demonstrated that

cholesteric Goldstone modes elasticity, even at the nonlinear level is identical to that of a

conventional smectic. We thus immediately conclude that a cholesteric must exhibit all novel

smectic properties, most importantly the universal criticality of its ordered state, worked out

in the previous section.

We note, however, that although within the cholesteric phase, the two are identical, be-

cause of the presence of chirality and in particular the q0ẑ · (∇ × ∇χ) term above, the

cholesteric differs from a smectic in terms of the nature of its expected transition and phases

that are adjacent to it. The latter disorders into a nematic state, while the former (pre-

cluded from this by chirality) can transition into Blue phases and the Twist-Grain-Boundary

phases[1, 2]. In fact the situation is quite analogous to a superconductor with and without
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an external magnetic field, with the former and latter cases corresponding to the smectic and

cholesteric, respectively. This explicitly-demonstrated result contrasts qualitatively with the

original conjecture by Toner and Nelson[25]).

Problem 7:

Using the explicit form of a = ê2 ·∇ê1 demonstrate

∇× a = ê3 ·∇ê3 ×∇ê3 (68)

Hint: You may need to use the identity (ê1`ê2m − ê1mê2`) = 2ênε`mn (can you prove it?).

V. OTHER EXAMPLES

A. Columnar phase

A fluid composed of a high aspect ratio disk-shaped constituents in addition to the ne-

matic phase, also prominently exhibits a “columnar phase”.[2] In it disks stack into one-

dimensional fluid columns, that in turn freeze into a triangular lattice (retaining fluid order

along the columns). This discotic liquid crystal phase, forming a 2d crystal of 1d fluid

columns is in a sense dual to the smectic state of 1d periodic array of 2d fluids.

As we will argue below, for d < 5/2 it is also a critical phase, though given the dimensional

constraint not a very practical one from the experimental realization point of view. The state

is characterized by a two-component phonon field u = (ux, uy), that are two Goldstone modes

associated with translational symmetry breaking in the plane transverse to the columns.

Analogously to a smectic, the remaining naively expected Goldstone modes associated with

translational and rotational symmetry are gapped out by the emergent Higgs mechanism.

Although we can derive the Goldstone mode elasticity for the columnar phase by following

the approach analogous to that of a smectic, here we will simply write it down based on

symmetry and experience with the smectic. To this end we note that the columnar state

exhibits two types of rigidities, the in-plane (transverse to the columnar axis ẑ) crystal and

bending of the columns. The former is quite clearly characterized by elasticity of a 2d

triangular lattice. The latter is captured by curvature filament elasticity. Together these

give energy density

Hcol =
1

2
κ(∂2

zu)2 +
λ

2
u2

αα + µu2
αβ (69)
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where κ is the curvature modulus and µ and λ are the Lamé elastic moduli[1], and (with

the summation convention over repeated indices) the strain tensor is given by

uαβ =
1

2

(
∂αuβ + ∂βuα − ∂γuα∂γuβ

)
≈ 1

2

(
∂αuβ + ∂βuα − ∂zuα∂zuβ

)
, (70)

where phonons u(x, y, z) = (ux, uy) are two-dimensional but the space is three-dimensional,

and in the second approximate form we only kept the most important nonlinearity.

As in the discussion of the smectic elasticity, the columnar elasticity (69) is constrained

by symmetry. The linear z derivative in the harmonic terms is forbidden by the rotational

invariance about the x axes (broken spontaneously), at infinitesimal level corresponding

to u → u + θzŷ. This “softness” with respect to ∂zu modes then requires us to keep

corresponding nonlinearities in the in-plane strain tensor, uαβ above, the form of which are

dictated by the in-plane rotational invariance.

As in a smectic, here too the analysis of quadratic phonon fluctuations leads to power-law

divergence for d < 5/2, requiring inclusion of elastic nonlinearities. Account of these via an

RG analysis leads to a nontrivial infrared stable fixed point that characterizes the universal

properties of the resulting columnar critical phase.

B. Polymerized membrane

A fluctuating, tensionless and therefore curvature-controlled membrane is another fasci-

nating system, stimulated in part by ubiquitous biophysical realizations (e.g., lyposomes,

cellular membrane, etc)[3]. With our focus on critical phases, of particular interest are

polymerized membranes (realized for example as red-blood cell cytoskeleton and graphene

sheets[31]), that exhibit a finite in-plane shear rigidity.

As was first argued by Nelson and Peliti[32], in addition to the rotationally invariant

“crumpled” phase of linear polymers and liquid membranes, polymerized membranes exhibit

a finite temperature “flat” phase. As we will examine below, this too is a critical phase

characterized by universal power-law correlations (e.g., membrane roughness) and anoma-

lous elasticity, with the state’s very existence in two-dimensional membranes a beautiful

illustration of a phenomena of order-from-disorder.

A detailed derivation of the flat-phase Goldstone-modes elasticity is available[3, 32] start-

ing from the Landau theory of the crumpled phase in terms of the tangent vectors ∇~r(x),
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where ~r(x) is the embedding of the D-dimensional membrane (parameterized by x) in the

d-dimensional space, ~r (D = 2 and d = 3 is the physical case). The flat phase parameterized

by

~r(x) = (ζx + u(x),~h(x)),

spontaneously breaks the O(d) symmetry of the crumpled phase down to O(D), where ζ scale

factor is the effective order parameter of the flat phase, u(x) is the D-component in-plane

phonon, and ~h(x) is the “height function” describing the membrane’s transverse undulation

into the embedding space; we have implicitly generalized to arbitrary co-dimension dc =

d−D.

The resulting energy functional is a sum of a bending and an in-plane elastic contributions:

Hflat[~h,u] =

∫
dDx

[
κ

2
(∇2~h)2 + µu2

αβ +
λ

2
u2

αα

]
, (71)

where the strain tensor is

uαβ =
1

2
(∂α~r · ∂β~r − δαβ) ≈ 1

2
(∂αuβ + ∂βuα + ∂α

~h · ∂β
~h), (72)

where we defined the strain tensor in terms of deviation of the embedding-induced metric

gαβ from the flat metric, and in the second form neglected elastic nonlinearities that are

subdominant at long scales. We can also integrate out the noncritical in-plane phonon field

u, that appears only harmonically, to obtain a convenient equivalent form, purely in terms

of ~h

Hflat[~h] =

∫
dDx[

κ

2
(∇2~h)2 +

1

4dc

(∂α
~h · ∂β

~h)Rαβ,γδ(∂γ
~h · ∂δ

~h)] (73)

where for convenience, we rescaled Lamé coefficients so that the quartic coupling is of order

1/dc. The four-point coupling fourth-rank tensor is given by

Rαβ,γδ =
K − 2µ

2(D − 1)
P T

αβP
T
γδ +

µ

2

(
P T

αγP
T
βδ + P T

αδP
T
βγ

)
, (74)

where P T
αβ = δαβ−qαqβ/q2 is a transverse (to q) projection operator. The convenience of this

decomposition is that K = 2µ(2µ+Dλ)/(2µ+ λ) and µ moduli renormalize independently

and multiplicatively.[35]

We note that this last h-only elastic form indeed reflects our general discussion about

critical phases in Sec.II, namely that they are described by an energy functional (of φ4 form

with ~φα ≡ ∂α
~h) enforced to be critical (i.e., missing the φ2 term) by the underlying rotational

symmetry, as illustrated in Fig.3.
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Following by now standard analysis[32–35] we learn that for D < 4 (and arbitrary d) the

membrane exhibits height undulations that diverge with its extent L. As for smectics and

other critical phases, we can make sense of the associated divergent perturbation theory in

elastic nonlinearities by performing an RG analysis controlled by ε = 4−D or equivalently

1/dc (large embedding dimension).

The resulting infrared stable fixed point controls the properties of the highly nontrivial

“flat” phase, that in fact is critical and power-law rough. It is characterized by root-mean-

squared height undulations

hrms =
√
〈h2(x)〉 ∼ Lζ , (75)

with the roughness exponent ζ < 1 (i.e., despite divergent undulations the symmetry remains

broken as Lζ � L→∞), whose best estimate for D = 2, d = 3 [35] is

ζ = 0.59,

and has also been computed within ε and 1/dc expansions[33–35].

The“flat”critical phase is also characterized by universal anomalous elasticity with length

scale-dependent elastic moduli

κ(q) ∼ q−η, µ(q) ∼ λ(q) ∼ qηu , (76)

where for physical membranes η ≈ 0.82 and the underlying rotational invariance imposes

exact relations

ηu = 4−D − 2ηκ, ζ = (4−D − η)/2. (77)

These indicate that at long scales thermal fluctuations stiffen the bending of the membrane

and soften its in-plane moduli. We note that as a result hrms(L)/L ∼ L−η/2 → 0 indicates

that the“flat”phase is stabilized (for finite positive η > 0 generated by thermal fluctuations)

by the very fluctuations that attempt to destabilize it, a phenomenon known as order-from-

disorder.

The theory also predicts a universal and negative Poisson ratio

Lim
q→0

σ ≡ λ(q)

2µ(q) + (D − 1)λ(q)
= −1

3
, for D = 2, (78)

30



that measures the ratio of compression of the membranes along an axis transverse to its

strained direction. Its negative value indicates that the membrane actually expands trans-

versely as it is being stretched. This value of −1/3 compares extremely well with the most

recent and largest simulations.[36] This amazing fluctuation-driven anomalous elasticity phe-

nomenology can be understood qualitatively by playing around with a roughened piece of

paper.

C. Nematic elastomer

A final example that we will discuss briefly is the nematic elastomer, namely rubber

composed of mesogenic groups (see Fig.6), that exhibit a spontaneous transition to a ne-

matic phase, thereby driving an accompanying spontaneous uniaxial distortion of the elastic

matrix, illustrated in Fig.7.[12]

FIG. 6: Spontaneous uniaxial distortion of nematic elastomer driven by isotropic-nematic transi-

tion.

Even in the absence of fluctuations, bulk nematic elastomers were predicted[37] and later

observed to display an array of fascinating phenomena[12, 38], the most striking of which is

the vanishing of stress for a range of strain, applied transversely to the spontaneous nematic

direction. This striking softness is generic, stemming from the spontaneous orientational
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symmetry breaking by the nematic state, accompanied by a Goldstone mode, that leads to

the observed soft distortion and strain-induced director reorientation[37, 39], illustrated in

Fig.7. This unique elastic phenomenon is captured by a harmonic version of the uniaxial

Hamiltonian in Eq.(79), with wij taken as a linear strain tensor. The hidden rotational

symmetry guarantees a vanishing of one of the five elastic constants[37, 39], that usually

characterize harmonic deformations of a three-dimensional uniaxial solid[41], here with the

uniaxial axis ẑ chosen spontaneously.

FIG. 7: (a) Simultaneous reorientation of the nematic director and of the uniaxial distortion is a

low-energy nemato-elastic Goldstone mode of an ideal elastomer, that is responsible for its softness

and (b) its idealized flat (vanishing stress) stress-strain curve for a range of strains ε < εc.

Given this softness of the harmonic elasticity associated with symmetry-imposed van-

ishing of the µz⊥ modulus, thermal and heterogeneity-driven fluctuations are divergent in

3d.[13, 40]. Thus, as in other “soft” matter discussed in earlier sections, we expect a qualita-

tive importance of elastic nonlinearities in the presence of thermal fluctuations and network

heterogeneity.

The resulting minimal elastic Hamiltonian density has the following form:

Helast =
1

2
Bz w

2
zz + λz⊥wzz wαα +

1

2
λw2

αα + µw2
αβ +

K

2
(∇2

⊥uz)
2, (79)

where akin to earlier examples the components of the (rescaled) effective nonlinear strain

tensor w are given by

wzz = ∂zuz +
1

2
(∇⊥uz)

2, (80)

wαβ =
1

2
(∂αuβ + ∂βuα − ∂iuz ∂juz) . (81)

32



Similar to their effects in smectic, columnar liquid crystals and other soft matter discussed

earlier, in bulk elastomers thermal fluctuations (and network heterogeneity) lead to anoma-

lous elasticity, with universally length-scale dependent elastic moduli,

Keff ∼ Lη, µeff ∼ L−ηu (82)

controlled by an infrared stable fixed point[13, 40]. The resulting critical state is character-

ized by a universal non-Hookean stress-strain relation

σzz ∼ (εzz)
δ

and a negative Poisson ratio for extension εxx > 0 transverse to the nematic axis

εyy =
5

7
εxx, εzz = −12

7
εxx. (83)

While considerable progress has been made in understanding these fascinating materials,

many open questions, particularly associated with network heterogeneity remain open.

VI. SUMMARY AND CONCLUSIONS

In these lectures we have discussed a novel class of soft matter, where “softness” is quali-

tative (rather than just quantitative, with moduli comparable to thermal energy). Namely,

as a result of the underlying symmetry broken in the ordered state, certain elastic moduli of

the associated Goldstone modes vanish identically. As a result, such system exhibit fluctu-

ations that are divergent in the thermodynamic limit, and require treatment of Goldstone

modes’ nonlinearities in the ordered phase (not just near a critical point). Treating these

within renormalization group analysis, leads to an infrared stable fixed point that controls

the resulting highly nontrivial and universal ordered state. The latter exhibits properties

akin to that of a critical point, but extending over the entire phase, which we therefore

naturally refer to as a “critical phase”.

As prominent examples of such systems, we have discussed smectics, cholesterics, colum-

nar phases, polymerized membranes and nematic elastomers. While significant progress has

been made in characterizing these systems, discovery of new systems (e.g., as quantum ex-

amples), understanding of effects of random heterogeneity and dynamics remain challenging

open problems.

33



VII. ACKNOWLEDGMENTS

The material presented in these lectures is based on research done with a number of

wonderful colleagues, most notably David Nelson, John Toner, Pierre Le Doussal, Tom

Lubensky, Xiangjun Xing and Ranjan Mukhopadhyay. I am indebted to these colleagues

for much of my insight into the material presented here. This work was supported by the

National Science Foundation through grants DMR-1001240 and DMR-0969083 as well by

the Simons Investigator award from the Simons Foundation.

[1] P. Chaikin and T.C. Lubensky, Principles of Condensed Matter Physics, Cambridge University

Press, Cambridge 1995.

[2] P. de Gennes and J. Prost, The Physics of Liquid Crystals (Clarendon Press, Oxford, 1993).

[3] D. R. Nelson, T. Piran, and S. Weinberg, eds., Statistical Mechanics of Membranes and

Surfaces (World Scientific, Singapore, 2004), 2nd ed.

[4] Matthew A. Glaser, Gregory M. Grason, Randall D. Kamien, A. Kosmrlj, Christian D. San-

tangelo, P. Ziherl Europhys. Lett. 78, 46004 (2007).

[5] M. P. Lilly, et al., Phys. Rev. Lett. 82, 394 (1999); R. R. Du, et al., Solid State Comm. 109,

389 (1999).

[6] A. H. MacDonald and M. P. A. Fisher, Phys. Rev. B 61, 5724 (2000).

[7] E. Fradkin and S.A. Kivelson, Phys. Rev. B 59, 8065 (1999).

[8] L. Radzihovsky, Phys. Rev. A 84, 023611 (2011); L. Radzihovsky, “Quantum liquid-crystal

order in resonant atomic gases” (invited review) Physica C 481, 189-206 (2012).

[9] L. Radzihovsky, T. C. Lubensky, Phys. Rev. E 83, 051701 (2011).

[10] L. Balents, Nature 464, 199 (2010); Doron Bergman, Jason Alicea, Emanuel Gull, Simon

Trebst, Leon Balents Nature Physics 3, 487 (2007).

[11] A. M. Ettouhami, Karl Saunders, L. Radzihovsky, John Toner Phys. Rev. B 71, 224506 (2005).

[12] M. Warner, E.M. Terentjev, Liquid Crystal Elastomers, Oxford University Press, 2003.

[13] X. Xing and L. Radzihovsky, Europhys. Lett. 61, 769 (2003); Phys. Rev. Lett. 90, 168301

(2003); Annals of Physics 323 105-203 (2008).

[14] M. Nakata, et. al., Science 318, 1274-1277 (2007).

[15] S. Fraden, Phase transitions in colloidal suspensions of virus particles, in M. Baus, L. F. Rull,

34



J. P. Ryckaert, editors. NATO-ASI Series C, vol. 460. Kluwer Academic Publishers. p. 64-113.

[16] Erez Berg, E. Fradkin, S. A. Kivelson, Phys. Rev. Lett. 105, 146403 (2010).

[17] Sungsoo Choi, Leo Radzihovsky, Phys. Rev. A 84, 043612 (2011); Phys. Rev. Lett. 103,

095302 (2009).

[18] L. Radzihovsky, A. T. Dorsey, Phys. Rev. Lett. 88, 216802 (2002)
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